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Abstract
Second-order optimizers hold the potential to provide faster and more stable optimization than
first-order methods. Due to the enormous size of the curvature matrix, it is widely believed that
second-order methods are computationally intractable. Therefore, several approximate algorithms
have been proposed. By far the most prominent and successful ones are Kronecker-Factored, block-
diagonal approximations of the curvature matrix and they are considerably more data-efficient than
standard first-order methods. However, so far it had not been investigated how accurate these ap-
proximations of the curvature matrix are. Our first contribution is to develop a tool to close this
gap, namely a method to efficiently evaluate exact second-order updates based on a (potentially
large) mini-batch estimate of the curvature matrix. We then combine this tool with a careful set
of experiments to demonstrate that Kronecker-factored approximations of the curvature are rather
imprecise, but nevertheless and very surprisingly offer faster optimization than exact second-order
updates. Finally, to resolve this apparent contradiction, we explain how the Kronecker-factorisation
induces similarity to a principled first-order method that performs gradient descent on neuron out-
puts rather than individual weights. We also show that this similarity is responsible for the suc-
cess of Kronecker-factored methods. All in all, our contribution offers a valuable tool to anal-
yse second-order methods, it provides a fundamentally different and improved understanding of
Kronecker-factored methods and leads to more efficient optimization algorithms, both in terms of
computational cost and progress per parameter update.

We refer the reader to an updated version of this paper ”Gradient Descent on Neurons
and its Link to Approximate Second-Order Optimisation” on arxiv. Code and link to the paper
will be availabe on github https://github.com/freedbee/Neuron_Descent_and_
KFAC

1. Introduction

While first-order optimization algorithms are the de facto standard for training neural networks,
second-order methods hold the promise of allowing significant optimization speed-ups. However,
they require estimating and inverting the curvature matrix, whose size scales as the square of the
number of parameters. The well known natural gradient method [2] is often seen as a second-
order optimization method, whose curvature matrix is given by the Fisher Information. To make its
updates computable efficiently, [21] and [14] have proposed a Kronecker-factored, block-diagonal
approximation of the Fisher Information and demonstrated strong empirical performance of the
resulting algorithm [4, 14, 21].

Here, we first show that, when using a subsampled (or, in other words, mini-batch) estimate
of the Fisher Information, it is not necessary to make approximations to compute natural gradients
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exactly. When testing the resulting natural gradient method, we find that it performs significantly
worse than KFAC. Very surprisingly, this observation also persists after controlling for the fact
that KFAC uses an approximation of the full, rather than subsampled Fisher and after controlling
for the block-diagonal structure of KFAC. This suggests that KFAC does not owe its optimization
performance to approximating the curvature. Inspired by these insights and in order to understand
KFAC’s surprising effectiveness, we introduce a new first order optimizer. On top of its explantory
power, this optimizer also has the advantage of outperforming KFAC in terms of computational cost
and progress per parameter update date.

The paper is structured as follows: In a theoretical part we introduce our new-first order opti-
mizer and describe how KFAC relates to it. In the experimental part, we first analyse why KFAC
performs so well and then test the performance of our new optimizer. For related work and addi-
tional experiments we refer the reader to the appendix. For computing natural gradients efficiently,
our insights compared to prior work [28] are mostly technical and we therefore postpone details to
the appendix.

2. A New First Order Method (FOOF)

We introduce a new, simple first-order optimizer, called ”Fast First-Order Optimizer” or ”FOOF”1.
Despite its simplicity and effectiveness, we are not aware of a description of it in prior literature.

Let us consider one layer of a neural network with weight matrix W ∈ Rn×m. Denote the
layer’s input-activations (after the previous’ layer non-linearity) by A, which is a m × D matrix,
whereD is the number of datapoints. The network’s output activations (before the non-linearity) are
equal to WA and we denote backpropagated gradients (or errors) of the output units by E = ∂L

∂(WA) .
Typically, we compute the weights’ gradients for each datapoint and average the results. Chang-

ing perspective, we can see the i-th datapoint as a linear constraint, that prescribes to change the
weight so that the output of the layer changes in the direction of Ei. We can then jointly optimize
these constraints (rather than averaging gradients) to obtain a weight update. In other words, we
want to find an update ∆W to the parameters W, so that the layer’s output changes in the gradient
direction, i.e. (∆W)A = E. More formally, we want to optimize

min
∆W∈Rn×m

‖(∆W)A−E‖2 (1)

This is simply a linear regression problem (for each row of W), whose explicit solution is

(∆W)T =
(
AAT

)−1
AET (2)

As a regulariser, one can use ridge regression, yielding updates of the form (AAT + λI)−1AET .
See Figure 5 for empirical results of this optimizer.

This form of udpate can also be seen as preconditioning by
(
AAT ⊗ I

)−1 and we emphasise
that this preconditioning matrix contains no first-order, let along second-order, information.

2.1. Unbiased, Stochastic Version of FOOF and Amortisation of Matrix Inversion

The above algorithm implicitly uses the entire dataset to compute updates. If we want to apply it in
a stochastic setting, we need to take some care to limit the bias of our updates. In particular, using

1. F2O2 is a chemical also referred to as “FOOF”.
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one mini-batch to estimate all quantities in equation (2) gives a biased approximation of the weight
update. This is because we would approximate the product of the expectations of (non-independent)
random variables as the expectation of the product; see also discussion in Appendix E.5.

For computational efficiency, rather than computing AAT on the full batch at each iteration,
we keep an exponentially moving average of this quantity based on mini-batches and invert the
resulting approximation. For the quantity AET we used standard, unbiased mini-batch estimates.

The cost of inverting AAT can be amortised by only performing the inversion every T time
steps for some suitable T . This could lead to a stale estimate of AAT , but empirical results suggest
that this is not a problem.

2.2. Relation of FOOF to (damped) KFAC

KFAC [14, 21] is a natural gradient method, which makes two approximations to the Fisher. First,
only diagonal blocks of the Fisher, corresponding to individual layers of the network, are consid-
ered. Second, each block is approximated as a kronecker-product of two matrices. To describe
KFAC’s update rule, we use the same notation as above. In addition, we use EF analogously to
E, but gradients are computed with respect to labels sampled from the model distribution. KFAC
approximates each diagonal block of the Fisher as (AAT ) ⊗ (EFET

F ); while this approximation
is exact for a single datapoint, it requires additional assumptions for more datapoints. For com-
putational efficiency AAT as well as EFET

F are estimated as an exponentially moving average of
mini-batch estimates. Using standard kronecker-product identities and noting that the gradient with
respect to the weights is given by AET , this leads for the following update rule of KFAC:

(∆W)T =
(
AAT + λAI

)−1 (
AET

) (
EFET

F + λEI
)−1

, (3)

where λA, λE are damping terms satisfying λA · λE = λ for a hyperparmater λ and λA
λE

= Tr(AAT )
Tr(EET

Recall that the update of our first order method FOOF is given by

(∆W)T = (AAT + λI)−1
(
AET

)
(4)

where full batch AAT is also estimated as an exponentially moving average of mini-batch estimates.
All that separates KFAC from our first-order algorithm is post-multiplication by (EFET

F +λEI)−1.
If the errors of different output neurons are uncorrelated, then EFET

F will be dominated by its
diagonal. If further, the damping term is sufficiently large, (EFET

F + λEI)−1 will be close to the
identity and the KFAC update will be close to FOOF. We will see below that this proximity, which
is induced by damping, is linked to KFAC’s performance.

3. Experiments

We carry out experiments on fully connected networks on MNIST [18] and Fashion MNIST [32]
and average all results across three random seeds. A preliminary discussion of convolutional nets
will be given below. We will investigate our subsampled natural gradient method, our first order
method FOOF as well as KFAC [14, 21], SGD and Adam [17]. All methods use a constant learning
rate, and, if applicable, a constant damping term λ.2 Hyperparameters are optimized independently

2. For the natural gradient method we also experimented with automatic step size selection, adaptive damping and a
form of momentum, all as described by [21], but found no notable performance gains.
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Figure 1: KFAC outperforms exact, subsampled natural gradients. (A) Wall-clock time com-
parison between SGD and Natural Gradients. T denotes how frequently the inverse Fisher
is computed (implicitly). Implemented with PyTorch and run on a GPU (with optimized
DataLoader). (B, C) Training loss of different algorithms trained for 10 epochs with
batch size 100 on Fashion MNIST and MNIST. Perhaps surprisingly, KFAC, an approx-
imate natural gradient method, reaches a loss that is approximately 10 times lower than
the exact, subsampled natural gradients on both benchmarks.
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Figure 2: Advantage of KFAC is not due to using more data to estimate the Fisher. (A) Compar-
ison between version of KFAC and Subsampled Natural Gradients, which use the same
amount of data to estimate the Fisher. Very surprisingly, KFAC’s advantage persists.
(B) Versions of subsampled natural gradients which use more data to estimate Fisher (but
batch-size for stochastic gradients is kept fixed at 100 for fair- and clean-ness of compari-
son). Increasing sample size does not improve performance. (C) Training set is restricted
to a subset of 1000 images and full-batch gradient descent is performed. Still, KFAC
outperforms other methods. (A-C) Experiments on Fashion MNIST, results on MNIST
are analogous, see Appendix.

for each method and each experiment/ablation. As in KFAC, our subsampled Fisher is computed by
drawing one label from the model distribution for each input image, also when full-batch gradients
are computed.

Our first experiment measures the wall-clock time of our subsampled natural gradient algorithm,
see Figure 1A. The amortised version, while performing equally to the unamortised version, requires
less than double the time of vanilla SGD, showing that natural gradients can be computed efficiently
in practice. The algorithm requires inverting a matrix of dimension D×D, where D is the number
of datapoints used to estimate the Fisher.3 In practice, th cost of this inversion is dominated by other
factors even for comparatively large batch sizes of 1000.

Next, we measure performance of subsampled natural gradients, see Figure 1B,C. Surprisingly,
natural gradients are significantly outperformed by KFAC, which reaches an approximately 10 times
lower loss on both benchmarks. This is despite KFAC being an approximation of natural gradients
and our method computing exact natural gradients, except for subsampling the Fisher.

This directly leads to the hypothesis that KFAC’s advantage over subsampled natural gradients
is due to using more data for its approximation of the Fisher. To test this, we perform three experi-

3. By ‘datapoint’ we refer to a pair of input and label, where the latter is sampled from the model distribution.
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Figure 3: Advantage of KFAC is not due to block-diagonal structure. (A) A one layer network
is trained on 1000 images and full batch gradients are used. In a one layer network the
block-diagonal Fisher coincides with the full Fisher. (B) Comparison between KFAC
and layerwise (i.e. block-diagonal) subsampled Natural Gradients. (C) Same as (B), but
training set is restricted to a subset of 1000 images and full-batch gradient descent is
performed. (A-C) Experiments on Fashion MNIST, results on MNIST are analogous, see
Appendix.
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Figure 4: Damping increases KFAC’s performance as well as its similarity to our first order
method FOOF. (A) Damping increases similarity of KFAC to FOOF. (A) Performance
of KFAC for different damping strengths. Performance increases with damping. (The
learning rate was figures/ed for each damping strength individually.) (C) Performance of
FOOF for different damping strengths. (A-C) and our theoretical analysis, this suggest
that KFAC owes its performance to similarity to FOOF. (A-C) Experiments on MNIST,
results on Fashion MNIST are analogous, see Appendix.

ments. (1) We explicitly restrict KFAC to use the same amount of data as the subsampled method.
(2) We allow the subsampled method to use larger mini-batches to estimate the Fisher. (3) We re-
strict the training set to 1000 (randomly chosen) images and perform full batch gradient descent,
again with both KFAC and subsampled natural gradients using the same amount of data to estimate
the Fisher. The results are shown in Figure 2 and all lead to the same conclusion: The fact that
KFAC uses more data than subsampled natural gradients does not explain its better performance.

This begs further investigation into why KFAC outperforms natural gradients. There are two ap-
proximations that KFAC makes to the Fisher. (1) It approximates the Fisher as block-diagonal. (2) It
approximates each diagonal block as a kronecker product. To test whether (1) explains KFAC’s per-
formance, we perform two experiments. First, we train a one layer network on a subset of 1000 im-
ages with full-batch gradient descent. For a one layer network, the block-diagonal Fisher coincides
with the Fisher. So, if the block-diagonal approximation were responsible for KFAC’s performance,
then in a one layer network, natural gradients should perform as well as KFAC. However, this is
not the case as shown in Figure 3A. As an additional experiment, we consider a three layer net-
work and calculate layer-wise natural gradients, ignoring inter-layer interactions, or equivalently,
approximating the Fisher by its block-diagonal (but without approximating blocks as kronecker-
products). Layer-wise natural gradients are computable efficiently exactly like full natural gradients
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Figure 5: FOOF outperforms KFAC in terms of both per-update progress and computation
cost. (A) Wall-clock time comparison between FOOF, KFAC and SGD. T denotes how
frequently matrix inversions (see eq (2)) are performed. Implemented with PyTorch and
run on a GPU (with optimized DataLoader). Increasing T above 100 does not notably
improve runtime. (B, C) Training loss of different algorithms trained for 10 epochs with
batch size 100 on Fashion MNIST and MNIST.

with our method. We run the layer-wise natural gradient algorithm in two settings: In a mini-batch
setting, identical to the one shown in Figure 1 and in a full-batch setting, by restricting to a subset
of 1000 training images. The results are shown in Figure 3B,C and confirm the finding from our
first experiment: It is not the block-diagonal approximation that explains KFAC’s performance.

All evidence points to one unexpected conclusion: KFAC owes its performance not to approx-
imating natural gradients or layer-wise natural gradients, but – somehow – to using a kronecker-
factored approximation of the diagonal blocks. We next turn to why this is the case.

We have already seen theoretically that KFAC is very similar to our first-order algorithm FOOF,
raising the possibility that similarity to FOOF explains KFAC’s performance. As discussed the-
oretically, similarity to FOOF likely requires the damping term to be sufficiently large. Indeed,
Figure 4A confirms that increasing the damping strength increases similarity between KFAC and
FOOF. For this experiment, to obtain a meaningful comparison, we slightly modify FOOF to always
have the same damping strength λA as KFAC. Moreover, Figure 4B shows that the performance of
KFAC increases with larger damping and becomes more similar to the performance of FOOF shown
in Figure 4C. This supports our hypothesis that KFAC’s performance is due to similarity to FOOF.

For an additional piece of evidence, note that KFAC damps each individual Kronecker-factor,
rather than the entire product. This difference is pointed out in the original KFAC paper [21] along
with the observation that damping factors leads to better performance, despite being theoretically
less justified. Our view of KFAC explains this otherwise mysterious behaviour: Damping factors
increases similarity to FOOF more than damping the product.

Finally, if our hypothesis holds, then we would expect FOOF to perform similarly to, if not better
than, KFAC. This is indeed the case as shown in Figure 5B,C and further supports our hypothesis.

We also note that, on top of making more progress per parameter update, FOOF requires strictly
less computation than KFAC: It does not require an additional backward pass to estimate the Fisher;
it only requires keeping track of, inverting as well as multiplying the gradients by one matrix rather
than two (only AAT and not EET ). These savings lead to a 1.5x speed-up in wall-clock time
per-update for the amortised versions of KFAC and FOOF as shown in Figure 5A.
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4. Limitations

Here, we measured each algorithms performance by its training loss and this was also the criterion
by which hyperparameters were selected. It will also be interesting to investigate the generalisation
properties of respective algorithms and to see how they interact with regularisation techniques. This
will also require more complex benchmarks.

While we the above experiments are restricted to fully connected networks, preliminary results
on convolutional nets are in line with all our main findings: (1) Natural Gradients are efficiently
computable. (2) They are significantly outperformed by KFAC. (3) KFAC’s Kronecker Factor AAT

is identical to the premultiplier of FOOF in architectures with parameter sharing. (4) FOOF seems
to perform as well as or better than KFAC.

5. Conclusion

We have shown that subsampled natural gradients are efficiently computable in large neural net-
works. The underlying techniques can also be used to compute subsampled Generalised Gauss-
Newton updates efficiently. Moreover, they have potnetial applications in continual learning, meta
learning and for bayesian laplace posterior approximations, as discussed in Appendix A.

Through a series of careful experiments, we used our subsampled gradient method to give a
new, fundamentally different explanation of why KFAC is as effective as it is.

Finally, our analysis of KFAC lead us to develop a simple and effective first order optimizer,
which is more efficient both in terms of computational cost and progress per parameter update.
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Appendix A. Further Applications of Implicit Fisher Computations

A.1. Bayesian Laplace Posterior Approximation

Laplace Approximations are a common approximation to posterior weight distributions and various
techniques have been proposed to approximate them, see e.g. [9] for a recent overview and evalu-
ation. In this context, the Hessian is the posterior precision matrix and it is often approximated by
the Fisher or empirical Fisher, since these are positive semi-definite by construction.

Combining our insights with an additional trick allows us to sample from an exact posterior,
given a subsampled Fisher, as shown below. We adapted the trick from [11], who credits [16].

A.1.1. SAMPLING FROM THE FULL COVARIANCE LAPLACE POSTERIOR FOR SUBSAMPLED

FISHER INFORMATION

We write Λprior for the prior precision and Λ = Λprior +DF for the posterior precision, where F is
the Fisher. As for the natural gradients, we factorise F = GGT , where G is a N ×D matrix (N is
the number of parameters, D the number of datapoints). Using Woodbury’s identity, we can write
the posterior variance as

Λ−1 =
(
Λprior +DGGT

)−1
= Λ−1

prior −DΛ−1
priorG

(
I +DGTΛ−1

priorG
)−1

GTΛ−1
prior (5)

We now show how to obtain a sample from this posterior. To this end, define matrices V,U as
follows:

V =
(
D1/2Λ

−1/2
prior

)
G (6)

U = I + VTV = I +DGTΛ−1
priorG (7)

(8)

Let y ∼ N (0, IN ) and z ∼ N (0, ID), and define x

x = y −VU−1
(
VTy + z

)
(9)

10
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We will confirm by calculation that Λ
−1/2
prior x is a sample from the full covariance posterior.

x clearly has zero mean. The covariance E
[
xxT

]
can be computed as

E
[
xxT

]
= I + VU−1

(
VTV + I

)
U−TVT − 2VVT (10)

Since U is symmetric and since we chose VTV + I = U , the above simplifies to

E
[
xxT

]
= I−VU−1VT (11)

By our choice of U,V, this expression equals

E
[
xxT

]
= I−DΛ

−1/2
prior G

(
I +DGTΛ−1

priorG
)−1

GTΛ
−1/2
prior (12)

In other words, Λ
−1/2
prior x is a sample form the full covariance posterior.

A.1.2. EFFICIENT EVALUATION OF THE ABOVE PROCEDURE

The computational bottlenecks are computing GTΛ−1
priorG

T , calculating vector products with G and
GT .

Note that for a subsampled Fisher with moderate D, we can invert U explicitly.
We have already encountered all these bottlenecks in the context of natural gradients and they

can be solved efficiently in the same way, see Section E. The only modification is multiplication by
Λ−1

prior and for any diagonal prior, this can be solved easily.

A.2. Continual Learning

Closely related to bayesian posteriors is a number of continual learning algorithms []. For example,
EWC relies on the Fisher to approximate posteriors. Formally, it only requires evaluating products
of the form vTFv. Since the Fisher is large, EWC uses a diagonal approximation. From the
exposition above, it is easy to see that vTFv is easy to evaluate for a subsampled Fisher and the
memory cost is roughly equal to that used for a standard for- and backward pass through the model,
scaling as the product of the number of datapoints and the number of neurons (rather than weights).

A.3. Meta Learning / Bilevel optimization

Some bilevel optimization algorithms rely on the Inverse Function Theorem to estimate outer-loop
gradients after the inner loop has converged. They require evaluating a product of the form (λI +
H)−1v, where H is the Hessian and v a vector, see e.g. [5]. If we approximate the Hessian by a
subsampled Fisher, our methods are directly applicable to compute this product.

Appendix B. Experimental Details

Add details on KFAC momentum for AAT and so on, including ”adam” style normalisation
Add amortisation details for conv
Add initialisation details
cite PyTorch
add bias details
mention CIFAR data augmentation
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B.1. Hyperparameter Tuning

Learning rates for all methods were tuned by a grid search, considering values of the form 1 · 10i, 3 · 10i

for suitable (usually negative) integers i. The damping terms for KFAC and FOOF were deter-
mined by a grid searcher over 10−6, 10−4, 10−2, 100, 102, 104, 106. For SGD, momentum was grid-
searched from 0.0, 0.9. For Adam, we kept all hyperparameters except the learning rate fixed.

Each ablation / experiment got its own hyperparameter search. The only exception is FOOF (T =
100), which uses exactly the same hyperparameters as FOOF (T = 1).

We always chose the hyperparameters which gives best training loss at the end of training.
Usually, these hyperparameters also outperform others in the early training stage.

B.2. Remaining details

Experiments were carried out on fully connected networks, with 3 hidden layers of size 1000. The
only exception is the network in Figure 3A, which has no hidden layer. Unless noted otherwise, we
trained networks for 10 epochs which batch size 100 on MNIST or Fashion MNIST, which were
preprocessed to have zero mean and unit variance. Several experiments were carried out on subsets
of the training set consisting of 1000 images, in order to make full batch gradient evaluation cheaper
and were trained for 100 epochs.

For the wall-clock time experiments, we used PyTorch DataLoaders and optimized the “pin memory”
and “num workers” arguments for each method/setting.

Appendix C. Kronecker-Factored Curvature Approximations for Laplace Posteriors

A Kronecker-factored approximation of the curvature has also been used in the context of laplace
posteriors [30] and this has been applied to continual learning [29]. In both context, empirical results
are very encouraging. Our finding that, in the context of optimization, the effectiveness of KFAC
does not rely on its similarity to the Fisher raises the question whether these other applications
[29, 30] of Kronecker-factorisations of the curvature rely on proximity to the curvature matrix.

Here, we provide an alternative hypothesis. For simplicity of notation, we assume that the net-
work has only one layer. Suppose W0 is a local optimum of the log-likelihood of the parameters.
Further denote the approximation to the posterior covariance by Σ. For an approximate Laplace pos-
terior to be effective, we require that parameters which are assigned high liklihood by the laplace
approximation actually do have high liklihood. In other words, when a weight pertubation V satis-
fies that vTΣV is small, then the parameter W + V should have high likelihood.

For the Kronecker-factorisation, the first factor again is given by AAT . Let us assume again
that the second factor is dominated by a damping term (a very similar argument works if the second
factor is predominantly diagonal), so that the curvature is approximately AAT ⊗ I. Then, some
calculations give

VTΣV ≈ V(AAT ⊗ I)V =
∑
i

vTi (AAT )vi (13)

12
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where vi is the i-th row of V, i.e. the set of weights connected to the i-th output neuron.4 This
expression being small means that each row of the pertubation V is near orthogonal to the input
activations A (or more formally, it aligns with singular vectors of A with small singular values).
This means that the layer’s output, and consequently the networks output, get perturbed very little.
This in turn means, that W + V has high-likelihood.

A simple test of this hypothesis would be to keep only the first kronecker-factor AAT , replace
the second one by the identity and check if the method performs equally well or better.

In fact, this algorithm has already been developed and tested independently of and prior to our
results [23]. It shows very strong performance, consistent with our prediction.

In addition, We note that a major drawback of the continual learning method [29] based on
Kronecker-factors is that it needs to store kronecker-factors for each task, resulting in very large
memory requirements as well as increased computational cost, especially as the number of tasks
grows. Formally, individual Kronecker-factors from each task need to be stored, since the sum of
two Kronecker-products (from different tasks) can not generally be written as a single product. If
our hypothesis is true, this would theoretically prescribe ignoring the second factor of each product
and moreover adding the first factors (from different tasks, for a fixed layer) directly. This would
significantly reduce the memory footprint of the resulting method. In fact, this algorithm would
simply be an application of [23] to continual learning.

Appendix D. Related Work

Perhaps closest to our newly developed first-order optimizer is [23], which is a Bayesian Posterior
approximation and can be viewed as considering distributions over neuron activations rather than
in weight space directly, similarly to how FOOF performs optimization steps on neuron activations
rather than on weights directly. The findings of [23] also support our interpretation of [30] (see
Appendix C).

Natural gradients were proposed by Amari and colleagues, see e.g. [2] and its original motiva-
tion stems from information geometry [3]. It is closely linked to classical second-order optimization
through the link of the Fisher to the Hessian and the Generalised Gauss Newton matrix [20, 27].
Moreover, natural gradients can be seen as a special case of Kalman filtering [26]. Interestingly,
different filtering equations can be used to justify Adam’s [17] update rule [1].

There is a long history of approximating natural gradients and second order methods. For exam-
ple, HF [22] exploits that Hessian-vector products are efficiently computable and uses the conjugate-
gradient method to approximate products of the inverse Hessian and vectors. In this case, similarly
to our application, the Hessian is usually subsampled, i.e. evaluated on a mini-batch. Other approx-
imations of natural gradients include [10, 15, 19, 22, 24, 25, 31].

Kronecker-factored approximations [15, 21] have become the basis of several optimization al-
gorithms [7, 8, 12, 13]. Our contribution may shed light on why this is the case.

Moreover, Kronecker-factored approximation of the curvature can be used in the context of
Laplace Posteriors [30], which can also be applied to continual learning [29]. A more detailed
discussion of this may relate to our findngs can be found in Section C.

There also is a large body of work on theoretical convergence properties of Natural Gradients.
[7] analyse the convergence of natural gradients in linear networks. Interestingly, they show that for

4. If the second kronecker-factor is not the identity, then there are additional cross terms of the form bijv
T
i (AAT )vj ,

where bij is the i, j-th entry of the second kronecker-factor.
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linear networks applied to regression problems (with homoscedastic noise), inverting a Kronecker-
Factored approximation of the curvature results in exact natural gradients. Our results show that this
link breaks down in the non-linear case. For non-linear, overparametrised networks, [33] recently
gave a convergence analysis of both natural gradients and KFAC. We also refer to [33] for a more
thorough review of theoretical results.

Appendix E. Details for Efficiently Computing F−1-vector products for a
Subsampled Fisher

E.1. Notation

For simplicity, we restrict the exposition here to fully connected neural networks without biases
and to classification problems. Our method is also applicable to regression problems, can easily be
extended to include biases and to handle for example convolutional layers.

We denote the network’s weight matrices by W =
(
W0, . . . ,W(`−1)

)
, whereW (i) has dimen-

sions ni × ni+1. The pointwise non-linearity will be denoted σ(·). For a single input x = a(0) the
network iteratively computes

s(k) = W(k−1)a(k−1) for k = 1, . . . , ` (14)

a(k) = σ(s(k)) for k = 1, . . . , `− 1 (15)

f(x) = f(x; W) = softmax(a(`)) (16)

We use the cross-entropy loss L(f(x), y) throughout. We will write ek = ∂L(f(x,y))
∂sk

for the errors,
which are usually computed by backpropagation.

If we process a batch of data, we will use upper case letters for (pre-)activations and errors, i.e.
A(k),S(k),E(k) which have dimensions nk × B, where B is the batch size. The i-th column of
these matrices will be denoted by corresponding lower case letters, e.g. a

(k)
i .

We will write A � B for the pointwise (or Hadamard) product of A,B and A ⊗ B for the
Kronecker product. The euclidean inner product (or dot product) will be denoted by A ·B for both
vectors and matrices.

The number of parameters will be called n =
∑`−1

k=0 nknk+1, the batch size B, the output
dimension of the network n`.

We will generally assume derivatives to be one dimensional column vectors and will often write
g = g(x, y) = ∂L(f(x),y)

∂W and g(k) = ∂L(f(x),y)
∂W . Generally, for a vector u of dimension n, the

superscript u(k) will denote the entries of u corresponding to layer k, and mat
(
u(k)

)
will be a

matrix with the same entries as u(k) and of the same dimensions as W(k).

E.2. Overview

The technique described here is similar to [28]. However, the implementation of [28] requires sev-
eral for- and backward passes for each mini-batch, which is used to compute the Fisher. Another
key difference, both in terms of computation time and update-direction quality is discussed in Sec-
tion E.5.

We now outline how to efficiently compute exact natural gradients under the assumption that
the Fisher is estimated from a mini-batch of moderate size (where ‘moderate’ can be on the order of
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thousands without large difficulties). Let’s assume we have B samples (x1, y1), . . . , (xB, yB) from
the model distribution and use this for a MC estimate of the Fisher, i.e.

F =
1

B

B∑
i=1

gig
T
i = GGT (17)

where we define G to be the matrix whose i-th column is given by 1√
B

gi. An application of the
matrix inversion lemma now gives

(λI + F)−1u = (λI + GGT )−1 = λ−1Iu− λ−2G(I +
1

λ
GTG)−1GTu (18)

We will not compute G explicitly. Rather, we will see that all needed quantities can be computed
efficiently from the quantities obtained during a single standard for- and backward pass on the batch
{(xi, yi)}Bi=1, namely the preactivations A(k) and error E(k+1).5

Overall, the computation can be split into three steps. (1) We need to compute v = GTu.
(2) We need to compute GTG, after which evaluating w = (I + 1

λGTG)−1v is easy by explicitly
computing the inverse. (3) We need to evaluate Gw.

Very briefly, the techniques to compute (1)-(3) all rely on the fact that, for a single datapoint, the
gradient with respect to a weight matrix is a rank 1 matrix and that, consequently, gradient-vector
and gradient-gradient dot products can be computed and vectorised efficiently.

E.3. Details

We now go through the steps (1)-(3) described above.
For (1), note that the i-th entry of v = GTu is the dot-product between gi and u, which in turn

is the sum over layer-wise dot-products g
(k)
i ·u(k). Note that mat

(
g

(k)
i

)
= a

(k)
i e

(k)T
i is a rank one

matrix, so that g
(k)
i · u(k) = a

(k)T
i mat

(
u(k)

)
e(k). A sufficiently efficient way to vectorise these

computations is the following:

v = GTu =
`−1∑
k=0

diag
(
A(k),Tmat

(
u(k)

)
E(k+1)

)
(19)

For (2), similar considerations give

GTG =

`−1∑
k=0

(A(k)TA(k))� (E(k+1)TE(k+1)) (20)

Finally, for (3), note that Gw is a linear combination of the gradients (columns) of G. Writing
1 for a column vector with nk ones, this can be computed layer-wise as

mat
(

(Gw)(k)
)

= A(k)T
(
E� (w1T )

)
(21)

We re-emphasise that we only require to know A(k) and E(k+1), which can be computed in a
single for- and backward pass and then stored and re-used for computations.

5. We note that many of the required quantities can be seen as Jacobian-vector products and could be computed with
autograd and additional for- and backward passes. Here, we simply store preactivations and errors from a single for-
and backward pass to avoid additional passes through the model.
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E.4. Computational Complexity

In terms of memory, we need to store Ak,Ek, which requires at most as much space as a single
backward pass. Storing GTG requires space B ×B, which is typically negligible. as are results of
intermediate computation.

In terms of time, computations (19) takes time O(B
∑

k n
2
k)), (20) takes time O(B

∑
k n

2
k),

(21) requires O(Bn). The matrix inverision requires O(B3), but note that technically we only need
to evaluate the product of the inverse with a single vector, which theoretically can be done slightly
faster (so can some of the matrix multiplications).

E.5. Less biased Subsampled Natural Gradients

Our aim is to estimate (λI + F)−1g and we use mini-batches estimates F̄ and ḡ. Ideally, we would
want an unbiased estimate, i.e. an estimate with mean (λI + E[F̄])−1 · E[ḡ].

One problem that seems hard to circumvent is that, while our estimate F̄ of F is unbiased, the
expectation of (λI + F̄)−1 will not be equal to (λI + F)−1. We shall not resolve this problem here
and simply hope that its impact is not detrimental.

Another problem is that using the same mini-batch to estimate Fisher F and gradient g will
introduce additional bias: Even if X = (λI + F̄)−1 were an unbiased estimate of (λI + F)−1 and
Y = ḡ is an unbiased estimate of g, it does not automatically hold that XY is an unbiased estimate
of E[X]E[Y ]. This does however hold, if X,Y are independent, which can be achieved by esti-
mating them based on independent mini-batches. The fact that a bias of this kind can meaningfully
affect results, also in the context of modern neural networks and standard benchmarks, has already
been observed in [6].

Thus, we propose using independent mini-batches to estimate F̄ and ḡ. On top of removing
bias from our estimate, this has the additional benefit that we do not have to update F̄ (or rather the
quantities related to it) at every time step. This gives further computational savings.

We perform an ablation experiment for this choice in Figures 9 and 10.

Appendix F. Software Validation

To validate that our algorithm of computing products between the damped, inverse Fisher and vec-
tors is correct, we considered small networks in which we could explicitly compute and invert the
Fisher Information and confirmed that our implicit calculations agree with the explicit calculations
for both fully connected as well as convolutional neural networks.

Appendix G. Additional Experiments
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Figure 6: Advantage of KFAC is not due to using more data to estimate the Fisher. Same as
Figure 2 but on MNIST rather than Fashion MNIST.
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Figure 7: Advantage of KFAC is not due to block-diagonal structure. Same as Figure 3 but on
MNIST rather than Fashion MNIST.
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method FOOF. Same as Figure 4 but on Fashion MNIST rather than MNIST
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Figure 9: Comparison between computing Fisher Information and Gradient on independent or same
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same plot on MNIST see below.
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