
OPT2021: 13th Annual Workshop on Optimization for Machine Learning

Community-based Layerwise Distributed Training of Graph
Convolutional Networks

Hongyi Li LIHONGYI@STU.XIDIAN.EDU.CN
The State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an, Shaanxi, China, 710071

Junxiang Wang JUNXIANG.WANG@EMORY.EDU
Department of Computer Science and Informatics, Emory University, Atlanta, Georgia, USA, 30030

Yongchao Wang YCHWANG@MAIL.XIDIAN.EDU.CN
The State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an, Shaanxi, China, 710071

Yue Cheng YUECHENG@GMU.EDU
Department of Computer Science, George Mason University, Fairfax, Virginia, USA, 22030

Liang Zhao LIANG.ZHAO@EMORY.EDU

Department of Computer Science and Informatics, Emory University, Atlanta, Georgia, USA, 30030

Abstract
The Graph Convolutional Network (GCN) has been successfully applied to many graph-based

applications. Training a large-scale GCN model, however, is still challenging: Due to the node
dependency and layer dependency of the GCN architecture, a huge amount of computational time
and memory is required in the training process. In this paper, we propose a parallel and distributed
GCN training algorithm based on the Alternating Direction Method of Multipliers (ADMM) to
tackle the two challenges simultaneously. We first split GCN layers into independent blocks to
achieve layer parallelism. Furthermore, we reduce node dependency by dividing the graph into
several dense communities such that each of them can be trained with an agent in parallel. Finally,
we provide solutions for all subproblems in the community-based ADMM algorithm. Preliminary
results demonstrate that our proposed community-based ADMM training algorithm can lead to more
than triple speedup while achieving the best performance compared with state-of-the-art methods.

1. Introduction

Graphs are prevalent structures in various real-world applications including social networks [6],
recommender systems [9], and biology and chemistry networks [3], which has attracted much
attention from the deep learning community. Graph Convolutional Network (GCN) is one of the
leading graph neural network architectures due to its impressive performance on many downstream
tasks (e.g. node classification, link prediction, and graph classification) [5]. However, it is challenging
to train GCN efficiently due to two difficulties: 1) Node dependency. The GCN needs to propagate
information among nodes through node interactions in the graph. This means that the loss for each
node depends on a large number of neighboring nodes. Such dependency becomes more complex
as the GCN goes deeper. 2). Layer dependency. The interactions between nodes are transmitted
through layers. Therefore for the backpropagation algorithm, the gradient of node interactions in one
layer relies on that in previous layers. Because of node dependency and layer dependency, training a
large-scale GCN requires a lot of computational time and memory: node representations in different

© H. Li, J. Wang, Y. Wang, Y. Cheng & L. Zhao.

COMMUNITY-BASED LAYERWISE DISTRIBUTED TRAINING OF GRAPH CONVOLUTIONAL NETWORKS

layers are required to be updated in sequential, and all of them are required to be stored in the CPU
memory.

In order to address these two challenges simultaneously, in this paper, we propose a distributed
and parallel GCN training algorithm based on the Alternating Direction Method of Multipliers
(ADMM). This is because ADMM has attained great achievements in training deep neural networks
in parallel via layer splitting [8]. Specifically, it breaks a series of layers into independent blocks,
in order to alleviate layer dependency. Moreover, the complexity of node dependency can be
reduced significantly (i.e. from multi-layer level to one-layer level). Apart from layer splitting,
we also partition a graph into independent communities: unlike previous works such as Cluster-
GCN [2], which remove inter-community connections and thus degrade performance, we maintain
node connections, which contain the first-order and second-order neighboring information, and
realize parallel training by multiple agents without performance loss. Preliminary experiments
on two benchmark datasets demonstrate that our proposed community-based ADMM algorithm
leads to more than triple speedup and achieves superior performance compared with state-of-the-art
optimizers such as SGD and Adam.

2. Problem Formulation

We formulate the GCN training problem in this section. Let G(V; E) be an undirected and unweighted
graph, where V and E are sets of nodes and edges, respectively. N = |V| is the number of nodes.
A,D ∈ Rn×n are an adjacency matrix and a degree matrix, respectively. Then the GCN training
problem is formulated mathematically as follows:

Problem 1
minW,Z R(ZL, Y) s.t. Zl = fl(ÃZl−1Wl) (l = 1, · · · , L− 1), ZL = ÃZL−1WL,

Notations Descriptions
L Number of layers.
N Number of nodes.
A The adjacency matrix of a graph.
D The degree matrix of a graph.
Wl The weight matrix for the l-th layer.
fl(·) The nonlinear activation function for the l-th layer.
Zl The output for the l-th layer.
Z0 The input feature matrix for the neural network.
Y The predefined label matrix.

R(ZL, Y) The risk function for the L-th layer.
Cl The number of neurons for the l-th layer.

Table 1: Important Notations

where W = {Wl}Ll=1,Z = {Zl}Ll=1, and
Ã = (D+ I)−1/2(A+ I)(D+ I)−1/2 is a nor-
malized adjacency matrix. Z0 ∈ Rn×C0 is an in-
put feature matrix, where each row corresponds
to an input feature vector of a node, and Cl is
the number of hidden units for the l-th layer.
Wl ∈ RCl−1×Cl and Zl ∈ Rn×Cl are the weight
matrix and the output for the l-th layer, respec-
tively. Y ∈ Rn×CL is the pre-defined label ma-
trix, and CL is the number of node classes. fl is
a non-linear activation function for the l-th layer
(e.g., ReLU). R(·) is a risk function such as the
cross-entropy loss. Problem 1 is difficult to solve due to nonlinear constraints Zl = fl(ÃZl−1Wl).
Therefore we relax it to Problem 2 as follows:

Problem 2
minW,Z R(ZL, Y) +

ν

2

L−1∑
l=1

‖Zl − fl(ÃZl−1Wl)‖2F s.t. ZL = ÃZL−1WL,

where ν > 0 is a tuning parameter. Note that when ν −→∞, Problem 2 approaches Problem 1.
Many graph problems such as node classification and link prediction are applied in large-scale

2

COMMUNITY-BASED LAYERWISE DISTRIBUTED TRAINING OF GRAPH CONVOLUTIONAL NETWORKS

scenarios (e.g. social networks), where the adjacency matrix cannot fit in memory. Motivated by
Cluster-GCN [2], we divide the graph G into M communities by METIS[4], where V =

⋃M
m=1 Vm,

Vm ∩ Vj = ∅(1 ≤ m < j ≤ M). nm = |Vm| is the number of nodes in the m-th community.
Each community can be fed to an independent agent for distributed training. A community index
set neighboring the m-th community is defined as Nm = {i|∃(u, v) ∈ E , u ∈ Vm, v ∈ Vi, i 6= m}.
Figure 1 illustrates the partition of communities, where a graph is split into three communities.
N1 = {3} because c, d in community 1 are commected to g in community 3.

a

b

c d

e
f

b
c
d
e
f

a

node representation

Community 1

Community 3 Community 2original graph

a

b e
f

c d

g g

Figure 1: Illustrations of the graph partition: a
graph is split into three community.

We split Ã according to the partition of G as
follows:

Ã =

 Ã1,1 · · · Ã1,M

...
. . .

...
ÃM,1 · · · ÃM,M

 ,
where Ãm,m ∈ Rnm×nm represents the adja-

cency matrix of the m-th community, and Ãm,j
defines the topology between the m-th and j-th
communities. Accordingly, Z and Y are parti-
tioned as Zl = [ZTl,1, · · · , ZTl,M]T (l = 1, · · · , L)
and Y = [Y T

1 , · · · , Y T
M]T . Then Problem 2 is

equivalently transformed to the following:

Problem 3

minW,Z

M∑
m=1

R(ZL,m, Ym) +
ν

2

L−1∑
l=1

M∑
m=1

‖Zl,m−fl((Ãm,mZl−1,m+
∑
r∈Nm

Ãm,rZl−1,r)Wl)‖2F

s.t. ZL,m = (Ãm,mZL−1,m +
∑
r∈Nm

Ãm,rZL−1,r)WL (m = 1, · · · ,M).

Algorithm 1 The Community-based ADMM Algorithm
Require: Y , Z0, ν, ρ.
Ensure: Zl,m, Wl, l = 1, · · · , L,m = 1, · · · ,M .

1: Initialize: k = 0.
2: while W k

l , Z
k
l,m not converged do

3: Update W k+1
l for different l in parallel.

4: Update Zk+1
l,m for different l and m in parallel.

5: Update Uk+1
m for different m in parallel.

6: end while

3. The community-based ADMM Algorithm
In this section, we propose the ADMM algorithm to solve Problem 3. The augmented Lagrangian is
formulated mathematically as follows:

3

COMMUNITY-BASED LAYERWISE DISTRIBUTED TRAINING OF GRAPH CONVOLUTIONAL NETWORKS

Lρ(W,Z,U) =

M∑
m=1

R(ZL,m, Ym)+
ν

2

L−1∑
l=1

M∑
m=1

‖Zl,m−fl((Ãm,mZl−1,m+
∑
r∈Nm

Ãm,rZl−1,r)Wl)‖2F

+

M∑
m=1

(〈Um, (ZL,m−(Ãm,mZL−1,m+
∑
r∈Nm

Ãm,rZL−1,r)WL)〉

+
ρ

2
‖ZL,m−(Ãm,mZL−1,m+

∑
r∈Nm

Ãm,rZL−1,r)WL‖2F), (1)

where ρ > 0 is a penalty parameter, and U = {Um}Mm=1 are Lagrangian multipliers. The ADMM
algorithm to solve equation 1 is shown in Algorithm 1. Specifically, Lines 3 and 4 update W (i.e.
layerwise training) and Z (i.e. community-wise training) in parallel, respectively, and Line 7 updates
U. All subproblems are discussed in detail as follows. For the sake of simplicity, we define

φ(Wl, Zl−1, Zl) ,
ν

2

M∑
m=1

‖Zl,m−fl((Ãm,mZl−1,m+
∑
r∈Nm

Ãm,rZl−1,r)Wl)‖2F

=
ν

2
‖Zl − fl(ÃZl−1Wl)‖2F (l = 1, · · · , L− 1),

and

φ(WL, ZL−1, ZL, U) ,
M∑
m=1

(〈Um, ZL,m−(Ãm,mZl−1,m +
∑
r∈Nm

Ãm,rZl−1,r)Wl〉

+
ρ

2
‖ZL,m−(Ãm,mZl−1,m+

∑
r∈Nm

Ãm,rZl−1,r)Wl‖2F) = 〈U,ZL−ÃZL−1WL〉+
ρ

2
‖ZL−ÃZL−1WL‖2F ,

where U = [UT1 , · · · , UTM]T .

3.1. Update W k+1
l

The variable W k+1
l is updated on agent M + 1 as follows:

W k+1
l ← argminWl

Lρ(W,Zk,Uk) = argminWl

{
φ(Wl, Z

k
l−1, Z

k
l) l < L

φ(WL, Z
k
L−1, Z

k
L, U

k) l = L

Agent m(m < M + 1) needs to send Zkl,m(l > 0) and Ukm to agent M + 1 in advance to form
ZkL−1, Z

k
L, and Uk. Furthermore, solving W k+1

l requires the inverse of Ã, which is usually not
inversible. To handle this, we apply the quadratic approximation [7] as follows:

W k+1
l ← argminWl

Pl(Wl; τ
k+1
l), (2)

where

Pl(Wl; τ
k+1
l)=

φ(W k
l , Z

k
l−1, Z

k
l)+〈∇Wk

l
φ(W k

l , Z
k
l−1, Z

k
l),Wl −W k

l 〉+
τk+1
l

2 ‖Wl−W k
l ‖2F , l < L

φ(W k
L, Z

k
L−1, Z

k
L, U

k)+〈∇Wk
L
φ(W k

L, Z
k
L−1, Z

k
L, U

k),WL−W k
L〉+

τk+1
l

2 ‖WL−W k
L‖2F ,

and τk+1
l > 0 is a parameter that should satisfy:

Pl(W
k+1
l ; τk+1

l) ≥

{
φ(W k+1

l , Zkl−1, Z
k
l), l < L

φ(W k+1
L , ZkL−1, Z

k
L, U

k), l = L.

4

COMMUNITY-BASED LAYERWISE DISTRIBUTED TRAINING OF GRAPH CONVOLUTIONAL NETWORKS

The solution to equation 2 is:

W k+1
l ←

{
W k
l −∇Wk

l
φ(W k

l , Z
k
l−1, Z

k
l)/τ

k+1
l , l<L

W k
L−∇Wk

L
φ(W k

L, Z
k
L−1,Z

k
L, U

k)/τk+1
L , l=L.

Obviously, W k+1
l for different layers can be updated in parallel.

3.2. Update Zk+1
l,m

The update of Zk+1
l,m resembles that of W k+1

l . Due to space limit, details are given in Appendix A.

3.3. Update Uk+1
m

The variable Uk+1
m is updated as follows:

Uk+1
m ← Ukm + ρ(ZkL,m − (

∑
r∈Nm∪{m}

pkL−1,r→m)), (3)

where pkL−1,r→m is defined in Appendix A.

4. Experiments
In this section, we evaluate the performance of the proposed community-based ADMM algorithm
using two benchmark datasets. Four state-of-the-art optimizers are used as comparison methods
in terms of both accuracy and speedup. All experiments were conducted on a 64-bit machine with
Intel(R) Xeon(R) Silver 4110 CPU and 64GB RAM. The statistics of two benchmark datasets are
shown in Table 2.

4.1. Speedup

In this experiment, we investigate the speedup of the proposed ADMM algorithm on a two-layer
GCN model with 1000 hidden units. The activation function was set to the Rectified Linear Unit
(ReLU). The loss function was the cross-entropy loss. The running time per epoch was an average
of 50 epochs. ρ and ν were both set to 10−3 for Amazon Computers and 10−4 for Amazon Photo.
Specifically, in the Serial ADMM algorithm, we used only one community, and the two layers were
trained sequentially; while in the Parallel ADMM algorithm, we divided the original graph into 3
communities that were trained by 3 agents simultaneously, plus applied a layer parallelism scheme.

The training and communication time, as well as speedup, were listed in Table 3 on Amazon
Computers and Amazon Photo. The training time on both datasets was reduced by more than
80%. Although the Parallel ADMM involves additional time for communication among agents, it is
still around 2× faster than the Serial ADMM method, which demonstrates the effectiveness of the
proposed community-based algorithm.

4.2. Accuracy

To validate the accuracy of the proposed community-based ADMM algorithms, we used the same
GCN architecture and parameter settings for Serial ADMM and Parallel ADMM algorithms as those
in Section 4.1. SGD and its variants are state-of-the-art optimizers for GCN training and hence
we used four of them as comparison methods, namely, Adaptive momentum estimation (Adam),

5

COMMUNITY-BASED LAYERWISE DISTRIBUTED TRAINING OF GRAPH CONVOLUTIONAL NETWORKS

0 10 20 30 40 50
Epoch

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Tr
ai

ni
ng

 A
cc

ur
ac

y

Adam
Adagrad
GD
Adadelta
Serial ADMM
Parallel ADMM

(a). Training accuracy
for Amazon Computers.

0 10 20 30 40 50
Epoch

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Tr
ai

ni
ng

 A
cc

ur
ac

y

Adam
Adagrad
GD
Adadelta
Serial ADMM
Parallel ADMM

(b). Training accuracy
for Amazon Photo.

0 10 20 30 40 50
Epoch

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Te
st

 A
cc

ur
ac

y

Adam
Adagrad
GD
Adadelta
Serial ADMM
Parallel ADMM

(c). Test accuracy
for Amazon Computers.

0 10 20 30 40 50
Epoch

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Te
st

 A
cc

ur
ac

y

Adam
Adagrad
GD
Adadelta
Serial ADMM
Parallel ADMM

(d). Test accuracy
for Amazon Photo.

Figure 2: Training accuracy and test accuracy of all methods: Serial ADMM algorithm and Parallel
ADMM algorithm outperform most of comparison methods in two datasets.

Adaptive gradient algorithm (Adagrad), Gradient Descent (GD), and Adaptive learning rate method
(Adadelta). For comparison methods, we used the following learning rate for Amazon Computers
and Amazon Photo: 10−3 (Adam, Adagrad, and Adadelta) and 10−1 (GD) based on the optimal
training performance.

In this section, the accuracy of the proposed serial ADMM and parallel ADMM algorithms is
analyzed against all comparison methods. Figure 2 illustrates the training and test accuracy for all
training methods on both datasets. The proposed Serial and Parallel ADMM algorithms reach the
highest accuracy and outperform most comparison methods except for Adam, which perform almost
the same compared to the proposed algorithms when epoch=50. Furthermore, the proposed two
ADMM algorithms converge the fastest among all methods, and the convergence speed of Serial
ADMM is ahead of that of Parallel ADMM in most situations.

Dataset Node# Training Sample# Test Sample# Class# Feature#
Amazon Computers 13752 1000 1000 10 767

Amazon Photo 7650 800 1000 8 745

Table 2: Two benchmark datasets.

Serial ADMM (sec) Parallel ADMM (sec)
Dataset Total Training Communication Total Speedup

Amazon Computers 80.82 14.94 9.54 24.48 3.30
Amazon Photo 50.81 8.80 8.27 17.07 2.98

Table 3: Comparison of training and communication time on two datasets.

5. Discussion and Future Work

In this paper, we present the community-based ADMM algorithm to achieve both node parallelism
and layer parallelism on training large-scale Graph Convolutional Networks (GCNs). Preliminary
results on small benchmark datasets show that the community-based ADMM method leads to huge
speedup and achieves excellent performance compared to state-of-the-art optimizers. However, its
performance on large-scale datasets is still unsatisfactory. It is attributed to the relaxation of the
problem (i.e. Problem 2). While problem relaxation realizes layerwise parallel training of GCN
models, it may enlarge gaps between layers so that many solutions to the relaxed problem (i.e.

6

COMMUNITY-BASED LAYERWISE DISTRIBUTED TRAINING OF GRAPH CONVOLUTIONAL NETWORKS

Problem 2) do not fit the original problem (i.e. Problem 1). For small datasets, some of solutions to
Problem 2 still work on the Problem 1. But it is not the case for large-scale datasets. In the future, we
may tackle this problem by exploring how to relax problems properly without loss of performance.

References

[1] Amir Beck and Marc Teboulle. A Fast Iterative Shrinkage-Thresholding Algorithm. Society for
Industrial and Applied Mathematics Journal on Imaging Sciences, 2(1):183–202, 2009. ISSN
1936-4954.

[2] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn:
An efficient algorithm for training deep and large graph convolutional networks. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 257–266, 2019.

[3] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel,
Alan Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning
molecular fingerprints. In Advances in Neural Information Processing Systems, volume 28.
Curran Associates, Inc., 2015.

[4] Karypis, George, Kumar, and Vipin. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing, 1998.

[5] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[6] Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang. Deepinf: Social
influence prediction with deep learning. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 2110–2119, 2018.

[7] Junxiang Wang, Fuxun Yu, Xiang Chen, and Liang Zhao. ADMM for efficient deep learning
with global convergence. In Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 111–119, 2019. ISBN 9781450362016. doi:
10.1145/3292500.3330936.

[8] Junxiang Wang, Zheng Chai, Yue Cheng, and Liang Zhao. Toward model parallelism for
deep neural network based on gradient-free ADMM framework. In 20th IEEE International
Conference on Data Mining, Virtual Event, Sorrento, Italy, 2020.

[9] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 974–983, 2018.

7

COMMUNITY-BASED LAYERWISE DISTRIBUTED TRAINING OF GRAPH CONVOLUTIONAL NETWORKS

Appendix A. Update Zk+1
l,m

The variable Zk+1
l,m is updated as follows:

Zk+1
l,m ←argminZl,m

Lρ(Wk+1,Z,Uk).

Notably, as output variables for intermediate layers (i.e. Zl) are involved in two constraints
in Problem 1, updating Zk+1

l,m (l = 1, · · · , L − 1) requires {Ãm,rZkl,rW
k+1
l+1 }, {Ãr,r′Z

k
l,r′W

k+1
l+1 },

{Zkl+1,r}, and {Ãm,rZkl−1,rW
k+1
l }, where r ∈ Nm ∪ {m} and r′ ∈ Nr ∪ Nm\{m}. In other

words, the update of Zk+1
l,m requires information of second-order neighbors, which suffers from

the bottleneck of the inherent neighbor explosion. To tackle this problem, the information from
second-order neighbors can be conveyed via first-order neighbors, which are detailed as follows.

The first-order information is defined by:

pkl,r→m , Ãm,rZ
k
l,rW

k+1
l+1 (l = 0, · · · , L− 1).

The second-order information is defined in the following:

skl,r→m = [sk,1l,r→m, s
k,2
l,r→m] ,

{
[Zkl+1,r,

∑
r′∈Nr∪{r}\{m} Ãr,r′Z

k
l,r′W

k+1
l+1]

[ZkL,r −
∑

r′∈Nr∪{r}\{m} Ãr,r′Z
k
L−1,r′W

k+1
L , Ukr]

=

{
[Zkl+1,r,

∑
r′∈Nr∪{r}\{m} p

k
l,r′→r] l = 0, · · · , L− 2

[ZkL,r −
∑

r′∈Nr∪{r}\{m} p
k
L−1,r′→r, U

k
r] l = L− 1.

(4)

We can see from equation 4 that the second-order information forwarded by r to m can easily be
constructed by community r through aggregating its received first-order information pkl,r′→r from all
r′ ∈ Nr ∪ {r}\{m}. We further define pkl,m , {pkl,r→m|r ∈ Nm} and skl,m , {skl,r→m|r ∈ Nm}.
Then the objective for Zk+1

l,m can be modified as:

Zk+1
l,m ←argminZl,m

ν

2
‖Zl,m − fl(

∑
r∈Nm∪{m}

pkl−1,r→m)‖2F

+
ν

2
‖Zkl+1,m − fl+1(Ãm,mZl,mW

k+1
l+1 +

∑
r∈Nm

pkl,r→m)‖2F +
∑
r∈Nm

ν

2
‖sk,1l,r→m−fl+1(Ãr,mZl,mW

k+1
l+1 + sk,2l,r→m)‖2F

, ψ(Zl,m, Z
k
l+1,m,W

k+1
l+1 ,p

k
l,m,p

k
l−1,m, s

k
l,m)(l = 1, · · · , L− 2), (5)

Zk+1
L−1,m ← argminZL−1,m

ν

2
‖ZL−1,m − fL−1(

∑
r∈Nm∪{m}

pkL−2,r→m)‖2F

+ 〈Ukm, ZkL,m−(Ãm,mZL−1,mW k+1
L +

∑
r∈Nm

pkL−1,r→m)〉+ ρ

2
‖ZkL,m−(Ãm,mZL−1,mW k+1

L +
∑
r∈Nm

pkL−1,r→m)‖2F

+
∑
r∈Nm

(〈sk,2L−1,r→m, s
k,1
L−1,r→m − Ãr,mZL−1,mW

k+1
L 〉+ ρ

2
‖sk,1L−1,r→m − Ãr,mZL−1,mW

k+1
L ‖2F)

, ψ(ZL−1,m, Z
k
L,m,W

k+1
L ,pkL−1,m,p

k
L−2,m, s

k
L−1,m), (6)

8

COMMUNITY-BASED LAYERWISE DISTRIBUTED TRAINING OF GRAPH CONVOLUTIONAL NETWORKS

and

Zk+1
L,m ← argminZL,m

R(ZL,m, Ym)+〈Ukm, ZL,m − (Ãm,mZ
k
L−1,mW

k+1
L +

∑
r∈Nm

pkL−1,r→m)〉

+
ρ

2
‖ZL,m − (Ãm,mZ

k
L−1,mW

k+1
L +

∑
r∈Nm

pkL−1,r→m)‖2F

, ψ(ZL,m, Z
k
L−1,m,W

k+1
L ,pkL−1,m, U

k
m). (7)

Obviously, Zk+1
l,m for different m and l can all be updated in parallel. Furthermore, community

m should receive pkl,r→m(l < L) and skl,r→m(l < L) from all its neighbor communities r before
updating Zk+1

l,m . In addition, the close-form solution to Zk+1
l,m (l < L) requires time-consuming matrix

inverse operation. Similar to update W , the quadratic approximation technique is applied as follows:

Zk+1
l,m ← argminZl,m

Ql(Zl,m; θk+1
l,m), (8)

where

Ql,m(Zl,m; θk+1
l,m) , ψ(Zkl,m, Z

k
l+1,m,W

k+1
l+1 ,p

k
l,m,p

k
l−1,m, s

k
l,m) +

θk+1
l,m

2
‖Zl,m − Zkl,m‖2F

+〈∇Zk
l
ψ(Zkl,m, Z

k
l+1,m,W

k+1
l+1 ,p

k
l,m,p

k
l−1,m, s

k
l,m), Zl,m − Zkl,m〉, l < L,

and θk+1
l,m > 0 is a parameter that should satisfy:

Ql,m(Zk+1
l,m ; θk+1

l,m) ≥ψ(Zk+1
l,m , Zkl+1,m,W

k+1
l+1 ,p

k
l,m,p

k
l−1,m, s

k
l,m), l < L (9)

The solution is:

Zk+1
l,m ← Zkl,m−∇Zk

l,m
ψ(Zkl,m, Z

k
l+1,m,W

k+1
l+1 ,p

k
l,m,p

k
l−1,m, s

k
l,m)/θk+1

l,m , l < L. (10)

Finally, equation 7 (i.e. l = L) can be solved directly via Fast Iterative Soft-Thresholding Algorithm
(FISTA) [1].

9

	Introduction
	Problem Formulation
	The community-based ADMM Algorithm
	Update Wlk+1
	Update Zl,mk+1
	 Update Umk+1

	Experiments
	Speedup
	Accuracy

	Discussion and Future Work
	Update Zl,mk+1

