
OPT2021: 13th Annual Workshop on Optimization for Machine Learning

Understanding the Generalization of Adam in Learning Neural
Networks with Proper Regularization

Difan Zou KNOWZOU@UCLA.EDU
Department of Computer Science
University of California, Los Angeles

Yuan Cao YUANCAO@HKU.HK
Department of Statistics and Actuarial Science & Mathematics
The University of Hong Kong

Yuanzhi Li YUANZHIL@ANDREW.CMU.EDU
Machine Learning Department
Carnegie Mellon University

Quanquan Gu QGU@CS.UCLA.EDU

Department of Computer Science
University of California, Los Angeles

Abstract
Adaptive gradient methods such as Adam have gained increasing popularity in deep learning
optimization. However, it has been observed in many deep learning applications such as image
classification, Adam can converge to a different solution with a worse test error compared to
(stochastic) gradient descent, even with a fine-tuned regularization. In this paper, we provide a
theoretical explanation for this phenomenon: we show that in the nonconvex setting of learning over-
parameterized two-layer convolutional neural networks starting from the same random initialization,
for a class of data distributions (inspired from image data), Adam and gradient descent (GD) can
converge to different global solutions of the training objective with provably different generalization
errors, even with weight decay regularization. In contrast, we show that if the training objective is
convex, and the weight decay regularization is employed, any optimization algorithms including
Adam and GD will converge to the same solution if the training is successful. This suggests
that the generalization gap between Adam and SGD in the presence of explicit regularization is
fundamentally tied to the nonconvex landscape of deep learning optimization, which cannot be
covered by the recent neural tangent kernel (NTK) based analysis.

1. Introduction

Adaptive gradient methods [14, 15, 18, 21] such as Adam are very popular optimizers for training
deep neural networks. By adjusting the learning rate coordinate-wisely based on historical gradient
information, they are known to be able to automatically choose appropriate learning rates to achieve
fast convergence in training. Because of this advantage, Adam and its variants are widely used in
deep learning. Despite their fast convergence, adaptive gradient methods have been observed to
achieve worse generalization performance compared with gradient descent and stochastic gradient
descent (SGD) [11, 19, 22, 24] in many deep learning tasks such as image classification. Even

© D. Zou, Y. Cao, Y. Li & Q. Gu.

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

with proper regularization, achieving good test error with adaptive gradient methods seems to be
challenging.

Several recent works provided theoretical explanations of this generalization gap between Adam
and GD. Agarwal et al. [1], Wilson et al. [22] considered a setting of linear regression, and showed
that Adam can fail when learning an overparameterized linear model on certain specifically designed
data, while SGD can learn the linear model to achieve zero test error. This example in linear regression
offers valuable insights into the difference between SGD and Adam. However, it is under a convex
optimization setting, and as we will show in this paper (Theorem 3.2), the performance difference
between Adam and GD can be easily avoided by adding an arbitrarily small regularization term,
because the regularized training loss function is strongly convex and all algorithms will converge to
the same unique global optimum. For this reason, we argue that the example in the convex setting
cannot capture the fundamental differences between GD and Adam. More recently, Zhou et al. [24]
studied the expected escaping time of Adam and SGD from a local basin, and utilized this to explain
the difference between SGD and Adam. However, their results do not take NN architecture into
consideration, and do not provide an analysis of test errors either.

In this paper, we aim at answering the following question
Why is there a generalization gap between Adam and gradient descent in learning neural

networks, even with proper regularization?
Specifically, we study Adam and GD for training neural networks with weight decay regularization
on an image-like data model, and demonstrate the difference between Adam and GD from a feature
learning perspective. We consider a model where the data are generated as a combination of feature
and noise patches, and analyze the convergence and generalization of Adam and GD for training a
two-layer convolutional neural network (CNN). The contributions of this paper are summarized as
follows.
• We establish global convergence guarantees for Adam and GD with proper weight decay regu-

larization. We show that, starting at the same random initialization, Adam and GD can both train
a two-layer convolutional neural network to achieve zero training error after polynomially many
iterations, despite the nonconvex optimization landscape.

• We further show that GD and Adam in fact converge to different global solutions with different
generalization performance: GD can achieve nearly zero test error, while the generalization
performance of the model found by Adam is no better than a random guess. In particular, we show
that the reason for this gap is due to the different training behaviors of Adam and GD: Adam is
more likely to fit noises in the data and output a model that is largely contributed by the noise
patches of the training data; GD prefers to fit training data based on their feature patch and finds a
solution that is mainly composed by the true features. We also illustrate such different training
processes in Figure 1, where it can be seen that the model trained by Adam is clearly more “noisy”
than that trained by SGD.

• We also show that for convex settings with weight decay regularization, both Adam and gradient
descent converge to the exact same solution and therefore have no test error difference. This
suggests that the difference between Adam and GD cannot be fully explained by linear models or
neural networks trained in the “almost convex” neural tangent kernel (NTK) regime Allen-Zhu et al.
[3, 4], Arora et al. [6, 7], Cao and Gu [10], Chen et al. [12], Du et al. [13], Jacot et al. [16], Ji and
Telgarsky [17], Zou et al. [25]. It also demonstrates that the inferior generalization performance of
Adam is fundamentally tied to the nonconvex landscape of deep learning optimization, and cannot
be solved by adding regularization.

2

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

(a) Adam (b) SGD

Figure 1: Visualization of the first layer of AlexNet trained by Adam and SGD on the CIFAR-10
dataset. Both algorithms are run for 100 epochs with weight decay regularization and
standard data augmentations, but without batch normalization. Clearly, the model learned
by Adam is more “noisy” than that learned by SGD, implying that Adam is more likely to
overfit the noise in the training data.

2. Problem Setup and Preliminaries

We consider learning a CNN with Adam and GD based on n independent training examples
{(xi, yi)}ni=1 generated from a data model D. In the following. we first introduce our data model D,
and then explain our neural network model and the details of the training algorithms.

Data model. We consider a data model where the data inputs consist of feature and noise patches.
Such a data model is motivated by image classification problems where the label of an image usually
only depends on part of an image, and the other parts of the image showing random objects, or
features that belong to other classes, can be considered as noises. When using CNN to fit the data,
the convolution operation is applied to each patch of the data input separately. We claim that our
data model is more practical than those considered in Reddi et al. [21], Wilson et al. [22], which
are handcrafted for showing the failure of Adam in term of either convergence or generalization.
For simplicity, we only consider the case where the data consists of one feature patch and one noise
patch. However, our result can be easily extended to cover the setting where there are multiple
feature/noise patches. The detailed definition of our data model is given in Definition 2.1 as follows.

Definition 2.1 Each data (x, y) with x ∈ R2d and y ∈ {−1, 1} is generated as follows,

x = [x>,x>2]>,

where one of x1 and x2 denotes the feature patch that consists of a feature vector y · v, which is
assumed to be 1-sparse, and the other one denotes the noise patch and consists of a noise vector ξ.
Without loss of generality, we assume v = [1, 0, . . . , 0]>. The noise vector ξ is generated according
to the following process:

1. Randomly select s coordinates from [d]\{1} with equal probabilities, which is denoted as a vector
s ∈ {0, 1}d.

3

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

2. Generate ξ from distributionN (0, σ2
pI), and then mask off the first coordinate and other d−s−1

coordinates, i.e., ξ = ξ � s.

3. Add feature noise to ξ, i.e., ξ = ξ − αyv, where 0 < α < 1 is the strength of the feature noise.

In particular, throughout this paper we set s = Θ
(
d1/2

n2

)
, σ2

p = Θ
(

1
s·polylog(n)

)
and α = Θ

(
σp ·

polylog(n)
)
.

The most natural way to think of our data model is to treat x as the output of some intermediate
layer of a CNN. In literature, Papyan et al. [20] pointed out that the outputs of an intermediate
layer of a CNN are usually sparse. Yang [23] also discussed the setting where the hidden nodes in
such an intermediate layer are sampled independently. This motivates us to study sparse features
and entry-wisely independent noises in our model. In this paper, we focus on the case where the
feature vector v is 1-sparse and the noise vector is s-sparse for simplicity. However, these sparsity
assumptions can be generalized to the settings where the feature and the noises are denser.

Moreover, we would like to clarify that the data distribution considered in our paper is an extreme
case where we assume there is only one feature vector and all data has a feature noise, since we
believe this is the simplest model that captures the fundamental difference between Adam and SGD.
With this data model, we aim to show why Adam and SGD perform differently. Our theoretical
results and analysis techniques can also be extended to more practical settings where there are
multiple feature vectors and multiple patches, each data can either contain a single feature or multiple
features, together with pure random noise or feature noise.

Two-layer CNN model. We consider a two-layer CNN model F using truncated polynomial
activation function σ(z) = (max{0, z})q, where q ≥ 3. Mathematically, given the data (x, y), the
j-th output of the neural network can be formulated as

Fj(W,x) =
m∑
r=1

[
σ(〈wj,r,x1〉) + σ(〈wj,r,x2〉)

]
=

m∑
r=1

[
σ(〈wj,r, y · v〉) + σ(〈wj,r, ξ〉)

]
, (2.1)

where m is the width of the network, wj,r ∈ Rd denotes the weight at the r-th neuron, and W is the
collection of model weights.

In this paper we assume the width of the network is polylogarithmic in the training sample size,
i.e., m = polylog(n). We assume j ∈ {−1, 1} in order to make the logit index be consistent with the
data label. Moreover, we assume that the each weight is initialized from a random draw of Gaussian
random variable ∼ N(0, σ2

0) with σ0 = Θ
(
d−1/4

)
.

Training objective. Given the training data {(xi, yi)}i=1,...,n, we consider to learn the model
parameter W by optimizing the empirical loss function with weight decay regularization

L(W) =
1

n

n∑
i=1

Li(W) +
λ

2
‖W‖2F , (2.2)

where Li(W) = − log eFyi (W,xi)∑
j∈{−1,1} e

Fj(W,xi)
denotes the individual loss for the data (xi, yi) and λ ≥ 0

is the regularization parameter. In particular, the regularization parameter can be arbitrary as long as
it satisfies λ ∈

(
0, λ0

)
with λ0 = Θ

(
1

d(q−1)/4n·polylog(n)

)
. We claim that the λ0 is the largest feasible

regularization parameter that the training process will not stuck at the origin point (recall that L(W)
admits zero gradient at W = 0.)

4

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

3. Main Results

In this section we will state the main theorems in this paper. We first provide the learning guarantees
of Adam and Gradient descent for training a two-layer CNN model in the following theorem. Recall
that in this setting the training objective is nonconvex.

Theorem 3.1 (Nonconvex setting) Consider a two-layer CNN defined in (2.1) with d = Ω(n4)
and regularized training objective (2.2) with a regularization parameter λ > 0, suppose the network
width is m = polylog(n) and the data distribution follows Definition 2.1, then we have the following
guarantees on the training and test errors for the models trained by Adam and Gradient descent:

1. Suppose we run Adam for T = poly(n)
η iterations with η = 1

poly(n) , then with probability at least

1−O(n−1), we can find a NN model W∗
Adam such that ‖∇L(W∗

Adam)‖1 ≤ 1
Tη . Moreover, the

model W∗
Adam also satisfies:

• Training error is zero: 1
n

∑n
i=1 1

[
Fyi(W

∗
Adam,xi) ≤ F−yi(W∗

Adam,xi)
]

= 0.

• Test error is high: P(x,y)∼D
[
Fy(W

∗
Adam,x) ≤ F−y(W∗

Adam,x)
]
≥ 1

2 .

2. Suppose we run gradient descent for T = poly(n)
η iterations with learning rate η = 1

poly(n) , then
with probability at least 1−O(n−1), we can find a NN model W∗

GD such that ‖∇L(W∗
GD)‖2F ≤

1
Tη . Moreover, the model W∗

GD also satisfies:

• Training error is zero: 1
n

∑n
i=1 1

[
Fyi(W

∗
GD,xi) ≤ F−yi(W∗

GD,xi)
]

= 0.

• Test error is nearly zero: P(x,y)∼D
[
Fy(W

∗
GD,x) ≤ F−y(W∗

GD,x)
]

= 1
poly(n) .

From the optimization perspective, Theorem 3.1 shows that Adam can be guaranteed to find a point
with up to 1/(Tη) gradient norm in `1 metric, while gradient descent can only be guaranteed to
find a point with up to 1/

√
Tη gradient norm in `2 metric. This suggests that Adam could enjoy

a faster convergence rate compared to SGD in the training process, which is consistent with the
practice findings. In terms of the test performance, their generalization abilities are largely different,
even with weight decay regularization: the output of gradient descent can achieve nearly zero test
error, while the output of Adam gives at least constant test error. In fact, this gap is due to two
major aspects of the training process: (1) At the early stage of training where weight decay exhibits
negligible effect, Adam prefers the data patch of lower sparsity and thus tends to fit the noise vectors
ξ, gradient descent prefers the data patch of larger `2 norm and thus will learn the feature patch; (2)
At the late stage of training where the weight decay regularization cannot be ignored, both Adam and
gradient descent will be enforced to converge to a local minimum of the regularized objective, which
maintains the pattern learned in the early stage. Consequently, the model learned by Adam will be
biased towards the noise patch to fit the feature noise vector −αyv, which is opposite in direction to
the true feature vector and therefore leads to a test error no better than a random guess.

Theorem 3.1 shows that when optimizing a nonconvex training objective, Adam and gradient de-
scent will converge to different global solutions with different generalization errors, even with weight
decay regularization. The following theorem gives the learning guarantees of Adam and gradient
descent when optimizing convex and smooth training objectives (e.g., linear model F (w,x) = w>x
with logistic loss).

5

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

Theorem 3.2 (Convex setting) For any convex and smooth training objective with positive reg-
ularization parameter λ, suppose we run Adam and gradient descent for T = poly(n)

η iterations,
then with probability at least 1 − n−1, the obtained parameters W∗

Adam and W∗
GD satisfy that

‖∇L(W∗
Adam)‖1 ≤ 1

Tη and ‖∇L(W∗
Adam)‖22 ≤ 1

Tη respectively. Moreover, let F (W,x) ∈ R be
the output of the convex model with parameter W and input x, it holds that:

• Training errors are both zero:

1

n

n∑
i=1

1
[
sgn
(
F (W∗

Adam,xi)
)
6= yi

]
=

1

n

n∑
i=1

1
[
sgn
(
F (W∗

GD,xi)
)
6= yi

]
= 0.

• Test errors are nearly the same:

P(x,y)∼D
[
sgn
(
F (W∗

Adam,xi)
)
6= y
]

= P(x,y)∼D
[
sgn
(
F (W∗

GD,x)
)
6= y
]
± 1

poly(n)
.

Theorem 3.2 shows that when optimizing a convex and smooth training objective (e.g., a linear
model with logistic loss) with weight decay regularization, both Adam and gradient can converge
to almost the same solution and enjoy very similar generalization performance. Combining this
result and Theorem 3.1, it is clear that the inferior generalization performance is closely tied to
the nonconvex landscape of deep learning, and cannot be understood by standard weight decay
regularization.

4. Conclusion and Future Work

In this paper, we study the generalization of Adam and compare it with gradient descent. We show
that when training neural networks, Adam and GD starting from the same initialization can converge
to different global solutions of the training objective with significantly different generalization errors,
even with proper regularization. Our analysis reveals the fundamental difference between Adam and
GD in learning features, and demonstrates that this difference is tied to the nonconvex optimization
landscape of neural networks.

Built up on the results in this paper, there are several important research directions. First,
our current result is for two-layer networks. Extending the results to deep networks could be an
immediate next step. Second, our current data model is motivated by the image data, where Adam
has been observed to perform worse than SGD in terms of generalization. Studying other types of
data such as natural language data, where Adam is often observed to perform better than SGD, is
another future work direction.

References

[1] Naman Agarwal, Rohan Anil, Elad Hazan, Tomer Koren, and Cyril Zhang. Revisiting the
generalization of adaptive gradient methods. 2019.

[2] Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation
and self-distillation in deep learning. arXiv preprint arXiv:2012.09816, 2020.

6

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

[3] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overpa-
rameterized neural networks, going beyond two layers. In Advances in Neural Information
Processing Systems, 2019.

[4] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via
over-parameterization. In International Conference on Machine Learning, pages 242–252,
2019.

[5] Animashree Anandkumar, Rong Ge, and Majid Janzamin. Analyzing tensor power method
dynamics in overcomplete regime. The Journal of Machine Learning Research, 18(1):752–791,
2017.

[6] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analy-
sis of optimization and generalization for overparameterized two-layer neural networks. In
International Conference on Machine Learning, pages 322–332, 2019.

[7] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang.
On exact computation with an infinitely wide neural net. In Advances in Neural Information
Processing Systems, 2019.

[8] Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance of
stochastic gradients. In International Conference on Machine Learning, pages 404–413. PMLR,
2018.

[9] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signsgd: Compressed optimisation for non-convex problems. In International Conference on
Machine Learning, pages 560–569. PMLR, 2018.

[10] Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide
and deep neural networks. In Advances in Neural Information Processing Systems, 2019.

[11] Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing
the generalization gap of adaptive gradient methods in training deep neural networks. In
International Joint Conferences on Artificial Intelligence, 2020.

[12] Zixiang Chen, Yuan Cao, Difan Zou, and Quanquan Gu. How much over-parameterization is
sufficient to learn deep relu networks? In International Conference on Learning Representa-
tions, 2021.

[13] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International Conference on Machine Learning, pages
1675–1685, 2019.

[14] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

[15] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent, 2012.

7

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

[16] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in neural information processing systems, pages
8571–8580, 2018.

[17] Ziwei Ji and Matus Telgarsky. Polylogarithmic width suffices for gradient descent to achieve
arbitrarily small test error with shallow relu networks. In International Conference on Learning
Representations, 2020.

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 2015.

[19] Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with
dynamic bound of learning rate. arXiv preprint arXiv:1902.09843, 2019.

[20] Vardan Papyan, Yaniv Romano, and Michael Elad. Convolutional neural networks analyzed via
convolutional sparse coding. The Journal of Machine Learning Research, 18(1):2887–2938,
2017.

[21] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018.

[22] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The
marginal value of adaptive gradient methods in machine learning. In Advances in Neural
Information Processing Systems, pages 4151–4161, 2017.

[23] Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian pro-
cess behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint
arXiv:1902.04760, 2019.

[24] Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Chu Hong Hoi, et al. Towards
theoretically understanding why sgd generalizes better than adam in deep learning. Advances
in Neural Information Processing Systems, 33, 2020.

[25] Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent optimizes over-
parameterized deep ReLU networks. Machine Learning, Oct 2019.

8

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

Appendix A. Proof Outline of the Main Results

In this section we provide the proof sketch of Theorem 3.1 and explain the different generalization
abilities of the models found by gradient descent and Adam.

Before moving to the proof of main results, we first give the following lemma which shows that
for data generated from the data distribution D in Definition 2.1, with high probability all noise
vectors {ξi}i=1,...,n have nearly disjoint supports.

Lemma A.1 Let {(xi, yi)}i=1,...,n be the training dataset sampled according to Definition 2.1.
Moreover, recall that xi = [yiv

>, ξ>i]> (or xi = [ξ>i , yiv
>]>), let Bi = supp(ξi)\{1} be the

support of ξi except the first coordinate. Then with probability at least 1− n−2, Bi ∩ Bj = ∅ for all
i, j ∈ [n].

This lemma implies that the optimization of each coordinate of the model parameter W, except for
the first one, is mostly determined by only one training data. Technically, this lemma can greatly
simplify the analysis for Adam so that we can better illustrate its optimization behavior and explain
the generalization performance gap between Adam and gradient descent.

Proof outline. For both Adam and gradient descent, we will show that the training process can be
decomposed into two stages. In the first stage, which we call pattern learning stage, the weight decay
regularization will be less important and can be ignored, while the algorithms tend to learn the pattern
from the training data. In particular, we will show that the patterns learned by these two algorithms
are different: Adam tends to fit the noise patch while gradient descent will mainly learn the feature
patch. In the second stage, which we call it regularization stage, the effect of regularization cannot be
neglected, which will regularize the algorithm to converge at some local stationary points. However,
due to the nonconvex landscape of the training objective, the pattern learned in the first stage will
remain unchanged, even when running an infinitely number of iterations.

A.1. Proof sketch for Adam

Recall that in each iteration of Adam, the model weight is updated by using a moving-averaged
gradient, normalized by a moving average of the historical gradient squares. As pointed out in Balles
and Hennig [8], Bernstein et al. [9], Adam behaves similarly to sign gradient descent (signGD) when
using sufficiently small step size or the moving average parameters β1, β2 are nearly zero. This
motivates us to study the optimization behavior of signGD and then extends it to Adam using their
similarities. In this section, we will mainly present the optimization analysis for signGD to better
interpret our proof idea. The analysis for Adam is similar and we defer it to the appendix.

In particular, sign gradient descent updates the model parameter according to the following rule:

w
(t+1)
j,r = w

(t+1)
j,r − η · sgn(∇wj,rL(W(t))).

Recall that each data has two patches: feature patch and noise patch. By Lemma A.1 and the
data distribution (see Definition 2.1), we know that all noise vectors {ξi}i=1,...,n are supported on
disjoint coordinates, except the first one. For data point xi, let Bi denote its support, except the
first coordinate. In the subsequent analysis, we will always assume that those Bi’s are disjoint, i.e.,
Bi ∩ Bj = ∅ if i 6= j.

Next we will characterize two aspects of the training process: feature learning and noise
memorization. Mathematically, we will focus on two quantities: 〈w(t)

j,r, j · v〉 and 〈w(t)
yi,r, ξi〉. In

9

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

particular, given the training data (xi, yi) with xi = [yiv
>, ξ>i]>, larger 〈w(t)

yi,r, yi ·v〉 implies better
feature learning and larger 〈w(t)

yi,r, ξi〉 represents better noise memorization. Then regarding the
feature vector v that only has nonzero entry at the first coordinate, we have the following by the
update rule of signGD

〈w(t+1)
j,r , jv〉 = 〈w(t)

j,r, jv〉 − η ·
〈
sgn
(
∇wj,rL(W(t))

)
, jv
〉

= 〈w(t)
j,r, jv〉+ jη · sgn

(n∑
i=1

yi`
(t)
j,i

[
σ′(〈w(t)

j,r, yiv〉)− ασ
′(〈w(t)

j,r, ξi〉)
]
− nλw(t)

j,r[1]

)
,

(A.1)

where `(t)j,i := 1yi=j −logitj(F,xi) and logitj(F,xi) = eFj(W,xi)∑
k∈{−1,1} e

Fk(W,xi)
. From (A.1) we can

observe three terms in the signed gradient. Specifically, the first term represents the gradient over the
feature patch, the second term stems from the feature noise term in the noise patch (see Definition
2.1), and the last term is the gradient of the weight decay regularization. On the other hand, the
memorization of the noise vector ξi can be described by the following update rule,

〈w(t+1)
yi,r , ξi〉 = 〈w(t)

yi,r, ξi〉 − η ·
〈
sgn
(
∇wyi,r

L(W(t))
)
, ξi
〉

= 〈w(t)
yi,r, ξi〉+ η ·

∑
k∈Bi

〈
sgn

(
`
(t)
yi,i
σ′(〈w(t)

yi,r, ξi〉)ξi[k]− nλw(t)
yi,r[k]

)
, ξi[k]

〉

− αyiη · sgn

(n∑
i=1

yi`
(t)
yi,i

[
σ′(〈w(t)

yi,r, yiv〉)− ασ
′(〈w(t)

yi,r, ξi〉)
]
− nλw(t)

yi,r[1]

)
.

(A.2)

Throughout the proof, we will show that the training process of Adam can be decomposed into two
stages: pattern learning stage and regularization stage. In the first stage, the algorithm learns the
pattern of training data quickly, without being affected by the regularization term. In the second
stage, the training data has already been correctly classified since the pattern has been well captured,
the regularization will then play an important role in the training process and guide the model to
converge.

Stage I: Learning the pattern. Mathematically, the first stage is defined as the iterations that
satisfy 〈w(0)

j,r ,v〉 ≤ Θ̃(1) and 〈w(0)
j,r , ξ〉 ≤ Θ̃(1). Then in this stage, the logit `(t)j,i can be seen as

constant since the neural network output satisfies Fj(W(t),xi) = O(1). Then by comparing (A.1)
and (A.2), it is clear that 〈w(t)

yi,r, ξi〉 grows much faster than 〈w(t)
j,r, jv〉 since feature learning only

makes use of the first coordinate of the gradient, while noise memorization could take advantage of
all the coordinates in Bi (note that |Bi| = s� 1). Moreover, it can be also noticed that after a certain
number of iterations, 〈w(t)

yi,r, ξi〉 and 〈w(t)
j,r, jv〉 will be sufficiently large and the training process will

switch to the second stage. The following lemma precisely characterizes the length of Stage I and
provides general bounds on the feature learning and noise memorization.

Lemma A.2 (General results in Stage I) For any t ≤ T0 with T0 = Õ
(

1
ηsσp

)
, we have

〈w(t+1)
j,r , j · v〉 ≤ 〈w(t)

j,r, j · v〉+ η,

〈w(t+1)
ys,r , ξs〉 = 〈w(t)

ys,r, ξs〉+ Θ̃(ηsσp).

10

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

Then let us focus on feature learning (A.1), note that α = o(1), thus in the beginning of the training
process we have σ′(〈w(t)

j,r,v〉)� ασ′(〈w(t)
j,r, ξi〉)+nλw

(t)
j,r[1], which further implies that 〈w(t)

j,r, j ·v〉
indeed increase by η in each step. However, as shown in Lemma A.2, 〈w(t)

j,r, ξi〉 enjoys much faster

increasing rate than that of 〈w(t)
j,r, j · v〉. This implies that after a certain number of iterations, we

can get ασ′(〈w(t)
j,r, ξi〉) ≥ σ′(〈w(t)

j,r,v〉) + nλ|w(t)
j,r[1]| and thus 〈w(t)

j,r, j · v〉 starts to decrease. We
summarize this result in the following lemma.

Lemma A.3 (Flip the feature learning) For any t ∈ [Tr, T0] with Tr = Õ
(

σ0
ηsσpα1/(q−1)

)
, we have

〈w(t+1)
j,r , j · v〉 = 〈w(t)

j,r, j · v〉 − η.

Moreover, at the iteration T0, we have

w
(T0)
j,r [k] =

−sgn(j) · Ω̃

(
1
sσp

)
, k = 1,

sgn(ξi[k]) · Ω̃
(

1
sσp

)
or ±O(η), k ∈ Bi, with yi = j,

±O(η), otherwise.

From Lemma A.3 it can be observed that at the iteration T0, the sign of the first coordinate of
w

(T0)
j,r is different from that of the true feature, i.e., j · v. This implies that at the end of the first

training stage, the model is biased towards the noise patch to fit the feature noise.

Stage II: Regularizing the model. In this stage, as the neural network output becomes larger,
the logit `(t)j,i will no longer be in constant order, but could be much smaller. As a consequence, in
both the feature learning and noise memorization processes, the weight decay regularization term
cannot be ignored but will greatly affect the optimization trajectory. However, although weight decay
regularization can prevent the model weight from being too large, it will maintain the pattern learned
in Stage I and cannot push the model back to “forget” the noise and learn the feature. We summarize
these results in the following lemma.

Lemma A.4 (Maintain the pattern) If η = O
(

1
sσp

)
, then for any t ≥ T0, i ∈ [n], j ∈ [2] and

r ∈ [m], it holds that

〈w(t)
yi,r, ξi〉 = Θ̃(1),

∑
k∈Bi

|w(t)
yi,r[k]| = Θ̃(σ−1

p), 〈w(t)
j,r, j · v〉 ∈ [−o(1), η].

Lemma A.4 shows that in the second stage, 〈w(t)
yi,r, ξi〉 will always be large while 〈w(t)

yi,r, yi · v〉 is
still negative, or positive but extremely small. Next we will show that within polynomial steps, the
algorithm can be guaranteed to find a point with small gradient.

Lemma A.5 (Convergence guarantee) If the step size satisfies η = O(d−1/2), then for any t ≥ 0
it holds that

L(W(t+1))− L(W(t)) ≤ −η‖∇L(W(t))‖1 + Θ̃(η2d).

Lemma A.5 shows that we can pick a sufficiently small η and T = poly(n)/η to ensure that the
algorithm can find a point with up to O(1/(Tη)) in `1 norm. Then we can show that given the results

11

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

in Lemma A.4, the formula of the algorithm output W∗ can be precisely characterized, which we
can show that 〈w∗yi,r, ξi〉 < 0. This implies that the output model will be biased to fit the feature
noise −αyv but not the true one v. Then when it comes to a fresh test example the model will fail to
recognize its true feature. Also note that the noise in the test data is nearly independent of the noise
in training data. Consequently, the model will not be able to identify the label of the test data and
therefore cannot be better than a random guess.

A.2. Proof sketch for gradient descent

Similar to the proof for Adam, we also decompose the entire training process into two stages.
However, unlike Adam that is sensitive to the sparsity of the feature vector or noise vector, gradient
descent is more focusing on the `2 norm of them. In particular, the feature learning and noise
memorization of gradient descent can be formulated by

〈w(t+1)
j,r , j · v〉 = (1− ηλ) · 〈w(t)

j,r, j · v〉

+
η

n
· j ·

(n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, yiv〉)− α
n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, ξi〉)
)
,

〈w(t+1)
yi,r , ξi〉 = (1− ηλ) · 〈w(t)

yi,r, ξi〉+
η

n
·
∑
k∈Bi

`
(t)
yi,i
σ′(〈w(t)

yi,r, ξi〉) · ξi[k]2

+
ηα

n
·
(
α

n∑
s=1

`(t)yi,sσ
′(〈w(t)

yi,r, ξs〉)−
n∑
s=1

ys`
(t)
yi,sσ

′(〈w(t)
yi,r, ysv〉)

)
. (A.3)

Stage I: Learning the pattern. In this stage the logit `(t)j,i is considered as a constant and the effect
of regularization can be ignored. Then (A.3) shows that the speed of feature learning and noise
memorization mainly depend on the `2 norm of v and ξi. Since with high probability ‖v‖2 = 1
and ‖ξi‖2 = Õ(s1/2σp) < 1, gradient descent may be able to focus more on feature learning than
noise memorization. Besides, another pivotal observation is that the growing of 〈w(t)

j,r, j · v〉 and

〈w(t)
j,r, ξi〉 also depend themselves, which roughly form two sequences with updates of the form

xt+1 = xt + ηCtx
q−1
t−1 . This is closely related to the analysis of the dynamics of tensor power

iterations of degree q [5]. The main property of the tensor power iterations is that if two sequences
have slightly different growth rates or initial values, then one of them will grow much faster than the
other one. Therefore, since the feature vector has a larger `2 norm than the noise, we can show that,
in the following lemma, gradient descent will learn the feature vector very quickly, while barely tend
to memorize the noise.

Lemma A.6 Let Λ
(t)
j = maxr∈[m]〈w

(t+1)
j,r , j·v〉, Γ

(t)
j,i = maxr∈[m]〈w

(t)
j,r, ξi〉, and Γ

(t)
j = maxi:yi=j Γ

(t)
j,i .

Let Tj be the iteration number that Λ
(t)
j reaches Θ(1/m) = Θ̃(1), then we have

Tj = Θ̃(σ2−q
0) for all j ∈ {−1, 1}.

Moreover, let T0 = maxj{Tj}, then for all t ≤ T0 it holds that Γ
(t)
j = Õ(σ0) for all j ∈ {−1, 1}.

12

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

Stage II: Regularizing the model. Similar to Lemma A.4, we show that in the second stage at
which the impact of weight decay regularization cannot be ignored, the pattern of the training data
learned in the first stage will remain unchanged.

Lemma A.7 If η ≤ O(σ0), it holds that Λ
(t)
j = Θ̃(1) and Γ

(t)
j = Õ(σ0) for all t ≥ minj Tj .

The following lemma further shows that within polynomial steps, gradient descent is guaranteed to
find a point with small gradient.

Lemma A.8 If the learning rate satisfies η = o(1), then for any t ≥ 0 it holds that

L(W(t+1))− L(W(t)) ≤ −η
2
‖∇L(W(t))‖2F .

Lemma A.8 shows that we can pick a sufficiently small η and T = poly(n)/η to ensure that gradient
descent can find a point with up to O(1/(Tη)) in `2 norm. By Lemma A.7, it is clear that the output
model of GD can well learn the feature vector while memorizing nearly nothing from the noise
vectors, which can therefore achieve nearly zero test error.

Appendix B. Experiments

In this section we perform numerical experiments on the synthetic data generated according to
Definition 2.1 to verify our main results. In particular, we set the problem dimension d = 1000, the
training sample size n = 200 (100 positive examples and 100 negative examples), feature vector
v = [1, 0, . . . , 0]>, noise sparsity s = 0.1d = 100, standard deviation of noise σp = 1/s1/2 = 0.1,
feature noise strength α = 0.2, initialization scaling σ0 = 0.01, regularization parameter λ =
1× 10−5, network width m = 20, activation function σ(z) = max{0, z}3, total iteration number
T = 1×104, and the learning rate η = 5×10−5 for Adam (default choices of β1 and β2 in pytorch),
η = 0.02 for GD.

We first report the training error and test error achieved by the solutions found by SGD and
Adam in Table 1, where the test error is calculated on a test dataset of size 104. It is clear that both
Adam and SGD can achieve zero training error, while they have entirely different results on the test
data: SGD generalizes well and achieve zero test error; Adam generalizes worse than SGD and gives
> 0.5 test error, which verifies our main result (Theorem 3.1).

Algorithm Adam SGD

Training error 0 0
Test error 0.884 0

Table 1: Training error and test error achieved by the solutions found by GD and Adam.

Moreover, we also calculate the inner products: maxr〈w1,r,v〉 and mini maxr〈w1,r, ξi〉, repre-
senting feature learning and noise memorization respectively, to verify our key lemmas. Here we only
consider positive examples as the results for negative examples are similar. The results are reported
in Figure 2. For Adam, from Figure 2(a)subfigure, it can be seen that the algorithm will perform
feature learning in the first few iterations and then entirely forget the feature (but fit feature noise),

13

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

0 2000 4000 6000 8000 10000
Iterations

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Va
lu

e Feature Learning: max
r w1, r, v

Noise Memorization: min
i

max
r w1, r, i

(a) Adam

0 2000 4000 6000 8000 10000
Iterations

0.0

0.5

1.0

1.5

2.0

Va
lu

e Feature Learning: max
r w1, r, v

Noise Memorization: min
i

max
r w1, r, i

(b) GD

Figure 2: Visualization of the feature learning (maxr〈w1,r,v〉) and noise memorization
(mini maxr〈w1,r, ξi〉) in the training process.

i.e., the feature learning is flipped, which verifies Lemma A.3 (Lemma C.4). In the meanwhile, the
noise memorization happens in the entire training process and enjoys much faster rate than feature
learning, which verifies Lemma A.2 (Lemma C.3). In addition, we can also observe that there are two
stages for the increasing of mini maxr〈w1,r, ξi〉: in the first stage mini maxr〈w1,r, ξi〉 increases
linearly, and in the second stage its increasing speed gradually slows down and mini maxr〈w1,r, ξi〉
will remain in a constant order. This verifies Lemma A.2 (Lemma C.3) and Lemma A.4 (Lemma
C.5). For GD, from Figure 2(b)subfigure, it can be seen that the feature learning will dominate the
noise memorization: feature learning will increases to a constant in the first stage and then remains
in a constant order in the second stage; noise memorization will keep in a low level which is nearly
the same as that at the initialization. This verifies Lemmas A.6 and A.7 (Lemmas C.8 and C.12).

Appendix C. Proof of Theorem 3.1: Nonconvex Case

In the beginning of the proof we first present the following useful lemma.

C.1. Preliminaries

We first recall the magnitude of all parameters:

d = poly(n), η =
1

poly(n)
, s = Θ

(
d1/2

n2

)
, σ2

p = Θ

(
1

s · polylog(n)

)
, σ2

0 = Θ

(
1

d1/2

)
,

m = polylog(n), α = Θ
(
σp · polylog(n)

)
, λ = O

(
1

d(q−1)/4n · polylog(n)

)
.

Here poly(n) denotes a polynomial function of nwith degree of a sufficiently large constant, poly(n)
denotes a polynomial function of log(n) with degree of a sufficiently large constant. Based on the
parameter configuration, we claim that the following equations hold, which will be frequently used
in the subsequent proof.

λ = o

(
σq−2

0 σp
n

)
, α = ω

(
(sσp)

1−qσq−1
0

)
, σ0 = o

(
1

sσp

)
, α = o

(
sσ2

p

n

)
, η = o

(
λσq0σ

q
p

)
.

14

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

Lemma C.1 (Non-overlap support) Let {(xi, yi)}i=1,...,n be the training dataset sampled ac-
cording to Definition 2.1. Moreover, let Bi = supp(ξi)\{1} be the support of xi except the first
coordinate1. Then with probability at least 1− n−2, Bi ∩ Bj = ∅ for all i, j ∈ [n].

Proof [Proof of Lemma C.1] For any fixed k ∈ [n] and j ∈ supp(ξk)\{1}, by the model assumption
we have

P{(ξi)j 6= 0} = s/(d− 1),

for all i ∈ [n]\{k}. Therefore by the fact that the data samples are independent, we have

P(∃i ∈ [n]\{k} : (ξi)j 6= 0) = 1− [1− s/(d− 1)]n.

Applying a union bound over all k ∈ [n] and j ∈ supp(ξk)\{1}, we obtain

P(∃k ∈ [n], j ∈ supp(ξk)\{1}, i ∈ [n]\{k} : (ξi)j 6= 0) ≤ n · s · {1− [1− s/(d− 1)]n}. (C.1)

By the data distribution assumption we have s ≤
√
d/(2n2), which clearly implies s/(d− 1) ≤ 1/2.

Therefore we have

n · s · [1− (1− s/d)n] = n · s · {1− exp[n log(1− s/(d− 1))]}
≤ n · s · [1− exp(n · 2s/(d− 1))]

≤ n · s · [1− exp(n · 4s/d)]

≤ n · s · (4ns/d)

= 4n2s2/d

≤ n−2,

where the first inequality follows by the inequalities log(1 − z) ≥ −2z for z ∈ [0, 1/2], the
second inequality follows by s/(d − 1) ≥ 2s/d, the third inequality follows by the inequality
1− exp(−z) ≤ z for z ∈ R, and the last inequality follows by the assumption that s ≤

√
d/(2n2).

Plugging the bound above into (C.1) finishes the proof.

C.2. Proof for Adam

In this subsection we first provide the following lemma that shows for most of the coordinate (with
slightly large gradient), the Adam update is similar to signGD update (up to some constant factors).
In the remaining proof for Adam, we will largely apply this lemma to get a signGD-like result for
Adam (similar to the technical lemmas in Section A). Besides, the proofs for all lemmas in Section A
can be viewed as a simplified version of the proofs for technical lemmas for Adam, thus are omitted
in the paper.

Lemma C.2 (Closeness to SignGD) Recall the update rule of Adam, let W(t) be the t-th iterate of
the Adam algorithm. Suppose that 〈w(t)

j,r,v〉, 〈w
(t)
j,r, ξi〉 = Θ̃(1) for all j ∈ {±1} and r ∈ [m]. Then

if β2 ≥ β2
1 , we have

1. Recall that all data inputs have nonzero first coordinate by Definition 2.1

15

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

• For all k ∈ [d], ∣∣∣∣ m(t)
j,r[k]√
v

(t)
j,r[k]

∣∣∣∣ ≤ Θ(1).

• For every k /∈ ∪ni=1Bi (including k = 1) we have either |∇wj,rL(W(t))[k]| ≤ Θ̃(η) or

m
(t)
j,r[k]√
v

(t)
j,r[k]

= sgn
(
∇wj,rL(W(t))[k]

)
·Θ(1).

• For every k ∈ Bi, we have |∇wj,rL(W(t))[k]| ≤ Θ̃
(
ηn−1sσp|`(t)j,i |

)
≤ Θ̃(ηsσp) or

m
(t)
j,r[k]√
v

(t)
j,r[k]

= sgn
(
∇wj,rL(W(t))[k]

)
·Θ(1).

Proof First recall that the gradient∇wj,rL(W(t)) can be calculated as

∇wj,rL(W(t)) = − 1

n

[n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, yiv〉) · v +

n∑
i=1

`
(t)
j,i · σ

′(〈w(t)
j,r, yiξi〉) · ξi

]
+ λw

(t)
j,r.

More specifically, for the first coordinate of∇wj,rL(W(t)), we have

∇wj,rL(W(t))[1] = − 1

n

[n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, yiv〉)− α
n∑
i=1

yi`
(t)
j,i · σ

′(〈w(t)
j,r, ξi〉)

]
+ λw

(t)
j,r[1].

(C.2)

For any k ∈ Bi, by Lemma C.1 we know that the gradient over this coordinate only depends on the
training data ξi, therefore, we have

∇wj,rL(W(t))[k] = − 1

n
`
(t)
j,iσ
′(〈w(t)

j,r, ξi〉)ξi[k] + λw
(t)
j,r[k]. (C.3)

For the remaining coordinates, we have

∇wj,rL(W(t))[k] = λw
(t)
j,r[k]. (C.4)

Now let us focus on the moving averaged gradient m(t)
j,r and squared gradient v(t)

j,r. We first show
that for all k ∈ [d], it holds that ∣∣m(t)

j,r[k]
∣∣√

v
(t)
j,r[k]

≤ Θ(1). (C.5)

16

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

By the update rule of m(t)
j,r, we have

m
(t)
j,r[k] = β1m

(t−1)
j,r [k] + (1− β1) · ∇wj,rL(W(t))[k]

=
t∑

τ=0

βτ1 (1− β1) · ∇wj,rL(W(t−τ))[k].

Similarly, we also have

v
(t)
j,r[k] =

t∑
τ=0

βτ2 (1− β2) · ∇wj,rL(W(t−τ))[k]2.

Then by Cauchy-Schwartz inequality we have

(
m

(t)
j,r[k]

)2 ≤ (t∑
τ=0

[βτ1 (1− β1)]2

α2
τ

· ∇wj,rL(W(t−τ))[k]2
)
·
(t∑
τ=0

α2
τ

)
.

Let α2
τ =

[βτ1 (1−β1)]2

βτ2 (1−β2) , which forms an exponentially decaying sequence if β2 ≥ β2
1 . Therefore, we

have
∑t

τ=0 α
2
τ = Θ(1) and the above inequality implies that(

m
(t)
j,r[k]

)2 ≤ v
(t)
j,r[k] ·Θ(1),

which proves (C.5).
Now we are going to prove the main argument of this lemma. Note that m(t)

j,r, which is a weighted
average of all historical gradients, where the weights decay exponentially fast, then we can take on
a threshold τ̄ = polylog(η−1) such that

∑t
τ=τ̄ β

τ
1 (1− β1) = 1

poly(η−1)
. Then for each k ∈ [d] we

have

m
(t)
j,r[k] =

τ̄∑
τ=0

βτ1 (1− β1) · ∇wj,rL(W(t−τ))[k] +

t∑
τ=τ̄

βτ1 (1− β1) · ∇wj,rL(W(t−τ))[k]

=
τ̄∑
τ=0

βτ1 (1− β1) · ∇wj,rL(W(t−τ))[k]± 1

poly(η−1)
,

where in the last inequality we use the fact that |∇wj,rL(W(t−τ))[k]| = Õ(1) for all k ∈ [d].

Similarly, we can also have the following on v
(t)
j,r,

v
(t)
j,r[k] =

τ̄∑
τ=0

βτ2 (1− β2) · ∇wj,rL(W(t−τ))[k]2 ± 1

poly(η−1)
.

Here we slightly abuse the notation by using the same τ̄ . Then we have

m
(t)
j,r[k]√
v

(t)
j,r[k]

=

∑τ̄
τ=0 β

τ
1 (1− β1) · ∇wj,rL(W(t−τ))[k]± 1

poly(η−1)√∑τ̄
τ=τ̄ β

τ
2 (1− β2) · ∇wj,rL(W(t−τ))[k]2 ± 1

poly(η−1)

.

17

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

In order to prove the main argument of this lemma, the key is to show that within τ̄ iterations,
the gradient ∇wj,rL(W(t))[k] barely changes. In particular, by (C.5), we have the update of each
coordinate in one step is at most Θ(η). This implies that∣∣〈w(t)

j,r,v〉 − 〈w
(τ)
j,r ,v〉

∣∣ ≤ Θ(ητ̄),∣∣〈w(t)
j,r, ξi〉 − 〈w

(τ)
j,r , ξi〉

∣∣ ≤ Θ(ητ̄sσp),

|w(t)
j,r[k]−w

(τ)
j,r [k]| ≤ Θ(ητ̄).

Then applying the fact that |〈w(τ)
j,r ,v〉| ≤ Θ̃(1) and |〈w(τ)

j,r , ξi〉| ≤ Θ̃(1), we further have∣∣Fj(W(τ),xi)− Fj(W(t),xi)
∣∣ ≤ Θ(mητ̄sσp) = Θ̃(ητ̄sσp),

where we use the fact that m = Θ̃(1) and sσp = ω(1). Then it holds that

`
(τ)
j,i =

eFj(W
(τ),xi)∑

k∈{−1,1} e
Fk(W(τ),xi)

≤ eFj(W
(t),xi)+Θ̃(ητ̄sσp)

eFj(W
(τ),xi)+Θ̃(ητ̄sσp) + eF−j(W

(t),xi)−Θ̃(ητ̄sσp)

= sgn(`
(t)
j,i) ·Θ(|`(t)j,i |),

where we use the fact that Θ̃(ητ̄sσp) = o(1). Similarly, we can also show that `(τ)
j,i ≥ sgn(`

(t)
j,i) ·

Θ(|`(t)j,i |), which further implies

`
(τ)
j,i = sgn(`

(t)
j,i) ·Θ(|`(t)j,i |)

for all τ ∈ [t− τ̄ , t]. Note that |`(τ)
j,i | ≤ 1, then it holds that

`
(τ)
j,i σ

′(〈w(τ)
j,r ,v〉) = sgn(`

(t)
j,i) ·Θ(|`(t)j,i |) · σ

′(〈w(τ)
j,r ,v〉)

≤ sgn(`
(t)
j,i) ·Θ(|`(t)j,i |) · σ

′(〈w(t)
j,r,v〉) + Θ(|`(t)j,i |) · Θ̃(ητ̄).

We can also similarly derive the following

`
(τ)
j,i σ

′(〈w(τ)
j,r ,v〉) ≥ sgn(`

(t)
j,i) ·Θ(|`(t)j,i |) · σ

′(〈w(t)
j,r,v〉)−Θ(|`(t)j,i |) · Θ̃(ητ̄),

`
(τ)
j,i σ

′(〈w(τ)
j,r , ξi〉) ≤ sgn(`

(t)
j,i) ·Θ(|`(t)j,i |) · σ

′(〈w(t)
j,r, ξi〉) + Θ(|`(t)j,i |) · Θ̃(ητ̄sσp),

`
(τ)
j,i σ

′(〈w(τ)
j,r , ξi〉) ≥ sgn(`

(t)
j,i) ·Θ(|`(t)j,i |) · σ

′(〈w(t)
j,r, ξi〉)−Θ(|`(t)j,i |) · Θ̃(ητ̄sσp).

Combining the above results, applying (C.2), (C.3), and (C.4), we can show that for the first
coordinate, we have

∇wj,rL(W(τ))[1] = Θ
(
∇wj,rL(W(t))[1]

)
±Θ

(
1

n

n∑
i=1

|`(t)j,i |
)
· Õ(ητ̄)±Θ(λητ̄);

18

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

for any k ∈ Bj , we have

∇wj,rL(W(τ))[k] = Θ
(
∇wj,rL(W(t))[k]

)
±Θ

(|`(t)j,i |
n

)
· Õ(ητ̄sσp)±Θ(λητ̄);

and for remaining coordinates, we have

∇wj,rL(W(τ))[k] = Θ
(
∇wj,rL(W(t))[k]

)
±Θ(λητ̃).

Now we can plug the above results into the formula of m(t)
j,r and v

(t)
j,r. Using the fact that τ̄ = Θ̃(1),

λ = o(1), and |`(t)j,i | ≤ 1, we have for all k = 1 or k /∈ Bi for any i,

m
(t)
j,r[k]√
v

(t)
j,r[k]

=
∇wj,rL(W(t))[k]± Θ̃(η)

Θ
(
|∇wj,rL(W(t))[k]|

)
± Θ̃(η))

.

For k ∈ Bi we have

m
(t)
j,r[k]√
v

(t)
j,r[k]

=
∇wj,rL(W(t))[k]± Θ̃

(
ηsσp|`(t)j,i |

n

)
± Θ̃(λη)

Θ
(
|∇wj,rL(W(t))[k]|

)
± Θ̃

(
ηsσp|`(t)j,i |

n

)
± Θ̃(λη)

.

Then, we can conclude that for all k = 1 or k /∈ Bi for any i, we have either |∇wj,rL(W(t))[k]| ≤
Θ̃(η) or

m
(t)
j,r[k]√
v

(t)
j,r[k]

= sgn
(
∇wj,rL(W(t))[k]

)
·Θ(1).

For any k ∈ Bi, we have either |∇wj,rL(W(t))[k]| ≤ Θ̃
(
ηn−1sσp|`(t)j,i |+ λη

)
or

m
(t)
j,r[k]√
v

(t)
j,r[k]

= sgn
(
∇wj,rL(W(t))[k]

)
·Θ(1).

This completes the proof.

Lemma C.3 (General results in Stage I, Adam) Suppose the training data is generated according
to Definition 2.1, assume λ = o(σq−2

0 σp/n) and η = 1/poly(d), then for any t ≤ T0 with
T0 = Õ

(
1

ηsσp

)
,

〈w(t+1)
j,r , j · v〉 ≤ 〈w(t)

j,r, j · v〉+ Θ(η),

〈w(t+1)
ys,r , ξs〉 = 〈w(t)

ys,r, ξs〉+ Θ̃(ηsσp).

19

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

Proof At the initialization, we have

|〈w(0)
j,r ,v〉| = Θ̃(σ0), |〈w(0)

j,r , ξi〉| = Θ̃(s1/2σpσ0 + α) = Θ̃(s1/2σpσ0), w
(0)
j,r [k] = Θ̃(σ0),

which also imply that |`(0)
j,i | = Θ(1). Besides, note that `(t)j,i = 1j=yi −logitj(F

(t),xi), we have

sgn
(
yi`

(t)
j,i

)
= sgn(j),

where we recall that j ∈ {−1, 1}. Therefore, given that λ = o(σq−1
0), α = o(1), s1/2σp = Õ(1),

and assume `(t)j,i = Θ(1) (which will be verified later),

sgn

(n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, yiv〉)− α
n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, ξi〉)− nλw
(t)
j,r[1]

)
= sgn

[
j · Θ̃(nσq−1

0)− j · Θ̃(αn(s1/2σpσ0)q−1)± o
(
σq−1

0 σp)
]

= sgn(j).

Since v is 1-sparse, then by Lemma C.2, the following inequality naturally holds,

〈w(t+1)
j,r , j · v〉 ≤ 〈w(t)

j,r, j · v〉 − η
〈
m

(t)
j,r/

√
v

(t)
j,r, j · v

〉
≤ 〈w(t)

j,r, j · v〉+ Θ(η).

Additionally, in terms of the memorization of noise, we first consider the iterate in the initialization.
By the condition that η = o(1/d) = o(1/(sσp)) and note that for a sufficiently large fraction of
k ∈ Bi (e.g., 0.99), we have |ξi[k]| ≥ Θ̃(σp) ≥ Θ̃(ηn−1sσp|`(0)

j,i |) and thus

sgn
(
∇wyi,r

L(W(0))[k]
)

= sgn

(
`
(t)
yi,i
σ′(〈w(t)

yi,r, ξi〉)ξi[k]− nλw(0)
yi,r[k]

)
= −sgn

[
Θ̃
(
(d1/2σpσ0)q−1σp · sgn(ξi[k])

)
± o(σq−1

0 σp)
]

= −sgn(ξi[k]).
(C.6)

Therefore, by Lemma C.2 we have the following according to (A.2),

〈w(1)
yi,r, ξi〉 = 〈w(0)

yi,r, ξi〉 − η
〈
m

(t)
j,r/

√
v

(t)
yi,r, ξi

〉
≥ 〈w(0)

yi,r, ξi〉+ Θ(η) ·
∑
k∈Bi

〈sgn(ξi[k]), ξi[k]〉 −O(ηsσp)−O(ηα)

= 〈w(0)
yi,r, ξi〉+ Θ̃(ηsσp),

where in the first inequality the term O(ηsσp) represents the coordinates that |ξi[k]| ≤ O(σp) (so
that we cannot use the sign information of ∇yi,rL(W(0)) but directly bound it by Θ(1)) and the
last inequality is due to the fact that |Bi| ≥ s− 1 and α = o(1). For general t, we will consider the
following induction hypothesis:

〈w(t+1)
ys,r , ξs〉 = 〈w(t)

ys,r, ξs〉+ Θ̃(ηsσp), (C.7)

which has already been verified for t = 0. By Hypothesis (C.7), the following holds at time t,

〈w(t)
yi,r, ξi〉 = 〈w(0)

yi,r, ξi〉+ Θ̃(tηsσp) = Θ̃(s1/2σpσ0 + tηsσp).

20

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

In the meanwhile, we have the following upper bound for |w(t)
j,r[k]|,

|w(t)
j,r[k]| ≤ |w(t)

j,r[k]|+ η| sign(∇wj,rL(W(t)))| ≤ |w(0)
j,r [k]|+ tη = Θ̃(σ0 + tη). (C.8)

Besides, it is also easy to verify that for any t ≤ T0 = Θ̃
(

1
sσpηm

)
= Θ̃

(
1

sσpη

)
, we have 〈w(t)

yi,r, ξi〉, 〈w
(t)
yi,r, j·

v〉 < Θ(1/m) and thus |`(t)j,i | = Θ(1). Then similar to (C.6), we have

sgn
(
∇wyi,r

L(W(t))[k]
)

= sgn

(
`
(t)
yi,i
σ′(〈w(t)

yi,r, ξi〉)ξi[k]− nλw(0)
yi,r[k]

)
= −sgn

(
Θ̃
[
(s1/2σpσ0 + tηsσp)

q−1σp · sgn(ξi[k])
)
± o
(
σq−2

0 σp · (σ0 + tη)
)]

= −sgn(ξi[k]). (C.9)

This further implies that

〈w(t+1)
yi,r , ξi〉 ≥ 〈w(t)

yi,r, ξi〉 −Θ(η) ·
∑
k∈Bi

〈sgn
(
∇wyi,r

L(W(t))[k]
)
, ξi[k]〉 −O(η2s2σ2

p)−O(ηα)

= 〈w(t)
yi,r, ξi〉+ Θ̃(ηsσp),

where the term−O(η2s2σ2
p) is contributed by the gradient coordinates that are smaller than Θ(ηsσp).

This verifies Hypothesis (C.7) at time t and thus completes the proof.

From Lemma C.3, note that sσp = ω(1), then it can be seen that 〈w(t)
j,r, j ·v〉 increases much faster

than 〈w(t)
j,r, j · v〉. By looking at the update rule of 〈w(t)

j,r, j · v〉 (see (A.1)), it will keeps increasing

only when, roughly speaking, σ′(〈w(t)
j,r, j · v〉) > ασ′(〈w(t)

j,r, ξi〉). Since 〈w(t)
j,r, ξi〉 increases much

faster than 〈w(t)
j,r, j · v〉, it can be anticipated after a certain number of iterations, 〈w(t)

j,r, j · v〉 will
start to decrease. In the following lemma, we provide an upper bound on the iteration number such
that this decreasing occurs.

Lemma C.4 (Flipping the feature learning) Suppose the training data is generated according to
Definition 2.1, α ≥ Θ̃

(
(sσp)

1−q ∨ σq−1
0

)
and σ0 < Õ((sσp)

−1), then for any t ∈ [Tr, T0] with
Tr = Õ

(
σ0

ηsσpα1/(q−1)

)
≤ T0,

〈w(t+1)
j,r , j · v〉 = 〈w(t)

j,r, j · v〉 −Θ(η).

Moreover, it holds that

w
(T0)
j,r [k] =

−sgn(j) · Ω̃

(
1
sσp

)
, k = 1,

sgn(ξi[k]) · Ω̃
(

1
sσp

)
or ± Õ(η), k ∈ Bi, with yi = j,

±Õ(η), otherwise.

Proof Recall from Lemma C.3 that for any t ≤ T0 we have

〈w(t+1)
j,r , j · v〉 ≤ 〈w(t)

j,r, j · v〉+ Θ(η) ≤ 〈w(0)
j,r , j · v〉+ Θ(tη),

〈w(t+1)
ys,r , ξs〉 = 〈w(t)

ys,r, ξs〉+ Θ̃(ηsσp) ≤ 〈w(0)
ys,r, ξs〉+ Θ̃(tηsσp).

21

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

Besides, by Lemma C.2 we also have |w(t)
j,r[k]| ≤ |w(0)

j,r [k]|+O(tη). Then it can be verified that for

some Tr = Õ
(

σ0
ηsσpα1/(q−1)

)
, we have for all i ∈ [n] and t ∈ [Tr, T0]

ασ′(〈w(t)
yi,r, ξi〉) ≥ C ·

[
σ′(〈w(t)

j,r, j · v〉) + λn|w(t)
j,r[1]|

]
for some constant C. This further implies that

sgn
(
∇wj,rL(W(t))[1]

)
= −sgn

(n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, yiv〉)− α
n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, ξi〉)− nλw
(t)
j,r[1]

)

= −sgn
[
− α

n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, ξi〉)
]

= sgn(j),

where we use the fact that sgn(yi`
(t)
j,i) = sgn(j) for all i ∈ [n]. Then by Lemma C.2 and (A.1), we

have for all t ∈ [Tr, T0],

〈w(t+1)
j,r , j · v〉 = 〈w(t)

j,r, j · v〉 −Θ(η) · sgn(j) · sgn
(
∇wj,rL(W(t))[1]

)
= 〈w(t)

j,r, j · v〉 −Θ(η).

Then at iteration T0, for the first coordinate we have

w
(T0)
j,r [1] = w

(0)
j,r [1] + sgn(j) ·Θ(Trη)− sgn(j) ·Θ((T0 − Tr)η) ≥ −sgn(j) · Ω̃

(
1

sσp

)
For any k ∈ Bi with yi = j, we have either the coordinate will increase at a rate of Θ(1) or fall into
0. As a consequence we have either w(T0)

j,r [k] ∈ [−Θ̃(η), Θ̃(η)] or

w
(T0)
j,r [k] = w

(0)
j,r [k] + sgn(ξi[k]) ·Θ(T0η) ≥ sgn(ξi[k]) · Ω̃

(
1

sσp

)
.

For the remaining coordinate, its update will be determined by the regularization term, which will
finally fall into the region around zero since we have T0η = ω(σ0). By Lemma C.2 it is clear that
w

(T0)
j,r [k] ∈ [−Θ̃(η), Θ̃(η)].

Lemma C.5 (Maintain the pattern) Ifα = O
(sσ2

p

n

)
and η = o(λ), then let r∗ = arg maxr∈[m]〈w

(t)
yi,r, ξi〉,

for any t ≥ T0, i ∈ [n], j ∈ [2] and r ∈ [m], it holds that

〈w(t)
yi,r∗

, ξi〉 = Θ̃(1),
∑
k∈Bi

|w(t)
yi,r∗

[k]| · |ξi[k]| = Θ̃(1),

∀r ∈ [m], 〈w(t)
j,r, sgn(j) · v〉 ∈ [−Õ

(nα
sσ2

p

)
, O(λ−1η)].

22

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

Proof The proof will be relying on the following three induction hypothesis:

〈w(t)
yi,r∗

, ξi〉 = Ω̃(1), (C.10)∑
k∈Bi

|w(t+1)
yi,r∗

[k]| · |ξi[k]| = Θ̃(1), (C.11)

∀r ∈ [m], 〈w(t)
j,r, sgn(j) · v〉 ∈

[
− Õ

(nα
sσ2

p

)
, O(λ−1η)

]
, (C.12)

which we assume they hold for all τ ≤ t and r ∈ [m], i ∈ [n], and j ∈ [2]. It is clear that all
hypothesis hold when t = T0 according to Lemma C.4.

Verifying Hypothesis (C.10). We first verify Hypothesis (C.10). Recall that the update rule for
〈w(t)

yi,r, ξi〉 is given as follows,

〈w(t+1)
yi,r , ξi〉 = 〈w(t)

yi,r, ξi〉 − η ·
〈
m(t)
yi,r/

√
v

(t)
yi,r, ξi

〉
≥ 〈w(t)

yi,r, ξi〉 −Θ(η) ·
〈
sgn
(
∇wyi,r

L(W(t))
)
, ξi
〉
− Θ̃(η2s2σ2

p)

= 〈w(t)
yi,r, ξi〉+ Θ(η) ·

∑
k∈Bi

〈
sgn

(
`
(t)
yi,i
σ′(〈w(t)

yi,r, ξi〉)ξi[k]− nλw(t)
yi,r[k]

)
, ξi[k]

〉

− αyiΘ(η) · sgn

(n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, yiv〉)− α
n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, ξi〉)− nλw
(t)
j,r[1]

)
− Θ̃(η2s2σ2

p). (C.13)

Note that for any a and b we have sgn(a− b) · a ≥ |a| − 2|b|. Then it follows that

∑
k∈Bi

〈
sgn

(
`
(t)
yi,i
σ′(〈w(t)

yi,r, ξi〉)ξi[k]− nλw(t)
yi,r[k]

)
, ξi[k]

〉
≥
∑
k∈Bi

(
|ξi[k]| − 2nλ|w(t)

yi,r[k]|
`
(t)
yi,i
σ′(〈w(t)

yi , ξi〉)

)
≥ Θ̃(sσp)− Θ̃

(
nλ

`
(t)
yi,i
σp

)
,

where the last inequality follows from Hypothesis (C.10) and (C.11). Further recall that λ =
o(σq−2

0 σp/n), plugging the above inequality to (C.13) gives

〈w(t+1)
yi,r , ξi〉 ≥ 〈w(t)

yi,r, ξi〉+ Θ̃(ηsσp)− Θ̃

(
ηnλ

`
(t)
yi,i
σp

)
− Θ̃(η2s2σ2

p)

≥ 〈w(t)
yi,r, ξi〉+ Θ̃(ηsσp)−Θ(αη)− Θ̃

(
ησq−2

0

`
(t)
yi,i

)
. (C.14)

Then it is clear that 〈w(t)
yi,r, ξi〉 will increase by Θ̃(ηsσp) if `(t)yi,i is larger than some constant of

order Ω̃(nλ
sσ2
p
) = Ω̃(

σq−2
0
sσp

). We will first show that as soon as there is a iterate W(τ) satisfying

`
(τ)
yi,i
≤ Õ

(
nλ
sσ2
p

)
for some τ ≤ t, then it must hold that `(τ

′)
yi,i

will also be smaller than some constant

23

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

in the order of Õ
(
nλ
sσ2
p

)
for all τ ′ ∈ [τ, t+ 1]. To prove this, we first note that if `(t)yi,i reaches some

constant in the order of Õ
(
nλ
sσ2
p

)
, we have for all r ∈ [m] by (C.14)

〈w(t+1)
yi,r , ξi〉 ≥ 〈w(t)

yi,r, ξi〉+ Θ̃(ηsσp),

〈w(t+1)
−yi,r , ξi〉 ≤ 〈w

(t)
−yi,r, ξi〉+O(αη),

|〈w(t+1)
j,r ,v〉| ≤ |〈w(t)

j,r,v〉|+O(η). (C.15)

Therefore, we have

`
(t+1)
yi,i

=
eF−yi (W

(t+1),xi)∑
j∈{−1,1} e

Fj(W(t+1),xi)

=
1

1 + exp
[∑m

r=1

[
σ(〈w(t+1)

yi,r ,v〉) + σ(〈w(t+1)
yi,r , ξi〉)

]
− σ(〈w(t+1)

−yi,r ,v〉) + σ(〈w(t+1)
−yi,r , ξi〉)

]]
≤ 1

1 + exp
[∑m

r=1

[
σ(〈w(t)

yi,r,v〉) + σ(〈w(t)
yi,r, ξi〉)

]
− σ(〈w(t)

−yi,r,v〉) + σ(〈w(t)
−yi,r, ξi〉)

]
+ Θ̃(ηsσ2

p)
]

≤ 1

1 + exp
[∑m

r=1

[
σ(〈w(t)

yi,r,v〉) + σ(〈w(t)
yi,r, ξi〉)

]
− σ(〈w(t)

−yi,r,v〉) + σ(〈w(t)
−yi,r, ξi〉)

]]
= `

(t)
yi,i
,

where inequality follows from (C.15). Therefore, this implies that as long as `(t)yi,i is larger than some

constant b = Õ
(
nλ
sσ2
p

)
, then the adam algorithm will prevent it from further increasing. Besides, since

mησ2
p = o(1), then we must have `(t+1)

yi,i
∈ [0.5`

(t)
yi,i
, 2`

(t)
yi,i

]. As a consequence, we can deduce that

`
(t)
yi,i

cannot be larger than 2b, since otherwise there must exists a iterate W(τ) with τ ≤ t such that

`
(τ)
yi,i
∈ [b, 2b] and `(τ+1)

yi,i
≥ `

(τ)
yi,i

, which contradicts the fact that `(τ)
yi,i

should decreases if `(τ)
yi,i
≥ b.

Therefore, we can claim that if `(τ)
yi,i
≤ b = Õ

(
nλ
sσ2
p

)
for some τ ≤ t, then we have

`
(τ ′)
yi,i
≤ Õ

(
nλ

sσ2
p

)
(C.16)

for all τ ′ ∈ [τ, t+ 1]. Then further note that

2`
(t+1)
yi,i

≥ `(t)yi,i =
eF−yi (W

(t),xi)∑
j∈{−1,1} e

Fj(W(t),xi)

≥ exp

(
−

m∑
r=1

[
σ(〈w(t)

yi,r, yiv〉) + σ(〈w(t)
yi,r, ξi〉)

])
≥ exp

(
−Θ

(
m max

r∈[m]
σ(〈w(t)

yi,r, ξi〉)
))
, (C.17)

where in the last inequality we use Hypothesis (C.12). Then by the fact that `(t+1)
yi,i

≤ Õ
(
nλ
sσ2
p

)
=

o(1) and m = Θ̃(1), it is clear that exp
(
− Θ

(
mmaxr∈[m] σ(〈w(t+1)

yi,r , ξi〉)
))

= o(1) so that

maxr∈[m]〈w
(t+1)
yi,r , ξi〉 = Ω̃(1). This verifies Hypothesis (C.10).

24

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

Verifying Hypothesis (C.11). Now we will verify Hypothesis (C.11). First, note that we have
already shown that 〈w(t+1)

yi,r∗
, ξi〉 = Ω̃(1) so it holds that∑

k∈Bi

|w(t+1)
yi,r∗

[k]| · |ξi[k]|+ α|w(t+1)
yi,r∗

[1]| ≥ 〈w(t+1)
yi,r∗

, ξi〉 = Ω̃(1).

By Hypothesis (C.12), we have |w(t+1)
yi,r∗

[1]| ≤ |w(t)
yi,r∗

[1]|+ η = o(1). Besides, since each coordinate
in ξi is a Gaussian random variable, then maxk∈Bi |ξi[k]| = Õ(σp). This immediately implies that∑

k∈Bi

|w(t+1)
yi,r∗

[k]| · |ξi[k]| = Ω̃(1).

Then we will prove the upper bound of
∑

k∈Bi |w
(t+1)
yi,r [k]| · |ξi[k]|. Recall that by Lemma C.2, for

any k ∈ Bi such that∇wyi,r
L(W(t))[k] ≥ Θ̃(n−1ηsσp`

(t)
yi,i

), we have

w(t+1)
yi,r [k] = w(t)

yi,r[k] + Θ(η) · sgn

(
`
(t)
yi,i
σ′(〈w(t)

yi,r, ξi〉)ξi[k]− nλw(t)
yi,r[k]

)
.

Note that by Lemma C.4, for every k ∈ Bi, we have either w(T0)
yi,r [k] = sgn(ξi[k]) · Θ̃

(
1
sσp

)
or

|w(T0)
yi,r [k]| ≤ η. Then during the training process after T0, we have either sgn(w

(t)
yi,r[k]) = sgn(ξi[k])

or sgn(ξi[k]) ·w(t)
yi,r ≥ −Õ(η) since if for some iteration number t′ that we have sgn(w

(t′)
yi,r[k]) =

−sgn(ξi[k]) but sgn(w
(t′−1)
yi,r [k]) = sgn(ξi[k]), then after τ̄ = Õ(1) steps (see the proof of Lemma

C.2 for the definition of τ̄) in the constant number of steps the gradient will must be in the same
direction of ξi[k], which will push wyi,r[k] back to zero or become positive along the direction of
ξi[k]. Therefore, based on this property we have the following regarding the inner product 〈w(t)

yi,r, ξi〉,

〈w(t)
yi,r, ξi〉 =

∑
k∈Bi∪{1}

w(t)
yi,r[k] · ξi[k]

≥
∑

k∈Bi∪{1}

|w(t)
yi,r[k]| · |ξi[k]| − Õ(η) ·

∑
k∈Bi∪{1}

|ξi[k]|

=
∑

k∈Bi∪{1}

|w(t)
yi,r[k]| · |ξi[k]| − Õ(ηsσp),

where the second inequality follows from the fact that the entry w
(t)
yi,r[k] that has different sign of ξi[k]

satisfies |w(t)
yi,r[k]| ≤ Õ(η). Then let B(t)

i =
∑

j∈Bi∪{1}
∣∣w(t)

yi,r[k] · 1(|w(t)
yi,r[k]| ≥ Õ(η))

∣∣ · |ξi[k]|,
which satisfies B(T0)

i = Θ̃(1) by Lemma C.4. Then assume B(t)
i keeps increasing and reaches some

value in the order of Θ
(

log(dnη−1)
)
, it holds that according to the inequality above

〈w(t)
yi,r, ξi〉 = Θ

(
log(dnη−1)

)
− Θ̃(ηsσp) = Θ

(
log(dnη−1)

)
,

where we use the condition that η = O
(
(sσp)

−1
)
. Then by Hypothesis (C.10) and (C.12) we know

that |〈w(t)
j,r,v〉| = o(1), 〈w(t)

yi,r∗
, ξi〉 = Ω̃(1), and |〈w(t)

−yi,r∗ , ξi〉| = Õ(dη) +α|〈w(t)
−yi,r∗ ,v〉| = o(1)

then similar to (C.17), it holds that

`
(t)
yi,i

=
eF−yi (W

(t),xi)∑
j∈{−1,1} e

Fj(W(t),xi)
≤ exp

(
−Θ

(
σ(〈w(t)

yi,r∗
, ξi〉)

))
≤ poly(d−1, n−1, η).

25

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

Therefore, at this time we have for all k ∈ Bi,

`
(t)
yi,i
σ〈(w(t)

yi,r, ξi〉)ξi[k] ≤ poly(d−1, n−1, η) ·Θ
(

logq−1(dnη−1)
)
· Θ̃(σp) ≤ nλη.

Then for all |w(t)
yi,r[k]| ≥ Õ(η), the sign of the gradient satisfies

sgn
(
∇wyi,r

L(W(t))[k]
)

= −sgn

(
`
(t)
yi,i
σ′(〈w(t)

yi,r, ξi〉)ξi[k]− nλw(t)
yi,r[k]

)
= sgn(nλη −w(t)

yi,r[k])

= sgn(w(t)
yi,r[k]).

Then note that |∇wyi,r
L(W(t))[k]| = Θ(|λw(t)

yi,r[k]|) ≥ Θ
(
n−1ηsσp`

(t)
yi,i

+ λη
)
, by the update

rule of w(t)
yi,r[k] and Lemma C.2, we know the sign gradient will dominate the update process.

Then we have |w(t+1)
yi,r [k]| = |w(t)

yi,r[k] − Θ(η) · sgn(w
(t)
yi,r[k])| ≤ |w(t)

yi,r[k]|, which implies that∣∣w(t)
yi,r[k] · 1(|w(t)

yi,r[k]| ≥ Õ(η))
∣∣ decreases so that B(t)

i also decreases. Therefore, we can conclude

that B(t)
i will not exceed Θ

(
log(dnη−1)

)
. Then combining the results for all i ∈ [n] gives∑

k∈Bi

|w(t)
yi,r∗

[k]| · |ξi[k]| ≤ B(t)
i + Õ(sησp) ≤ Θ

(
log(dnη−1)

)
+O(1) = Θ̃(1),

where in the first inequality we again use the condition that η = o(1/d) = o
(
(sσp)

−1
)
. This verifies

Hypothesis (C.11). Notably, this also implies that 〈w(t)
yi,r∗

, ξi〉 = maxr∈[m]〈w
(t)
yi,r, ξi〉 ≤ Θ̃(1).

Verifying Hypothesis (C.12). In order to verify Hypothesis (C.12), let us first recall the update
rule of 〈w(t)

j,r,v〉:

〈w(t+1)
j,r ,v〉 = 〈w(t)

j,r,v〉 − η

〈
m

(t)
j,r√
v

(t)
j,r

,v

〉
.

Then by Lemma C.2, we know that if |∇wj,rL(W(t))[1]| ≤ Θ̃(η), then |m(t)
j,r/
√

v
(t)
j,r| ≤ Θ(1) and

otherwise〈
m

(t)
j,r√
v

(t)
j,r

,v

〉
= −sgn

(n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, yiv〉)− α
n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, ξi〉)− nλw
(t)
j,r[1]

)
·Θ(1).

Without loss of generality we assume j = 1, then by Lemma C.4 we know that w(T0)
1,r [1] = −Ω̃

(
1
sσp

)
.

In the remaining proof, we will show that either w(t+1)
1,r [1] ∈ [0, Θ̃(λ−1η)] or w(t+1)

1,r [1] ∈
[
−

Õ
(
nα
sσ2
p

)
, 0
)
.

First we will show that w(t+1)
1,r [1] ∈ [0, Θ̃(λ−1η)] for all r. Note that in the beginning of this

stage, we have w
(T0)
1,r [1] < 0. In order to make the sign of w(t′)

1,r [1] flip, we must have, in some

26

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

iteration t′ ≤ t that satisfies w(t′)
1,r [1] ∈ [0, Θ̃(λ−1η)], therefore

−n∇w1,rL(W(t′))[1] =

n∑
i=1

yi`
(t′)
j,i σ

′(〈w(t′)
j,r , yiv〉)− α

n∑
i=1

yi`
(t′)
j,i σ

′(〈w(t′)
j,r , ξi〉)− nλw

(t′)
j,r [1]

≤ n
[(
w

(t′)
j,r [1]

)q−2 − λ
]
·w(t′)

j,r [1] ≤ −Θ̃(nη) ≤ 0,

where the second inequality holds since η = o(λ(q−1)/(q−2)). Note that |∇w1,rL(W(t′))[1]| ≥ Θ̃(η),

then by Lemma C.2 we know that Adam is similar to sign gradient descent and thus w(t′+1)
1,r [1] =

w
(t′)
1,r [1] − Θ(η) which starts to decrease. This implies that if w(t+1)

1,r [1] is positive, then it cannot
exceed Θ̃(λ−1η) = o(1).

Then we can prove that if w(t+1)
1,r [1] is negative, then |w(t+1)

1,r [1]| = Õ
(
nα
sσ2
p

)
. In this case we have

for all t′ ≤ t,

−n∇
w

(t)
1,r

L(W(t′))[1] =
n∑
i=1

yi`
(t′)
1,i σ

′(〈w(t′)
1,r , yiv〉)− α

n∑
i=1

yi`
(t′)
1,i σ

′(〈w(t′)
1,r , ξi〉)− nλw

(t′)
1,r [1]

≥ −
∑
i:yi=1

|`(t
′)

1,i | · Θ̃(α) + nλ|w(t′)
1,r [1]|+

∑
i:yi=−1

|`(t
′)

1,i | · |w
(t′)
1,r [1]|q−1,

≥ −
∑
i:yi=1

|`(t
′)

1,i | · Θ̃(α) + nλ|w(t′)
1,r [1]|,

where in the inequality we use Hypothesis (C.11) and (C.12) to get that

〈w(t′)
yi,r, ξi〉 ≤

∑
k∈Bi

|w(t′)
yi,r[k]| ·max

k∈Bi
|ξi[k]|+ α|〈w(t′)

yi,r,v〉| = Θ̃(1).

Recall from (C.16) that we have |`(t
′)

j,i | = Õ
(
nλ
sσ2
p

)
, therefore we have if w(t′)

j,r [1] is smaller than some

value in the order of −Θ̃
(
nα
sσ2
p

)
· polylog(d), then

−n∇
w

(t)
1,r

L(W(t′))[1] ≥ −Θ̃

(
αn2λ

sσ2
p

)
+ Θ̃

(
nλ · nα
sσ2

p

)
· polylog(d) ≥ Θ̃(nη),

which by Lemma C.2 implies that w(t′)
j,r [1] will increase. Therefore, we can conclude that w(t+1) ∈[

− Õ
(
nα
sσ2
p

)
, 0
)

in this case, which verifies Hypothesis (C.12).

Lemma C.6 (Convergence Guarantee of Adam) If the step size satisfies η = O(d−1/2), then for
any t it holds that

L(W(t+1))− L(W(t)) ≤ −η‖∇L(W(t))‖1 + Θ̃(η2d).

Proof Let ∆Fj,i = Fj(W
(t+1),xi)− Fj(W(t),xi). Then regarding the loss function

Li(W) = − log
eFyi (W,xi)∑
j e

Fj(W,xi)
= −Fyi(W,xi) + log

(∑
j

eFj(W,xi)
)
.

27

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

It is clear that the function Li(W) is 1-smooth with respect to the vector [F−1(W,xi), F1(W,xi)].
Then based on the definition of ∆Fj,i, we have

Li(W
(t+1))− Li(W(t)) ≤

∑
j

∂Li(W
(t))

∂Fj(W(t),xi)
·∆Fj,i +

∑
j

(∆Fj,i)
2. (C.18)

Moreover, note that

Fj(W
(t),xi) =

m∑
r=1

[
σ(〈w(t)

j,r, yiv〉) + σ(〈w(t)
j,r, ξi〉)

]
.

By the results that 〈w(t)
j,r,v〉 ≤ Θ̃(1) and 〈w(t)

j,r, ξ〉 ≤ Θ̃(1), for any η = O(d−1/2), we have

〈w(t+1)
j,r ,v〉 ≤ 〈w(t)

j,r,v〉+ η ≤ Θ̃(1), 〈w(t+1)
j,r , ξi〉 ≤ 〈w(t)

j,r, ξi〉+ Θ̃(ηs1/2) ≤ Θ̃(1),

which implies that the smoothness parameter of the functions σ(〈w(t)
j,r, yiv〉) and σ(〈w(t)

j,r, ξi〉) are at

most Θ̃(1) for any w in the path between w
(t)
j,r and w

(t+1)
j,r . Then we can apply first Taylor expansion

on σ(〈w(t)
j,r, yiv〉) and σ(〈w(t)

j,r, ξi〉) and bound the second-order error as follows,∣∣σ(〈w(t+1)
j,r , yiv〉)− σ(〈w(t)

j,r, yiv〉)−
〈
∇wj,rσ(〈w(t)

j,r, yiv〉),w
(t+1)
j,r −w

(t)
j,r〉
∣∣

≤ Θ̃
(
‖w(t+1)

j,r −w
(t)
j,r‖

2
2

)
= Θ̃(η2d), (C.19)

where the last inequality is due to Lemma C.2 that

[w
(t+1)
j,r −w

(t)
j,r]

2 = η2

∥∥∥∥∥ m
(t)
j,r√
v

(t)
j,r

∥∥∥∥∥
2

2

≤ Θ(η2d).

Similarly, we can also show that∣∣σ(〈w(t+1)
j,r , ξi〉)− σ(〈w(t)

j,r, ξi〉)−
〈
∇wj,rσ(〈w(t)

j,r, ξi〉),w
(t+1)
j,r −w

(t)
j,r〉
∣∣ ≤ Θ(η2d). (C.20)

Combining the above bounds on the second-order errors, we have∣∣∆Fj,i − 〈∇WFj(W
(t),xi),W

(t+1) −W(t)〉
∣∣ ≤ Θ̃(mη2d) = Θ̃(η2d), (C.21)

where the last equation is due to our assumption that m = Θ̃(1). Besides, by (C.19) and (C.20) the
convexity property of the function σ(x), we also have∣∣σ(〈w(t+1)

j,r , yiv〉)− σ(〈w(t)
j,r, yiv〉)

∣∣ ≤ |〈∇wj,rσ(〈w(t)
j,r, yiv〉),w

(t+1)
j,r −w

(t)
j,r〉|+ Θ̃(η2d)

= Θ̃
(
η|σ′(〈w(t+1)

j,r , yiv〉)| · ‖v‖1
)

+ Θ̃(η2d)

= Θ̃(η + η2d);∣∣σ(〈w(t+1)
j,r , ξi〉)− σ(〈w(t)

j,r, ξi〉)
∣∣ ≤ |〈∇wj,rσ(〈w(t)

j,r, ξi〉),w
(t+1)
j,r −w

(t)
j,r〉|+ Θ̃(η2d)

= Θ̃
(
η|σ′(〈w(t+1)

j,r , ξi〉)| · ‖ξ‖1
)

+ Θ̃(η2d)

= Θ̃(ηsσp + η2d).

28

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

These bounds further imply that

|∆Fj,i| ≤ Θ̃
(
m · (ηsσp + η2d)

)
= Θ̃

(
ηsσp + η2d

)
. (C.22)

Now we can plug (C.21) and (C.22) into (C.18) and get

Li(W
(t+1))− Li(W(t)) ≤

∑
j

∂Li(W
(t))

∂Fj(W(t),xi)
·∆Fj,i +

∑
j

(∆Fj,i)
2

≤
∑
j

∂Li(W
(t))

∂Fj(W(t),xi)
· 〈∇WFj(W

(t),xi),W
(t+1) −W(t)〉

+ Θ̃(η2d) + Θ̃
(
(ηsσp + η2d)2

)
= 〈∇Li(W(t)),W(t+1) −W(t)〉+ Θ̃(η2d), (C.23)

where in the second inequality we use the fact that Li(W) is 1-Lipschitz with respect to Fj(W,xi)

and the last equation is due to our assumption that σp = O(s−1/2) so that Θ̃((ηsσp + η2d)2) =

Õ(η2d).
Now we are ready to characterize the behavior on the entire training objective L(W) =

n−1
∑n

i=1 Li(W)+λ‖W‖2F . Note that λ‖W‖2F is 2λ-smoothness, where λ = o(1). Then applying
(C.23) for all i ∈ [n] gives

L(W(t+1))− L(W(t)) =
1

n

n∑
i=1

[
Li(W

(t+1))− Li(W(t))
]

+ λ
(
‖W(t+1)‖2F − ‖W(t)‖2F

)
≤ 〈∇L(W(t)),W(t+1) −W(t)〉+ Θ̃(η2d),

where the second equation uses the fact that ‖W(t+1) −W(t)‖2F = Θ̃(η2d). Recall that we have

w
(t+1)
j,r −w

(t)
j,r = −η ·

m
(t)
j,r√
v

(t)
j,r

.

Then by Lemma C.2, we know that m(t)
j,r[k]/

√
v

(t)
j,r[k] is close to sign gradient if ∇L(w(t))[k] is

large. Then we have〈
∇wj,rL(W(t)),

m
(t)
j,r√
v

(t)
j,r

〉
≥ Θ

(∥∥∇wj,rL(W(t))
∥∥

1

)
− Θ̃

(
d · η

)
− Θ̃(ns · ηsσp)

≥ Θ
(∥∥∇wj,rL(W(t))

∥∥
1

)
− Θ̃(dη),

where the second and last terms on the R.H.S. of the first inequality are contributed by the small
gradient coordinates k /∈ ∪ni=1Bi and k ∈ ∪ni=1Bi respectively, and the last inequality is by the fact
that ns2σp = O(d). Therefore, based on this fact (C.23) further leads to

L(W(t+1))− L(W(t)) ≤ −η‖∇L(W(t))‖1 + Θ̃(η2d),

which completes the proof.

29

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

Lemma C.7 (Generalization Performance of Adam) Let

W∗ = argmin
W∈{W(1),...,W(T)}

‖∇L(W)‖1.

Then for all training data, we have

1

n

n∑
i=1

1
[
Fyi(W

∗,xi) ≤ F−yi(W∗,xi)
]

= 0.

Moreover, in terms of the test data (x, y) ∼ D, we have

P(x,y)∼D
[
Fy(W

∗,x) ≤ F−y(W∗,x)
]
≥ 1

2
− o(1).

Proof By Lemma C.6, we know that the algorithm will converge to a point with very small gradient
(up to O(ηd) in `1 norm). Then in terms of a noise vector ξi, we have∑

k∈Bi

∣∣∇wyi,r
L(W∗)[k]

∣∣ ≤ O(ηd). (C.24)

Note that

n∇wyi,r
L(W∗)[k] = `∗yi,iσ

′(〈w∗yi,r, ξi〉)ξi[k]− nλw∗yi,r[k],

where `∗yi,i = 1− logityi(F
∗,xi). Then by triangle inequality and (C.24), we have for any r ∈ [m],∣∣∣∣ ∑

k∈Bi

|`∗yi,i|σ
′(〈w∗yi,r, ξi〉)|ξi[k]| − nλ

∑
k∈Bi

|w∗yi,r[k]|
∣∣∣∣ ≤ n∑

k∈Bi

∣∣∇wyi,r
L(W∗)[k]

∣∣ ≤ O(nηd).

Then by Lemma C.5, let r∗ = arg maxr∈[m]〈w∗yi,r, ξi〉, we have 〈wyi,r∗ , ξi〉 = Θ̃(1) and
∑

k∈Bi |w
∗
yi,r∗ [k]|·

|ξi[k]| = Θ̃(1). Note that |ξi[k]| = Õ(σp), we have
∑

k∈Bi |w
∗
yi,r∗ [k]| ≥ Θ̃(1/σp). Then according

to the inequality above, it holds that

|`∗yi,i| · Θ̃(sσp) ≥ Θ̃

(
nλ
∑
k∈Bi

|w∗yi,r[k]| − nηd
)
≥ Θ̃

(
nλ

σp

)
,

where the second inequality is due to our choice of η. This further implies that |`∗yi,i| = |`
∗
−yi,i| =

Θ̃
(
nλ
sσ2
p

)
by combining the above results with (C.16). Then let us move to the gradient with respect to

the first coordinate. In particular, since ‖∇L(W∗)‖1 ≤ O(ηd), we have

|n∇wj,rL(W∗)[1]| =
∣∣∣∣ n∑
i=1

yi`
∗
j,iσ
′(〈w∗j,r, yiv〉)− α

n∑
i=1

yi`
∗
j,iσ
′(〈w∗j,r, ξi〉)− nλw∗j,r[1]

∣∣∣∣
≤ O(nηd). (C.25)

Then note that sgn(yi`
∗
j,i) = sgn(j), it is clear that w∗j,r∗ [1] · j ≤ 0 since otherwise

|n∇wj,r∗L(W∗)[1]| ≥
∣∣∣∣α n∑

i=1

yi`
∗
j,i

[
σ′(〈w∗j,r∗ , ξi〉)− σ′(〈w∗j,r∗ , yiv〉)

]∣∣∣∣ ≥ Θ̃

(
αn2λ

sσ2
p

)
≥ Ω̃(nηd),

30

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

which contradicts (C.25). Therefore, using the fact that w∗j,r∗ [1] · j ≤ 0, we have

|n∇wj,r∗L(W∗)[1]| =
∣∣∣∣α n∑

i:yi=j

yi`
∗
j,iσ
′(〈w∗j,r∗ , ξi〉)−

n∑
i:yi=−j

yi`
∗
j,iσ
′(|w∗j,r∗ [1]|)

]
− nλ|w∗j,r∗ [1]|

∣∣∣∣.
Then applying (C.25)and using the fact that |`∗yi,i| = |`

∗
−yi,i| = Θ̃

(
nλ
sσ2
p

)
for all i ∈ [n], it is clear that

|w∗j,r∗ [1]| ≥ Θ̃

(
α1/(q−1) ∧ nα

sσ2
p

)
≥ Θ̃

(
nα

sσ2
p

)
,

where the second equality is due to our choice of σp and α. Then combining with Lemma C.5 and
the fact that w∗j,r∗ [1] · j < 0, we have

w∗j,r∗ [1] · j ≤ −Θ̃

(
nα

sσ2
p

)
.

Now we are ready to evaluate the training error and test error. In terms of training error, it is clear
that by Lemma C.5, we have 〈w∗yi,r∗ , ξi〉 ≥ Θ̃(1), 〈w∗yi,r, ξi〉 ≥ −o(1), and |〈w∗yi,r,v〉| = o(1),
|〈w∗−yi,r, ξi〉| = o(1). Then we have for any training data (xi, yi),

Fyi(W
∗,xi) =

m∑
r=1

[
σ(〈w∗yi,r, yiv〉) + σ(〈w∗yi,r, ξi〉)

]
= Θ̃(1),

F−yi(W
∗,xi) =

m∑
r=1

[
σ(〈w∗−yi,r,−yiv〉) + σ(〈w∗−yi,r, ξi〉)

]
= o(1),

which directly implies that the NN model W∗ can correctly classify all training data and thus achieve
zero training error.

In terms of the test data (x, y) where x = [yv, ξ], which is generated according to Definition
2.1. Note that for each neural, its weight w∗j,r can be decomposed into two parts: the first coordinate
and the rest d − 1 coordinates. As previously discussed, for any j ∈ [2] and r = r∗, we have
sgn(j) ·w∗j,r[1] ≤ −Θ̃

(
nα/(sσ2

p)
)

and sgn(j) ·w∗j,r[1] ≤ Θ̃(λ−1η) for r 6= r∗. Therefore, using
the fact that Θ̃

(
nα/(sσ2

p)
)

= ω(λ−1η) and Lemma C.5, given the test data (x, y), we have

Fy(W
∗,x) =

m∑
r=1

[
σ(〈w∗y,r, yv〉) + σ(〈w∗y,r, ξ〉)

]
≤

m∑
r=1

Θ̃

([
α · nα

sσ2
p

+ ζy,r

]q
+

)
,

F−y(W
∗,x)) =

m∑
r=1

[
σ(〈w∗−y,r, yv〉) + σ(〈w∗−y,r, ξ〉)

]
≥ Θ̃

[
|w∗−y,r∗ [1]|q + [ζ−y,r∗]

q
+

]
≥ Θ

([
nα

sσ2
p

]q
+

+ [ζ−y,r∗]
q
+

)
,

31

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

where the random variables ζy,r and ζy,r are symmetric and independent of v. Besides, note that
α = o(1), it can be clearly shown that α · nα/(sσ2

p) � nα/(sσ2
p). Therefore, if the random

noise ζy,r and ζ−y,r are dominated by the feature noise term 〈w∗−y,r∗ , yv〉, we can directly get that
Fy(W

∗,x) ≤ F−y(W∗,x)) (recall that m = Θ̃(1)), which implies that the model has been biased
by the feature noise and the true feature vector in the test dataset will not give any “positive” effect
to the classification. Also note that ζy and ζ−y are also independent of v, which implies that if the
random noise dominates the feature noise term, the model W∗ will give nearly 0.5 error on test data.
In sum, we can conclude that with probability at least 1/2 it holds that Fy(W∗,x) ≤ F−y(W∗,x),
which implies that the output of Adam achieves 1/2 test error.

C.3. Proof for Gradient Descent

Recall the feature learning and noise memorization of gradient descent can be formulated by

〈w(t+1)
j,r , j · v〉 = (1− ηλ) · 〈w(t)

j,r, j · v〉

+
η

n
· j ·

(n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, yiv〉)− α
n∑
i=1

yi`
(t)
j,iσ
′(〈w(t)

j,r, ξi〉)
)
,

〈w(t+1)
yi,r , ξi〉 = (1− ηλ) · 〈w(t)

yi,r, ξi〉+
η

n
·
∑
k∈Bi

`
(t)
yi,i
σ′(〈w(t)

yi,r, ξi〉) · ξi[k]2

+
ηα

n
·
(
α

n∑
s=1

`(t)yi,sσ
′(〈w(t)

yi,r, ξs〉)−
n∑
s=1

ys`
(t)
yi,sσ

′(〈w(t)
yi,r, ysv〉)

)
. (C.26)

Then similar to the analysis for Adam, we decompose the gradient descent process into multiple
stages and characterize the algorithmic behaviors separately. The following lemma characterizes the
first training stage, i.e., the stage where all outputs Fj(W(t),xi) remain in the constant level for all j
and i.

Lemma C.8 [Stage I of GD: part I] Suppose the training data is generated according to Definition
2.1, assume λ = o(σq−2

0 σp/n). Let Λ
(t)
j = maxr∈[m]〈w

(t+1)
j,r , j · v〉, Γ

(t)
j,i = maxr∈[m]〈w

(t)
j,r, ξi〉,

and Γ
(t)
j = maxi:yi=j Γ

(t)
j,i . Then let Tj be the iteration number that Λ

(t)
j reaches Θ(1/m), we have

Tj = Θ̃(σ2−q
0 /η) for all j ∈ {−1, 1}.

Moreover, let T0 = maxj{Tj}, then for all t ≤ T0 it holds that Γ
(t)
j = Õ(σ0) for all j ∈ {−1, 1}.

We first provide the following useful lemma.

Lemma C.9 Let {xt, yt}t=1,... be two positive sequences that satisfy

xt+1 ≥ xt + η ·Axq−1
t ,

yt+1 ≤ yt + η ·Byq−1
t ,

for some A = Θ(1) and B = o(1). Then for any q ≥ 3 and suppose y0 = O(x0) and η < O(x0),
we have for every C ∈ [x0, O(1)], let Tx be the first iteration such that xt ≥ C, then we have
Txη = Θ(x2−q

0) and

yTx ≤ O(x0).

32

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

Proof By Claim C.20 in Allen-Zhu and Li [2], we have Txη = Θ(x2−q
0). Then we will show

yt ≤ 2x0

for all t ≤ Tx. In particular, let Txη = C ′x2−q
0 for some absolute constantC ′ and assumeC ′B2q−1 <

1 (this is true since B = o(1)), we first made the following induction hypothesis on yt for all t ≤ Ta,

yt ≤ y0 + tηB′(2x0)q−1.

Note that for any t ≤ T0, this hypothesis clearly implies that

yt ≤ y0 + TxηB
′2q−1xq−1

0 ≤ x0 + CB2q−1x2−q
0 · xq−1

0 ≤ 2x0.

Then we are able to verify the hypothesis at time t+ 1 based on the recursive upper bound of yt, i.e.,

yt+1 ≤ yt + η ·Byq−1
t

≤ y0 + tηB(2x0)q−1 + η ·Byq−1
t

≤ y0 + (t+ 1)ηB(2x0)q−1.

Therefore, we can conclude that yt ≤ 2x0 for all t ≤ Tx. This completes the proof.

Now we are ready to complete the proof of Lemma C.8.
Proof [Proof of Lemma C.8] Note that at the initialization, we have |〈w(0)

j,r ,v〉| = Θ̃(σ0) and

|〈w(0)
j,r , ξi〉| = Θ̃(s1/2σpσ0). Then it can be shown that

Fj(W
(0),xi) =

m∑
r=1

[
σ(〈w(0)

j,r , yiv〉) + σ(〈w(0)
j,r , ξi〉)

]
= o(1)

for all j ∈ {−1, 1}. Then we have

|`(0)
j,i | =

eFj(W
(0),xi)∑

j e
Fj(W(0),xi)

= Θ(1).

Then we will consider the training period where |`(t)j,i | for all j, i, and t. Besides, note that

sgn(yi`
(t)
j,i) = j. Therefore, let r∗ = arg maxr〈w(t−1)

j,r , j · v〉, (C.26) implies that

Λ
(t)
j ≥ 〈w

(t−1)
j,r∗ , j · v〉

= (1− ηλ) · 〈w(t−1)
j,r∗ , j · v〉+

η

n
·
(n∑
i=1

|`(t−1)
j,i |σ′(〈w(t−1)

j,r∗ , yiv〉)− α
n∑
i=1

|`(t−1)
j,i |σ′(〈w(t−1)

j,r∗ , ξi〉)
)

≥ (1− ηλ) · 〈w(t−1)
j,r∗ , j · v〉+ Θ(η) ·

[
σ′(〈w(t−1)

j,r∗ , j · v〉)− ασ′(Γ(t−1)
j)

]
≥ (1− ηλ)Λ

(t−1)
j + η ·Θ

(
(Λ

(t−1)
j)q−1

)
− η ·Θ

(
α(Γ

(t−1)
j)q−1

)
. (C.27)

33

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

Similarly, let r∗ = arg maxr〈w(t)
yi,r, ξi〉, we also have the following according to (C.26)

Γ
(t)
yi,i

= 〈w(t)
yi,r∗

, ξi〉 ≤ (1− ηλ)〈w(t−1)
yi,r∗

, ξi〉+ Θ̃

(
ηsσ2

p

n

)
· σ′(〈w(t−1)

yi,r∗
, ξi〉)+

Θ

(
ηα2

n

)
·
n∑
s=1

σ′(〈w(t−1)
yi,r∗

, ξs〉)

≤ Γ
(t−1)
yi,i

+ Θ̃

(
ηsσ2

p

(
Γ

(t−1)
yi,i

)q−1

n

)
+ Θ

(
ηα2

n
·
n∑
s=1

(
Γ(t−1)
yi,s

)q−1
)
.

Then by our definition of Γ
(t)
j = maxi∈[n] Γ

(t)
j,i , we further get the following for all j ∈ {−1, 1},

Γ
(t)
j ≤ Γ

(t−1)
j + Θ̃

(
ηsσ2

p + nηα2

n
·
(
Γ

(t−1)
j

)q−1
)

= Γ
(t−1)
j + Θ

(
ηsσ2

p

n
·
(
Γ

(t−1)
j

)q−1
)
, (C.28)

where the last equation is by our assumption that α = Õ(sσ2
p/n).

Then we will prove the main argument for general t, which is based on the following two
induction hypothesis

Λ
(t)
j ≥ Λ

(t−1)
j + η ·Θ

(
(Λ

(t−1)
j)q−1

)
, (C.29)

Γ
(t)
j ≤ Γ

(t−1)
j + Θ

(
ηsσ2

p

n
·
(
Γ

(t−1)
j

)q−1
)
. (C.30)

Note that when t = 0, we have already verified this two hypothesis in (C.27) and (C.28), where we
use the fact that λ = o(σq−2

0 σp/n) ≤
(
Λ

(0)
j

)q−2 and α = o(1). Then at time t, based on Hypothesis
(C.29) and (C.30) for all τ ≤ t, we have

Γ
(τ)
j ≤ O(Λ

(τ)
j),

as sσ2/n = o(1) and Λ
(t)
j increases faster than Γ

(t)
j . Besides, we can also show that λΓ

(t)
j ≤(

Γ
(t)
j

)q−1, which has been verified at time t = 0, since Γ
(t)
j keeps increasing. Therefore, (C.27)

implies

Λ
(t+1)
j ≥ (1− ηλ)Λ

(t)
j + η ·Θ

(
(Λ

(t)
j)q−1

)
− η ·Θ

(
α(Γ

(t)
j)q−1

)
≥ Λ

(t)
j + η ·Θ

(
(Λ

(t)
j)q−1

)
,

which verifies Hypothesis (C.29) at t+ 1. Additionally, (C.28) implies

Γ
(t+1)
j ≤ Γ

(t)
j + Θ

(
ηsσ2

p

n
·
(
Γ

(t)
j

)q−1
)
,

which verifies Hypothesis (C.30) at t + 1. Then by Lemma C.9, we have that Λ
(t)
j = Õ(1) for

all t ≤ T0 = Θ̃
(
(Λ

(0)
j)2−q/η

)
= Θ̃(σ2−q

0 /η). Moreover, Lemma C.9 also shows that Γ
(t+1)
j =

O(Λ
(0)
j) = Õ(σ0). This completes the proof.

34

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

Lemma C.10 (Off-diagonal correlations) For any data (xi, yi) and for any t ≤ T−yi , it holds
that 〈w(t)

−yi,r, ξi〉 ≤ Θ̃(α).

Proof By the update form of GD, we have for any k ∈ Bi,

w
(t+1)
−yi,r [k] · ξi[k] = (1− ηλ) ·w(t)

−yi,r[k] · ξi[k] +
η

n
·
∑
k∈Bi

`
(t)
−yi,iσ

′(〈w(t)
−yi,r, ξi〉) · ξi[k]2,

which keeps decreasing. Therefore, for all r and i, we have

〈w(t)
−yi,r, ξi〉 ≤ |w

(t)
−yi,r[1] · ξi[1]|+

∣∣∣∣ ∑
k∈Bi

w
(0)
−yi,r[k]ξi[k]

∣∣∣∣
≤ Θ̃(α) + Θ̃(σ0σps

1/2)

= Θ̃(α),

where the second inequality follows from the fact that |〈w(t)
j,r,v〉| ≤ Θ̃(1) for all t ≤ Tj . This

completes the proof.

Note that for different j, the iteration numbers when Γ
(t)
j reaches Θ̃(1/m) are different. Without

loss of generality, we can assume T1 ≤ T−1. Lemma C.8 has provided a clear understanding about
how Γ

(t)
j varies within the iteration range [0, Tj]. However, it remains unclear how Γ

(t)
1 varies within

the iteration range [T1, T−1] since in this period we no longer have |`(t)j,i | = Θ(1) and the effect
of gradient descent on the feature learning (i.e., increase of 〈wj,r, j · v〉) becomes weaker. In the
following lemma we give a characterization of Γ

(t)
1 for every t ∈ [T1, T−1].

Lemma C.11 (Stage I of GD: part II) Without loss of generality assuming T1 < T−1. Then it
holds that Λ

(t)
1 = Θ̃(1) for all t ∈ [T1, T−1].

Proof Recall from (C.27) that we have the following general lower bound for the increase of Λ
(t)
j

Λ
(t+1)
j ≥ (1− ηλ) · 〈w(t)

j,r∗ , j · v〉+
η

n
·
(n∑
i=1

|`(t)j,i |σ
′(〈w(t)

j,r∗ , yiv〉)− α
n∑
i=1

|`(t)j,i |σ
′(〈w(t)

j,r∗ , ξi〉)
)

≥ (1− ηλ)Λ
(t)
j + Θ

(
η

n

)
·
∑
i:yi=j

|`(t)j,i | ·
(
Λ

(t)
j

)q−1 −Θ(αη) ·
(
Γ

(t)
j ∨ Θ̃(α)

)q−1
, (C.31)

where the last inequality is by Lemma C.10. Note that by Lemma C.8, we have Γ
(t)
j = Õ(σ0) for all

t ≤ T−1 and . Then the above inequality leads to

Λ
(t+1)
j ≥ (1− ηλ)Λ

(t)
j + Θ

(
η

n

)
·
∑
i:yi=j

|`(t)j,i | ·
(
Λ

(t)
j

)q−1 −Θ(αqη), (C.32)

where we use the fact that α = ω(σ0). The the remaining proof consists of two parts: (1) proving
Λ

(t)
j ≥ Θ(1/m) = Θ̃(1) and (2) Λ

(t)
j ≤ Θ(log(1/λ)).

35

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

Without loss of generality we consider j = 1. Regarding the first part, we first note that Lemma
C.8 implies that Λ

(T1)
1 ≥ Θ(1/m). Then we consider the case when Λ

(t)
1 ≤ Θ(log(1/α)/m), it

holds that for all yi = 1,

`
(t)
1,i =

eF−1(W(t),xi)∑
j∈{−1,1} e

Fj(W(t),xi)

= exp

(
Θ

(m∑
r=1

[
σ(〈w(t)

−1,r, yiv〉) + σ(〈w(t)
−1,r, ξi〉)

]
−

m∑
r=1

[
σ(〈w(t)

1,r, yiv〉) + σ(〈w(t)
1,r, ξi〉)

]))
≥ exp

(
−Θ(mΛ

(t)
1)
)

≥ exp(−Θ(log(1/α)))

= Θ̃(α).

Then (C.32) implies that if Γ
(t)
1 ≤ Θ(log(1/σ0)/m), we have

Λ
(t+1)
1 ≥ (1− ηλ)Λ

(t)
1 + Θ(ηα) · Λ(t)

1 −Θ(αqη) ≥ Λ
(t)
1 + Θ(ηα) · Λ(t)

1 ≥ Λ
(t)
1 ,

where the second inequality is due to λ = o(α). This implies that Λ
(t)
1 will keep increases in this

case so that it is impossible that Λ
(t)
1 ≤ Θ(1/m), which completes the proof of the first part.

For the second part, (C.26) implies that

Λ
(t+1)
1 ≤ (1− ηλ)Λ

(t)
1 + Θ

(
η

n

)
·
∑
i:yi=1

|`(t)1,i| ·
(
Λ

(t)
1

)q−1
. (C.33)

Consider the case when Γ
(t)
1 ≥ Θ(log(d)), then for all yi = 1,

`
(t)
1,i =

eF−1(W(t),xi)∑
j∈{−1,1} e

Fj(W(t),xi)

= exp

(
Θ

(m∑
r=1

[
σ(〈w(t)

−1,r, yiv〉) + σ(〈w(t)
−1,r, ξi〉)

]
−

m∑
r=1

[
σ(〈w(t)

1,r, yiv〉) + σ(〈w(t)
1,r, ξi〉)

]))
≤ exp

(
−Θ(Λ

(t)
1)
)

≤ exp(−Θ(log(1/λ))

= Θ̃(poly(λ)).

Then (C.33) further implies that

Λ
(t+1)
1 ≤ (1− ηλ)Λ

(t)
1 + Θ

(
η

poly(d)

)
·
(
Λ

(t)
1

)q−1

≤ Λ
(t)
1 −Θ

(
ηΛ

(t)
1

)
·
(
λ− poly(λ) ·

(
Λ

(t)
1

)q−2
)
≤ Λ

(t)
1 ,

which implies that Λ
(t)
1 will decrease. As a result, we can conclude that λ(t)

1 will not exceed
Θ(log(1/λ)), this completes the proof of the second part.

36

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

Lemma C.12 (Stage II of GD: regularizing the model) If η ≤ O(σ0), it holds that Λ
(t)
j = Θ̃(1)

and Γ
(t)
j = Õ(σ0) for all t ∈ [T−1, T].

Proof We will prove the desired argument based on the following three induction hypothesis:

Λ
(t+1)
j ≥ (1− λη)Λ

(t)
j + Θ̃

(
η

n

) ∑
i:yi=j

|`(t)j,i | − Θ̃(αqη) · 1

n

n∑
i=1

|`(t)j,r|, (C.34)

Γ
(t)
j = Õ(σ0), (C.35)

Λ
(t)
j = Θ̃(1). (C.36)

In terms of Hypothesis (C.34), we can apply Hypothesis (C.35) and (C.36) to (C.31) and get that

Λ
(t+1)
j ≥ (1− ηλ)Λ

(t)
j + Θ

(
η

n

)
·
∑
i:yi=j

|`(t)j,i | ·
(
Λ

(t)
j

)q−1 −Θ(αη) ·
(
Γ

(t)
j ∨ Θ̃(α)

)q−1 · 1

n

n∑
i=1

|`(t)j,r|

≥ (1− λη)Λ
(t)
j + Θ̃

(
η

n

) ∑
i:yi=j

|`(t)j,i | − Θ̃(αqη) · 1

n

n∑
i=1

|`(t)j,r|.

where the last inequality we use the fact that α ≥ σ0. This verifies Hypothesis (C.34).
In order to verify Hypothesis (C.35), we have the following according to (C.34),

∑
j∈{−1,1}

Λ
(t+1)
j ≥ (1− λη)

∑
j∈{−1,1}

Λ
(t)
j + Θ̃

(
η

n

) n∑
i=1

|`(t)j,i | − Θ̃(αqη) · 1

n

n∑
i=1

|`(t)j,r|

= (1− λη)
∑

j∈{−1,1}

Λ
(t)
j + Θ̃

(
η

n

) n∑
i=1

|`(t)j,i |,

where the last equality holds since α = o(1). Recursively applying the above inequality from T−1 to
t gives

∑
j∈{−1,1}

Λ
(t)
j ≥ (1− λη)t−T−1

∑
j∈{−1,1}

Λ
(T−1)
j + Θ̃

(
η

n

)
·
t−T−1−1∑
τ=0

(1− λη)τ
n∑
i=1

|`(t−1−τ)
j,i |.

Then by Hypothesis (C.36) we have

Θ̃

(
η

n

)
·
t−T−1−1∑
τ=0

(1− λη)τ
n∑
i=1

|`(t−1−τ)
j,i | ≤ Θ̃(1).

37

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

Now let us look at the rate of memorizing noises. By (C.26) and use the fact that α2 ≤ O(sσ2
p/n),

we have

Γ
(t)
j ≤ (1− ηλ)Γ

(t−1)
j + Θ̃

(
ηsσ2

p

n

)
·
∑
i=1

|`j,i| ·
(
Γ

(t−1)
j

)q−1

≤ (1− ηλ)Γ
(t−1)
j + Θ̃

(
ηsσ2

pσ
q−1
0

n

)
·
∑
i=1

|`j,i|

≤ Γ
(T−1)
j + Θ̃

(
ηsσ2

pσ
q−1
0

n

)
·
t−T−1−1∑
τ=0

(1− λη)τ
n∑
i=1

|`(t−1−τ)
j,i |

≤ Θ̃
(
σ0 + sσ2

pσ
q−1
0

)
≤ Θ̃(σ0),

which verifies Hypothesis (C.35).
Given Hypothesis (C.34) and (C.35), the verification of (C.36) is straightforward by applying

the same proof technique of Lemma C.11 and thus we omit it here.

Lemma C.13 (Convergence Guarantee of GD) If the step size satisfies, then for any t ≥ T−1 it
holds that

L(W(t+1))− L(W(t)) ≤ −η
2
‖∇L(W(t))‖2F .

Proof The proof of this lemma is similar to that of Lemma C.6, which is basically relying the
smoothness property of the loss function L(W) given certain constraints on the inner products
〈wj,r,v〉 and 〈wj,r, ξi〉.

Let ∆Fj,i = Fj(W
(t+1),xi)− Fj(W(t),xi), we can get the following Taylor expansion on the

loss function Li(W(t+1)),

Li(W
(t+1))− Li(W(t)) ≤

∑
j

∂Li(W
(t))

∂Fj(W(t),xi)
·∆Fj,i +

∑
j

(∆Fj,i)
2. (C.37)

In particular, by Lemma C.12, we know that 〈w(t)
j,r, yiv〉 ≤ Θ̃(1) and 〈w(t)

j,r, ξi〉 ≤ Θ̃(σ0) ≤
Θ̃(1). Then similar to (C.19), we can apply first-order Taylor expansion to Fj(W(t+1),xi), which
requires to characterize the second-order error of the Taylor expansions on σ(〈w(t+1)

j,r , yiv〉) and

σ(〈w(t+1)
j,r , ξi〉),∣∣σ(〈w(t+1)

j,r , yiv〉)− σ(〈w(t)
j,r, yiv〉)−

〈
∇wj,rσ(〈w(t)

j,r, yiv〉),w
(t+1)
j,r −w

(t)
j,r〉
∣∣

≤ Θ̃
(
‖w(t+1)

j,r −w
(t)
j,r‖

2
2

)
= Θ̃(η2‖∇wj,rL(W(t))‖22),∣∣σ(〈w(t+1)

j,r , ξi〉)− σ(〈w(t)
j,r, ξi〉)−

〈
∇wj,rσ(〈w(t)

j,r, ξi〉),w
(t+1)
j,r −w

(t)
j,r〉
∣∣

≤ Θ̃
(
‖w(t+1)

j,r −w
(t)
j,r‖

2
2

)
= Θ̃(η2‖∇wj,rL(W(t))‖22). (C.38)

38

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

Then combining the above bounds for every r ∈ [m], we can get the following bound for ∆Fj,i∣∣∆Fj,i − 〈∇WFj(W
(t),xi),W

(t+1) −W(t)〉
∣∣ ≤ Θ̃

(
η2
∑
r∈[m]

‖∇wj,rL(W(t))‖22
)

= Θ̃
(
η2‖∇L(W(t))‖2F

)
. (C.39)

Moreover, since 〈w(t)
j,r, yiv〉 ≤ Θ̃(1) and 〈w(t)

j,r, ξi〉 ≤ Θ̃(1) and σ(·) is convex, then we have

|σ(〈w(t+1)
j,r , yiv〉)− σ(〈w(t)

j,r, yiv〉)| ≤ max
{
|σ′(〈w(t+1)

j,r , yiv〉)|, |σ′(〈w(t)
j,r, yiv〉)|

}
· |〈v,w(t+1)

j,r −w
(t)
j,r〉|

≤ Θ̃
(
‖w(t+1)

j,r −w
(t)
j,r‖2

)
.

Similarly we also have

|σ(〈w(t+1)
j,r , ξi〉)− σ(〈w(t)

j,r, ξi〉)| ≤ Θ̃
(
‖w(t+1)

j,r −w
(t)
j,r‖2

)
.

Combining the above inequalities for every r ∈ [m], we have

∣∣∆Fj,i∣∣2 ≤ Θ̃

([∑
r∈[m]

‖w(t+1)
j,r −w

(t)
j,r‖2

]2)
≤ Θ̃

(
mη2‖∇L(W(t))‖2F

)
= Θ̃

(
η2‖∇L(W(t))‖2F

)
.

(C.40)

Now we can plug (C.39) and (C.40) into (C.37), which gives

Li(W
(t+1))− Li(W(t)) ≤

∑
j

∂Li(W
(t))

∂Fj(W(t),xi)
·∆Fj,i +

∑
j

(∆Fj,i)
2

= 〈∇Li(W(t)),W(t+1) −W(t)〉+ Θ̃(η2‖∇L(W(t))‖2F). (C.41)

Taking sum over i ∈ [n] and applying the smoothness property of the regularization function
λ‖W‖2F , we can get

L(W(t+1))− L(W(t)) =
1

n

n∑
i=1

[
Li(W

(t+1))− Li(W(t))
]

+ λ
(
‖W(t+1)‖2F − ‖W(t)‖2F

)
≤ 〈∇L(W(t)),W(t+1) −W(t)〉+ Θ̃(η2‖∇L(W(t))‖2F)

= −
(
η − Θ̃(η2)

)
· ‖∇L(W(t))‖2F

≤ −η
2
‖∇L(W(t))‖2F ,

where the last inequality is due to our choice of step size η = o(1) so that gives η − Θ̃(η2) ≥ η/2.
This completes the proof.

Lemma C.14 (Generalization Performance of GD) Let

W∗ = arg min
{W(1),...,W(T)}

‖∇L(W(t))‖F .

39

UNDERSTANDING THE GENERALIZATION OF ADAM IN LEARNING NEURAL NETWORKS

Then for all training data, we have

1

n

n∑
i=1

1
[
Fyi(W

∗,xi) ≤ F−yi(W∗,xi)
]

= 0.

Moreover, in terms of the test data (x, y) ∼ D, we have

P(x,y)∼D
[
Fy(W

∗,x) ≤ F−y(W∗,x)
]

= o(1).

Proof By Lemma C.12 it is clear that all training data can be correctly classified so that the training
error is zero. Besides, for test data (x, y) with x = [yv>, ξ>]>, it is clear that with high probability
〈w∗y,r, yv〉 = Θ̃(1) and [〈w∗y,r, ξ〉]+ ≤ Õ(σ0), then

Fy(W
∗,x) =

m∑
r=1

[
σ(〈w∗y,r, yv〉) + σ(〈w∗y,r, ξ〉)

]
≥ Ω̃(1).

If j = −y, we have 〈w∗−y,r, yv〉 ≤ 0 and [w∗−y,r, ξ〉]+ ≤ Õ(α), which leads to

F−y(W
∗,x) =

m∑
r=1

[
σ(〈w∗−y,r, yv〉) + σ(〈w∗−y,r, ξ〉)

]
≤ Õ(mαq) = Õ(αq) = o(1).

This implies that GD can also achieve nearly zero test error. This completes the proof.

Appendix D. Proof of Theorem 3.2: Convex Case

Theorem D.1 (Convex setting, restated) Assume the model is overparameterized. Then for any
convex and smooth training objective with positive regularization parameter λ, suppose we run Adam
and gradient descent for T = poly(n)

η iterations, then with probability at least 1− n−1, the obtained
parameters W∗

Adam and W∗
GD satisfy that ‖∇L(W∗

Adam)‖1 ≤ 1
Tη and ‖∇L(W∗

Adam)‖22 ≤ 1
Tη

respectively. Moreover, it holds that:

• Training errors are both zero:

1

n

n∑
i=1

1
[
sgn
(
F (W∗

Adam,xi)
)
6= yi

]
=

1

n

n∑
i=1

1
[
sgn
(
F (W∗

GD,xi)
)
6= yi

]
= 0.

• Test errors are nearly the same:

P(x,y)∼D
[
sgn
(
F (W∗

Adam,xi)
)
6= y
]

= P(x,y)∼D
[
sgn
(
F (W∗

GD,x)
)
6= y
]
± o(1).

Proof The proof is straightforward by applying the same proof technique used for Lemmas C.6
and C.13, where we only need to use the smoothness property of the loss function. Then it is clear
that both Adam and GD can provably find a point with sufficiently small gradient. Note that the
training objective becomes strongly convex when adding weight decay regularization, implying that
the entire training objective only has one stationary point, i.e., point with sufficiently small gradient.
This further imply that the points found by Adam and GD must be exactly same and thus GD and
Adam must have nearly same training and test performance.

Besides, note that the problem is also sufficiently overparameterized, thus with proper regular-
ization (feasibly small), we can still guarantee zero training errors.

40

	Introduction
	Problem Setup and Preliminaries
	Main Results
	Conclusion and Future Work
	Proof Outline of the Main Results
	Proof sketch for Adam
	Proof sketch for gradient descent

	Experiments
	Proof of Theorem 3.1: Nonconvex Case
	Preliminaries
	Proof for Adam
	Proof for Gradient Descent

	Proof of Theorem 3.2: Convex Case

