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Abstract
In this paper, we propose a new non-monotone conjugate gradient method for solving unconstrained
nonlinear optimization problems. We first modify the non-monotone line search method by intro-
ducing a new trigonometric function to calculate the non-monotone parameter, which plays an
essential role in the algorithm’s efficiency. Then, we apply a convex combination of the Barzilai-
Borwein method [6] for calculating the value of step size in each iteration. Under some suitable
assumptions, we prove that the new algorithm has the global convergence property. The efficiency
and effectiveness of the proposed method are determined in practice by applying the algorithm to
some standard test problems and non-negative matrix factorization problems.

1. Introduction

In this paper, we are interested to solve the following unconstrained optimization problem:

min
x∈Rn

f(x), (1)

in which f : Rn → R is a continuously differentiable function. There are various iterative ap-
proaches for solving (1) [20]. The Conjugate Gradient (CG) method is one such approach. The
CG based methods do not need any second-order information of the objective function. For a given
point x0 ∈ Rn, the iterative formula describing the CG method is:

xk+1 = xk + αkdk, (2)

in which xk is current iterate point, αk is the step size, and dk is the search direction determined by:

dk =

{
−gk k = 0,
−gk + βk−1dk−1 k ≥ 1,

(3)

where gk = ∇f(xk) is the gradient of the objective function in the current iteration. The conjugate
gradient parameter is βk, whose choice of different values leads to various CG methods. The most
well-known of the CG methods are the Hestenes-Stiefel (HS) method [15], Fletcher-Reeves (FR)
method [10], Conjugate Descent (CD) [11], and Polak-Ribiere-Polyak (PRP) [21].

There are various approaches to determining a suitable step size in each iteration such as Armijo
line search, Goldstein line search, and Wolfe line search [20]. The Armijo line search finds the
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largest value for the step size in each iteration such that the following inequality holds:

f(xk + αkdk) ≤ f(xk) + γαkg
T
k dk (4)

in which γ ∈ (0, 1) is a constant parameter. Grippo et al. [12] introduced a non-monotone Armijo-
type line search technique as another way to compute the step size. The incorporation of the
non-monotone strategy into the gradient and projected gradient approaches, the conjugate gradient
method, and the trust-region methods have led to significant improvements to these methods. Zhang
and Hager [22] gave some conditions to improve the convergence rate of this strategy. Ahookhosh
et al. [3] built on these results and investigated a new non-monotone condition:

f(xk + αkdk) ≤ Rk + γαkg
T
k dk, where (5)

Rk = ηkflk + (1− ηk)fk, (6)

ηk ∈ [ηmin, ηmax], ηmin ∈ [0, 1), ηmax ∈ [ηmin, 1], flk = max0≤j≤mk
{fk−j},

m0 = 0, 0 ≤ mk ≤ min{mk−1 + 1, N} for some N ≥ 0. (7)

Note that ηk is known as the non-monotone parameter and plays an essential role in the algorithm’s
convergence. Although this new non-monotone strategy in [3] has some appealing properties, espe-
cially in functional performance, current algorithms based on this non-monotone strategy face the
following challenges.

• The existing schemes for determining the parameter ηk may not reduce the value of the ob-
jective function significantly in initial iterations. To overcome this drawback, we propose a
new scheme for choosing ηk based on the gradient behaviour of the objective function. This
can reduce the total number of iterations.

• Many evaluations of the objective function are needed to find the step length αk in step k. To
make this step more efficient, we use an adaptive and composite step length procedure from
[18] to determine the initial value of the step length in inner iterations.

• The third issue is the global convergence for the non-monotone CG method. Most exiting
CG methods use the Wolfe condition, which plays a vital role in establishing the global con-
vergence of various CG methods [19]. Wolfe line search is more expensive than the Armijo
line search strategy. We define a suitable conjugate gradient parameter so that the scheme
proposed here satisfies the global convergence property.

By combining the outlined strategies, we propose a modification to the non-monotone line
search method. Then, we incorporate this approach into the CG method and introduce a new non-
monotone CG algorithm. We prove that our proposed algorithm has global convergence. Finally,
we compare our algorithm and eight other algorithms on standard tests and non-negative matrix
factorization instances. We report several criteria, such as the number of objective function evalua-
tions, the number of gradient evaluations, the number of iterations, and the CPU time, to compare
the performance of the algorithms.

2. An improved non-monotone line search algorithm

In this section, we discuss our strategies for choosing the parameters that define our algorithm: the
non-monotone parameter η, the step size α, and the conjugate gradient parameter β.
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2.1. A new scheme of choosing ηk
Recall that the non-monotone line search strategy is determined by equation (5) in step k. Parameter
ηk is used in the non-monotone term (6) and determines how aggressively we descend towards
solutions with smaller cost. There are two common approaches for calculating ηk. The scheme
proposed by Ahookhosh et al. [3] has been used in most of the existing non-monotone algorithms
[1, 2, 9]. This strategy is described by recurrence ηk = 1

3η0(−
1
2)k + 2

3η0 where η0 = 0.15 and
limk→∞ ηk = 0.1. The other scheme proposed by Amini et al. [4], which depends on the behaviour
of gradient is given by:

η0 = 0.95, ηk =

{
2
3ηk−1 + 0.01, if ‖gk‖∞ ≤ 10−3;
max{0.99ηk−1, 0.5}, otherwise.

(8)

To illustrate the behaviour of these two schemes, we solve the problem f(x) = (x0 − 5)2 +∑40
i=1(xi − 1)2 for x ∈ R41. The values of parameter ηk corresponding to the two schemes are

displayed in Fig. 1 (Left). As shown in Fig. 1, for the scheme proposed by Ahookhosh et al. [3],
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Figure 1: (Left): Values of ηk proposed in [3] and [4], (Right): Values of ηk for the new scheme.

ηk is close to 0.1 after only a few iterations. Notice that ηk in each iteration does not have any con-
nection with the behaviour of the objective function. Thus this scheme is not effective. In addition,
there are two issues with the scheme introduced by Amini et al. in [4]. One problem indicated by
Fig. 1 is that that ηk decreases relatively quickly for the first 65 iterations. Since the algorithm
requires many iterations to solve the test problem, ideally ηk should be close to 1 for these initial
iterations. The second issue is that the value of ηk remains constant for a large number of iterations
and it is not affected by the behaviour of the objective function.

To avoid theses challenges, we propose an adaptive strategy for calculating the value of ηk:

ηk = 0.95 sin

(
π‖gk‖

1 + 2‖gk‖

)
+ 0.01. (9)

When xk is far away from the minimizer, we can reasonably assume that ‖gk‖ is large. Thus the
value of ηk defined by (9) is close to 1. This allows the algorithm to explore a broader set of
solutions in the initial iterations, providing a chance to reduce the value of the objective function
more significantly. On the other hand, when xk is close to the optimal solution, ‖gk‖ is small, then
the value of ηk is close to zero. Thus, the step length is small so that the new point stays in the
neighbourhood of the optimal point. We believe that the new scheme better serves the objectives
of the non-monotone strategy. We plot the evolution of ηk defined by Eq. (9) in Fig. 1 (right),
using the gradient from the optimization problem mentioned above. As mentioned earlier, we need
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strong non-monotonicity for the first few iterations. This does not mean that the value of ηk must
be exactly one but that it is close to one. To achieve this, we multiply function sin() by 0.95. In
addition, for the final iterations where the value of gradient ‖gk‖ approaches zero, we need weak
non-monotonicity, i.e. the value of parameter ηk should be close to zero but not exactly zero. In this
case, we add a constant term such as 0.01 to the expression.

2.2. New schemes for choosing αk
We utilize a convex combination of the Barzilai-Borwein (BB) step sizes to calculate an appropriate
αk in each outer iteration [18]. We calculate αk, using the following equation:

αCBB
k = µkα

(1)
k + (1− µk)α

(2)
k , where (10)

α
(1)
k =

sTk sk
sTk yk

, α
(2)
k =

sTk yk
yTk yk

, sk := xk − xk−1, yk := gk − gk−1;

µk = K2
K1+K2

K1 = ‖α(1)
k yk − sk‖2, K2 = ‖(α(2)

k )−1sk − yk‖2.

2.3. Conjugate gradient parameter

We propose the following expression for the new conjugate gradient parameter:

βk = ω
‖gk‖
‖dk−1‖

, ω ∈ (0, 1). (11)

The complete algorithm is listed in Appendix 5 (Algorithm 1). The next lemma proves a key
property for βk which is very important in proving the algorithm’s convergence. The proofs appear
in Appendix 5.

Lemma 1 Let dk be the search direction used in iteration k of Algorithm 1 and let c be a suitable
constant c > 0. Then,

dTk gk ≤ −c‖gk‖2.

2.4. Algorithm

In this section, we describe the new non-monotone conjugate gradient algorithm. Algorithm 1
consists of two loops, an inner and an outer loop. The inner loop computes the value of the step
size only, using the non-monotone line search strategy from Eq. (5). The outer loop computes
a new point xk+1 = xk + αkdk, the conjugate gradient parameter βk using Eq. (11), and the
search direction dk+1 using Eq. (3). Finally, the algorithm calculates the non-monotone line search
parameter using Eq. (9). This process is repeated until a proper solution is obtained.

The following assumptions are used to analyze the convergence properties of Algorithm 1.

H1 The level set L(x0) = {x|f(x) ≤ f(x0), x ∈ Rn} is bounded set.

H2 The gradient of objective function is Lipschitz continuous over an open convex setC containing
L(x0). That is:

‖g(x)− g(y)‖ ≤ L‖x− y‖, ∀ x, y ∈ C.

We prove the following Theorem about the global convergence of Algorithm 1, the proof of which
follows from the lemmas presented in this section. Please see the appendix for the proofs.
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Algorithm 1: An improved non-monotone conjugate gradient method
Data: x0 ∈ Rn, ε > 0, ρ ∈ (0, 1), γ ∈ (0, 1), N > 0, 0 < β1 < 1, ω ∈ (0, 1), and α0 = 1

Set k = 0
while ‖gk‖ ≥ ε do

Set α = α0

Set: xk+1 = xk + αdk
while the non-monotone line search condition (5) is not satisfied do

α← ρα
end
αk ← α
Generate the new point xk+1 = xk + αkdk
Compute the parameter βk using (11)
Generate dk+1 using (3)
Calculate ηk+1 using (9)
Calculate α0 using (10)
k ← k + 1

end

Theorem 2 Let (H1), (H2), and Lemmas 1 and 3 hold. Then, for the sequence {xk} generated
by Algorithm 1, we have limk→∞ ‖gk‖ = 0.

Lemma 3 Suppose that the search direction dk with the CG parameter βk given by (11) is gener-
ated by Algorithm 1. Then, an upper bound for dk is given by ‖dk‖ ≤ (1 + ω)‖gk‖.

Lemma 4 Suppose that xk is not a stationary point of (1). Then we have

αk ≥ min

{
β1ρ,

2(1− ω)ρ(1− γ)

L(1 + ω)2

}
.

Recall that the objective function f is a strongly convex function if there exists a scalar µ such that

f(x) ≥ f(y) +∇f(y)T (x− y) +
1

µ
‖x− y‖2 (12)

Theorem 5 If (H1), (H2), Eq. (12), and lemmas 1 and 3 hold then the sequence {xk} generated
by Algorithm 1 converges to the stationary point x∗ at least R-linearly.

3. Numerical Results

In this section we test the new algorithm to solve a set of standard optimization problems and
the non-negative matrix factorization problem, which is a non-convex optimization problem. The
implementation level details are in Appendix 6. To demonstrate the efficiency of the proposed
algorithm, we compare our algorithm and eight other existing algorithms introduced in [3, 4, 13,
16] on a set of 110 standards test problems. To describe the behaviour of each strategy, we use
performance profiles proposed by Dolan and Moré [8]. Note that the performance profile for an
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algorithm ps(τ) : R 7→ [0, 1] is a non-decreasing, piece-wise constant function, continuous from
the right at each breakpoint. Moreover, the value ps(1) denotes the probability that the algorithm
will win against the rest of the algorithms. More information on the performance profile appears in
Appendix 6. We plot the performance profile of each algorithm in terms of the total number of outer
iterations and the CPU time on the set of standard test problems in Fig. 2. In Fig 2, “Line Search”
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Figure 2: (Left): Performance profiles of the total number of outer iterations, (Right): Performance
profiles of CPU Time.

is from [20], “Line-BB” denotes the line search method using BB method for calculating the initial
value for the step size, ”Non-monotone” only uses the non-monotone line search method, “Zhang”
method is described in [13], and “Jiang” method is from [16]. Detailed information about “ILC”,
“IPRP”, “IHS”, “ILS” methods can be found in [16].

We also apply our algorithm to solve the Non-Negative Matrix Factorization (NMF) which has
several applications in image processing such as face detection problems. Given a non-negative
matrix V ∈ Rm×n, a NMF finds two non-negative matrices W ∈ Rm×k and H ∈ Rk×n with
k � min(m,n) such that X ≈WH . This problem can be formulated as

min
W,H≥0

F (W,H) =
1

2
‖V −WH‖2F . (13)

Equation (13) is a non-convex optimization problem. We compare our method and Zhang’s algo-
rithm [13] on some random data sets. We report these results in Appendix 6.

4. Conclusion

In this paper, we introduce a new non-monotone conjugate gradient algorithm based on an efficient
Barzilai-Borwein step size. We introduce a new non-monotone parameter based on gradient be-
haviour and determined by a trigonometric function. We use a convex combination of two Barzilai-
Borwein step size parameters to compute the step size value in each iteration. We prove that the
proposed algorithm has global convergence. We implemented and tested our algorithm on a set of
standard test problems and on several instances for the non-negative matrix factorization problem.
The proposed algorithm can solve 98% of the problems from a set of standard test instances. For the
non-negative matrix factorization, the results indicate that our algorithm is more efficient compared
to Zhang’ s method [13].
Acknowledgements: The authors would like to thank the reviewers for their insightful comments
about comparison with the basic non-monotone method and convergence which lead to Theorem 5.
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5. Appendix A

5.1. Convergence

The proofs of the various lemmas and the main theorem are presented in this section.
Proof Proof of Lemma 1:
If k = 0, we have

dTk gk = −‖gk‖2 < 0.

If k ≥ 1, using (3) and (11), and we have:

dTk gk = −‖gk‖2 + ω
‖gk‖
‖dk−1‖

dTk−1gk.

Using the Cauchy-Schwarz inequality and we have:

dTk gk ≤ −‖gk‖2 + ω‖gk‖2 = −(1− ω)‖gk‖2. (14)

Proof Proof of Lemma 3:
The proof is obtained by combining (3) and the triangle inequality, that is:

‖dk‖ ≤ ‖gk‖+ βk‖dk−1‖ = (1 + ω)‖gk‖.

To prove the convergence results, we need the following elementary lemmas.
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Lemma 6 Suppose that the sequence {xk} is generated by Algorithm 1. Then, flk is a decreasing
sequence.

Proof We use the definition Rk and (6), which imply that

Rk = ηkfl(k) + (1− ηk)fk ≤ ηkfl(k) + (1− ηk)fl(k) = fl(k). (15)

It follows that:
fk+1 ≤ Rk + γαkg

T
k dk ≤ fl(k) + γαkg

T
k dk.

By using the Lemma 1, we can conclude that:

fk+1 ≤ fl(k). (16)

On the other hand, from (6) we have:

fl(k+1) = max
0≤j≤m(k+1)

{fk+1−j}

≤ max
0≤j≤m(k)+1

{fk+1−j} = max
{
fl(k), fk+1

}
.

By applying (16), that is fk+1 ≤ fl(k), we conclude that fl(k+1) ≤ fl(k). This shows that the
sequence fl(k) is a decreasing sequence.

Lemma 7 Suppose that the sequence {xk} is generated by Algorithm 1. Then, for all k ≥ 0, we
have xk ∈ L(x0).

Proof Definition of fl(k+1) implies that fk+1 ≤ fl(k+1) for any k ≥ 0. Therefore, we have:

fk+1 = ηk+1fk+1 + (1− ηk+1)fk+1

≤ ηk+1fl(k+1) + (1− ηk+1)fk+1 = Rk+1, ∀ k ∈ Nk (17)

By using definition ofRk, we can conclude thatR0 = f0. Now, by induction, assuming xi ∈ L(x0),
for all i = 1, 2, . . . , k, we show that xk+1 ∈ L(x0). Relations (6) and (15) together with Lemma 6
imply that:

fk+1 ≤ fl(k+1) ≤ fl(k) ≤ f0,

which implies that the sequence xk is contained in L(x0).

The next part of this section describes some convergence results for the Algorithm 1.

Lemma 8 Suppose that Algorithm 1 generates the sequence {xk} and (H1)–(H2) hold. Then, the
sequence {fl(k)} is convergent.

Proof By using Lemma 6 and the fact that fl(0) = f0 imply that the sequence {xl(k)} remains in
level setL(x0). On the other hand, this fact f(xk) ≤ f(xl(k)) proves that the sequence {xk} remains
in L(x0). Therefore, (H1) together with Lemma 6 imply that the sequence {fl(k)} is convergent.
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Lemma 9 Suppose that (H1) holds and the direction dk satisfies the first item of Lemma 6. Then
for the sequence {xk} generated by Algorithm 1, we have:

lim
k→∞

fl(k) = lim
k→∞

fk.

Proof The proof is similar to Lemma 2 in [4]. Therefore, we omit it here.

Lemma 10 Suppose that (H1) holds and the direction dk satisfies the first item of Lemma 6. If the
sequence {xk} generated by Algorithm 1, then we have:

lim
k→∞

Rk = lim
k→∞

fk.

Proof Using (15) and (17), we conclude that:

fk ≤ Rk ≤ fl(k)

By applying Lemma 9, we obtain the result.

Now, we can prove the Lemma 4.
Proof Proof of Lemma 4:
We consider two cases: If αk

ρ ≥ β1, which implies that αk ≥ β1ρ and it completes the proof. Now,
we assume that αk

ρ < β1. In this case we have αk < β1ρ. Therefore, the non-monotone condition
does not hold, i.e.,

f(xk +
αk
ρ
dk) > Rk + γ

αk
ρ
gTk dk (18)

Now, by using the mean value theorem, i.e., Cauchy–Schwarz inequality, we conclude that:

f(xk + αdk) = f(xk) + αgTk dk +

∫ 1

0
α(g(xk + tαdk)− gk)Tdkdt

≤ f(xk) + αgTk dk + α‖dk‖
∫ 1

0
‖(g(xk + tαdk)− gTk )‖dt

(19)

Now, by using (H2) and the fact that Rk ≥ fk, we have:

f(xk + αdk) ≤ f(xk) + αgTk dk + Lα2‖dk‖2
∫ 1

0
tdt

= f(xk) + αgTk dk +
L

2
α2‖dk‖2

≤ Rk + αgTk dk +
L

2
α2‖dk‖2 (20)

By putting α = αk
ρ and combining (18) with (20), we conclude that:

Rk +
αk
ρ
gTk dk +

L

2ρ2
α2
2‖dk‖2 ≥ Rk + γ

αk
ρ
gTk dk.

10
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Using Lemmas 1 and 3, we conclude that:

L

2ρ
(1 + ω)2α2

2‖gk‖2 ≥
L

2ρ
α2
2‖dk‖2 > −(1− γ)gTk dk ≥ (1− ω)(1− γ)‖gk‖2. (21)

It implies that:

αk ≥
2(1− ω)ρ(1− γ)

L(1 + ω)2
.

Now, we prove the Theorem 2, which shows that Algorithm 1 has global convergence.
Proof Proof of Theorem 2:
We have:

Rk + γαkg
T
k dk ≥ fk+1

⇒ Rk − fk+1 ≥ −γαkgTk dk ≥ c1γαk‖gk‖2 ≥ 0. (22)

This fact together with Lemma 10 imply that limk→∞ ‖gk‖ = 0. This shows that proposed algo-
rithm has global convergence.

Lemma 11 Suppose (H1) and (H2) hold, the direction dk satisfies (1) and (3), and the sequence
{xk} is generated by Algorithm 1. Then, for any l ≥ 1 we have:

max
1≤i≤N

f(xNl+i) ≤ max
1≤i≤N

f(xN(l−1)+i) + γ max
0≤i≤N−1

[
αNl+ig

T
Nl+idNl+i

]
.

Proof From Lemma 6, we have:

f(xNl+1) ≤ RNl + γαNlg
T
NldNl

≤ max
1≤i≤m(Nl)

f(xNl−i) + αNlg
T
NldNl.

The rest of the proof is similar to Lemma 2.1 in [7].

Lemma 12 (Therorem 2.1 in [7]) Suppose (H1) and (H2) hold, the direction dk satisfies (1) and
(3), and the sequence {xk} is generated by Algorithm 1. Then there exists a constant c2 such that:

‖gk+1‖ ≤ c2‖gk‖

Lemma 13 [Theorem 3.1 in [7]] Suppose (H1) and (H2) hold, f(x) be a strongly convex function
and the direction dk satisfies (1) and (3) and the sequence {xk} is generated by Algorithm 1. Then
there exists constants c3 > 0 and c4 ∈ (0, 1), such that:

f(xk)− f(x∗) ≤ c3ck4 [f(x1)− f(x∗)]

11
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Proof Proof of Theorem 5:
Using (12) and setting y = x∗ and x = xk. Therefore, we have:

f(xk) ≥ f(x∗) +
1

2w
‖xk − x∗‖ ⇒ ‖xk − x∗‖ ≤ 2w(f(xk)− f(x∗))

Using Lemma 13, we have:

‖xk − x∗‖ ≤ ck4 [2wc3(f(x1)− f(x∗))] = ck4rk,

where r = 2wc3(f(x1)− f(x∗)). By setting vk = rck4 , we get that v∗ = 0. It follows that:

lim
k→∞

vk+1 − v∗
vk − v∗

= c4 < 1.

This implies that the sequence {xk} converges to x∗ at least R-linearly [20].

6. Appendix B

6.1. Numerical Results

Here, we present some implementation level details. Since our algorithm improves the non-monotone
scheme, we chose two algorithms from the non-monotone line search category and six algorithms
from the Wolfe line search area for performing the comparison. We select the following two state
of art algorithms in the non-monotone category. These algorithms calculate the value of step size
using a the non-monotone line search strategy in each iteration.

• Ahookhosh’s strategy in [3]

• Amini’s strategy in [4]

Following six other algorithms that use the Wolfe line search conditions to compute step size in
each iteration are used for comparison.

• βJiang proposed in [16]

• βZhang proposed in [13]

• βILC proposed in [16]

• βIPRP proposed in [16]

• βIHS proposed in [16]

• βILS proposed in [16]

All algorithms were coded in MATLAB 2017 environment and tested on a laptop (Intel(R) Core(TM)
i5-7200U CPU 3.18 GHz with 12GB RAM). For all algorithms, we use the following initial values.

γ = 10−4, N = 5, ρ = 0.75.

All the experiments terminate when the following conditions are met:

12
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• ‖gk‖ < 10−6

• The number of iterations is greater than 20000.

As parameter ω can take positive real values in the interval (0, 1), there are many choices for it. We
tried several strategies and chosen the following strategy, which perform better. The key idea of this
choice is from the structure of the conjugate gradient parameter proposed by Jiang [16].

ωk =


0.001 if

|gTk dk−1|
−gTk−1dk−1

≤ 0,

0.999 if
|gTk dk−1|
−gTk−1dk−1

≥ 1,

|gTk dk−1|
−gTk−1dk−1

otherwise.

The following subsection presents the results on a set of 110 standard test problems.

6.2. A set of standard test problems

We run all the algorithms on 110 standard test problems from [5] with dimensions ranging between
2 to 5, 000, 000. When the algorithm stops under the second condition, i.e., the number of iterations
is greater than 20000, the method is deemed to fail for solving the corresponding test problem.
The comparison between considered algorithms is based on the number of function evaluations, the
number of gradient evaluations, the number of iterations, and the CPU time(s).
To visualize the complete behaviour of the algorithms, we use the performance profiles proposed by
Dolan and Moré [8]. Note that the performance profile ps(τ) : R 7→ [0, 1] for an algorithm is a non-
decreasing, piece-wise constant function, continuous from the right at each breakpoint. Moreover,
the value of ps(1) denotes the probability that the algorithm will win over the rest.

Suppose that K is a set of nk test functions and S is a set of ns solvers. For s ∈ S and function
k ∈ K, consider ap,s as the number of gradient evaluations, objective function evaluations, CPU
Time, or the number of iterations required to solve function k ∈ K by algorithm s ∈ S. Then the
algorithms comparison is based on the performance ratio as follows:

rk,s =
ak,s

min{ak,s, k ∈ K, s ∈ S}

We obtain the overall evaluation of each algorithm by:

ps(τ) =
1

nk
size {k ∈ K : rk,s ≤ τ} (23)

In general, solvers with high values of ps(τ) or in the upper right of the figure represent the best
algorithm.

The performance profile in terms of function evaluations and the number of gradient evaluations
are presented in figures 3 and 4, respectively.

Figures 5 and 6 show the performance profile in terms of the number of iterations and the CPU
time(s) for the proposed algorithm and eight other algorithms.

In Fig 3–6, “Line Search” is presented in [20], “Line-BB” denotes the line search method using
BB method for calculating initial value of step size, ”Non-monotone” only uses the non-monotone

13
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Figure 3: Performance profiles of the total number of function evaluations
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Figure 4: Performance profiles of the total number of gradient evaluations

line search method, “Zhang” method suggested in [13], “Jiang” method introduced in [16], and
more information about “ILC”, “IPRP”, “IHS”, “ILS” can be found in [16].
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Figure 5: Performance profiles of the total number of outer iterations
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Figure 6: Performance profiles of CPU Time

We conclude from the figures that the proposed algorithm can solve 98% of the test problems.
The performance profiles for the number of iterations, total CPU, time, number of gradient evalu-
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ations, and number of function evaluations indicate that the proposed method has a high computa-
tional performance compared to the other methods.

6.3. Some non-negative matrix factorization test problems

Here, we apply our algorithm to Non-Negative Matrix Factorization (NMF) which has several
applications in image processing, such as face detection problems. Given a non-negative ma-
trix V ∈ Rm×n, a NMF finds two non-negative matrices W ∈ Rm×k and H ∈ Rk×n with
k � min(m,n) such that

V ≈WH. (24)

This problem can be formulated as a non-convex optimization problem:

min
W,H≥0

F (W,H) =
1

2
‖V −WH‖2F . (25)

In recent years, several iterative approaches have been introduced for solving (25), for example,
[14, 17]. The alternating non-negative least squares (ANLS) framework is a popular approach for
solving (25), which finds the optimal solution by solving the following two convex sub-problems:

W k+1 = arg min
W≥0

F (W,Hk) =
1

2
‖V −WHk‖2F , (26)

and

Hk+1 = arg min
H≥0

F (W k+1, H) =
1

2
‖V −W k+1H‖2F . (27)

To solve this problem, we use the following strategy:

S0 Algorithm starts with the initial point, i.e., W̄ ≥ 0 and H̄ ≥ 0, set k = 0.

S1 Stop if ‖[∇HF (W̄ k, H̄k),∇WF (W̄ k, H̄k)]‖F ≤ ε‖[∇HF (W̄ 0, H̄0),∇WF (W̄ 0, H̄0)]‖F .

S2 To get W k+1, solve the sub-problem: minW≥0 F (W, H̄k) = 1
2‖V −WH̄k‖2F .

S4 Set W̄ k+1 = W k+1.

S2 To get Hk+1, solve the sub-problem: minH≥0 F (W̄ k+1, H) = 1
2‖V − W̄

k+1H‖2F .

S5 Set H̄k+1 = Hk+1.

S6 Set k := k + 1 and go to S1.

Now, we use the above setup to solve some NMF problems using our algorithm and compare it to
Zhang’s algorithm [13] which had the best results for solving a set of standard test problems.

To this end, we generate a random matrix V as random with elements in [0, 1]. We run the algo-
rithm for matrices with ranks {5, 10, 15, 20, 40, 50}. For each case, we run each of the algorithms
10 times. We, calculated the average of the results and presented them in Table 1. In this table, m
and n denote the number of rows and columns of matrix V , k denote the matrix rank. The num-
ber of outer iterations is denoted by “Iter”. We use the “Niter” for the number of inner iterations.
The value of gradient is denoted by “Pgn”. The CPU time and error for each of the algorithms are
denoted by “Time” and “Error” respectively.

As we see that in most cases, the proposed algorithm performs better than previous best algo-
rithm due to Zhang [13].
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m n k Iter Niter Pgn T ime Error Algorithm

50× 25× 5 29.20 187.30 0.0045 0.02 0.014 Zhang
26.70 72.60 0.0043 0.02 0.014 New

100× 50× 5 24.20 165.30 0.058 0.03 0.12 Zhang
22.30 85.80 0.033 0.01 0.12 New

100× 200× 15 25.30 196.10 0.015 0.137 0.086 Zhang
17.50 112.80 0.018 0.032 0.085 New

200× 100× 10 19.00 134.80 .093 0.10 0.08 Zhang
17.10 103.40 .073 0.03 0.08 New

300× 100× 20 25.00 212.40 0.55 0.32 0.08 Zhang
20.60 131.50 0.44 0.15 0.08 New

300× 500× 20 29.00 128.90 1.98 0.75 0.054 Zhang
25.80 90.80 0.96 0.14 0.054 New

500× 100× 20 36.10 231.80 7.6 0.48 0.06 Zhang
31.70 90.70 4.8 0.12 0.05 New

1000× 500× 50 36.10 187.50 18.5 2.89 0.04 Zhang
32.40 130.80 12.75 1.06 0.03 New

Table 1: The results of performing new algorithm and Zhang’s algorithm on some random datasets
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