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Abstract
We propose a new stochastic gradient method that uses recorded past loss values to compute adaptive step-
sizes. Our starting point is to show that the SP (Stochastic Polyak) method directly exploits interpolated
models. That is, SP is a subsampled Newton-Raphson method applied to solving certain interpolation
equations. These interpolation equations only hold for models that interpolate the data. We then use this
viewpoint to develop a new variant of the SP method that converges without interpolation called MOTAPS.
The MOTAPS method uses n auxiliary variables, one for each data point, that track the loss value for each
data point. These auxiliary variables and the loss values are then used to set the step size. We provide
a global convergence theory for MOTAPS by showing that it can be interpreted as a special variant of on-
line SGD. We also perform several numerical experiments on convex learning problems, and non-convex
learning problem based on image classification and language translation. In all of our tasks we show that
MOTAPS is competitive with the relevant baseline method.

1. Introduction

Consider the problem

w∗ ∈ argmin
w∈Rd

f(w) :=
1

n

n∑
i=1

fi(w), (1)

where each fi(w) represents the loss of a model parametrized by w ∈ Rd over a given ith data point. We
assume that there exists a solution w∗ ∈ Rd. LetW∗ denote the set of minimizers of (1).

An ideal method for solving (1) is one that exploits the sum of terms structure, has easy-to-tune hyper-
parameters, and is guaranteed to converge. Stochastic gradient descent (SGD) exploits this sum of terms
structure by only using a single stochastic gradient (or a batch) ∇fi(w) per iteration. Because of this, SGD
is efficient when the number of data points n is large, and can even be applied when n is infinite and (1) is
an expectation over a continuous random variable.

The downside of SGD is that it is difficult to tune because it requires tuning a sequence of step sizes,
otherwise known as a learning rate schedule. Indeed, to make SGD converge, we need a sequence of step
sizes that must converge to zero at just the right rate. Here we develop methods with adaptive step sizes that
use the loss values to set the stepsize.

We derive our new adaptive methods by first exploiting the interpolation equations given by

fi(w) = 0, for i = 1, . . . , n. (2)

We say that the interpolation assumption holds if there exists w∗ ∈ W∗ that solves (2). Two well known
settings where the interpolation assumption holds are 1) for binary classification with a linear model where
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the data can be separated by a hyperplane [7] or 2) when we know that each fi(w) is non-negative, and we
have enough parameters in our model so there exists a solution that fits all data points. This second setting
is often referred to as the overparametrized regime [32], and it is becoming a common occurrence in several
sufficiently overparametrized deep neural networks [3, 36].

Our starting point is to observe that the Stochastic Polyak method (SP) [4, 25] directly exploits and
solves the interpolation equations (2). Indeed, the SP method is a subsampled Newton Raphson method [35]
as we show next.

The subsampled Newton Raphson method at each iteration samples a single index i ∈ {1, . . . , n} and
focuses on solving the single equation fi(w) = 0. This single equation can still be difficult to solve since
fi(w) can be highly nonlinear. So we linearize fi around a given wt ∈ Rd, and set the linearization of fi(w)
to zero, that is

fi(w
t) +

〈
∇fi(wt), w − wt

〉
= 0.

This is now a linear equation in w ∈ Rd that has d unknowns and thus has infinite solutions. To pick just
one solution we use a projection step as follows

wt+1 = argminw∈Rd
∥∥w − wt∥∥2 subject to fi(wt) +

〈
∇fi(wt), w − wt

〉
= 0. (3)

The solution to this projection step (See Lemma 7 for details) is given by

wt+1 = wt − fi(w
t)

‖∇fi(wt)‖2
∇fi(wt). (4)

This method (6) is known as the Stochastic Polyak method [25] 1. The SP has many desirable properties:
It is incremental, it adapts it step size according to the current loss function, and it enjoy several invariance
properties. Thus in many senses the SP is an ideal stochastic method. The obvious downside is that to arrive
at (4) we have to assume that the interpolation assumption holds. The main objective of this paper is design
methods akin to the SP method that do not rely on the interpolation assumption.

2. The Stochastic Polyak Method

We start by presenting the SP (Stochastic Polyak method) through two different viewpoints. First, we show
that SP is a special case of the subsampled Newton-Raphson method [35]. Using this first viewpoint, and
leveraging results from [35], we then go on to show that SP can also be viewed as a type of online SGD
method, which greatly facilitates the analysis of SP.

2.1. The Newton-Raphson viewpoint

As observed in the introduction in Section 1, the SP method is designed for solving interpolation equations.
Here we formalize and extend this observation before moving on to our new methods.

We can derive an extended form of the SP method that does not rely on the interpolation assumption.
Instead of the interpolation assumptions, let us assume for now that we have access to the loss values fi(w∗)
for each i = 1, . . . , n, where w∗ ∈ W . If we knew the fi(w∗)’s then we can solve the optimization
problem (1) by solving instead the nonlinear equations

fi(w) = fi(w
∗), for i = 1, . . . , n. (5)

1. In [4] the authors also observed that the full batch Polyak stepsize in 1D is a Newton Raphson method.
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Applying the subsampled Newton Raphsons method as in Section 1, we arrive at the method

wt+1 = wt − fi(w
t)− fi(w∗)

‖∇fi(wt)‖2
∇fi(wt). (6)

This method is a minor extension of (4) where-in we now allow fi(w
∗) 6= 0. Despite this minor change, we

will also refer to (6) as the Stochastic Polyak method2.
The issue with the SP method is that we often will not know fi(w

∗) excluding the cases where fi(w∗) =
0. Outside of this setting, it is unlikely that we would have access to each fi(w

∗). Thus we relax this
requirement in Sections 3 and 4. But first, we present yet another viewpoint of SP as a type of online SGD
method.

2.2. The SGD viewpoint

Fix a given wt ∈ Rd and consider the following auxiliary objective function

min
w∈Rd

ht(w) :=
1

n

n∑
i=1

1

2

(fi(w)− fi(w∗))2
‖∇fi(wt)‖2

. (7)

Here we use the pseudoinverse convention that if
∥∥∇fi(wt)∥∥ = 0 ∈ R then

∥∥∇fi(wt)∥∥−1 = 0. Clearly
w = w∗ is a minimizer of (7). This suggests that we could try to minimize (7) as a proxy for solving the
equations (1). Since (7) is a sum of terms that depends on t, we can use an online SGD to minimize (7). To
describe this online SGD method let

hi,t(w) :=
1

2

(fi(w)− fi(w∗))2
‖∇fi(wt)‖2

and thus ∇hi,t(w) =
fi(w)− fi(w∗)
‖∇fi(wt)‖2

∇fi(w). (8)

The online SGD method is given by sampling it ∈ {1, . . . , n} and then iterating

wt+1 = wt − γ∇hit,t(wt)
(8)
= wt − γ fit(w

t)− fit(w∗)
‖∇fit(wt)‖2

∇fit(wt), (9)

which is equivalent to the SP method (6) but with addition of a stepsize γ > 0. This online SGD viewpoint
of SP is very useful for proving convergence of SP. Indeed, there exist many convergence results in the
literature on online SGD for convex, non-convex, smooth and non-smooth functions that we can now import
to analyzing SP. Furthermore, it turns out that (9) enjoys a remarkable growth property that facilitates many
SGD proof techniques, as we show in the next lemma.

Lemma 1 (Growth) The functions hi,t(w) defined in (8) satisfy∥∥∇hi,t(wt)∥∥2 = 2hi,t(w
t). (10)

Consequently due to (7) we have that

1

n

n∑
i=1

∥∥∇hi,t(wt)∥∥2 = 2ht(w
t). (11)

2. Using fi(w
∗) in the numerator is apparently new, and what we call the Stochastic Polyak method here is not the same as

the Stochastic Polyak method proposed in [25]. In Section B we detail these differences. In the more common case where
fi(w

∗) = 0, there is consensus that (6) is called the Stochastic Polyak method .
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Proof. The proof follows immediately from (8) and (7) since

∥∥∇hi,t(wt)∥∥2 (8)
=

(fi(w)− fi(wt))2
‖∇fi(wt)‖4

∥∥∇fi(wt)∥∥2 = (fi(w
t)− fi(w∗))2
‖∇fi(wt)‖2

(8)
= 2hi,t(w

t).�

In Section E we will exploit this SGD viewpoint and the growth property in Lemma 1 to prove the
convergence of SP. But first we develop new variants of SP that do not require knowing the fi(w∗)’s.

3. Targeted Stochastic Polyak Steps

Now suppose that we do not know fi(w
∗) for i = 1, . . . , n. Instead, we only have a target value for which

we would like the total loss to reach.

Assumption 1 (Target) There exists a target value τ ≥ 0 such that every w∗ ∈ W∗ is a solution to the
nonlinear equation

f(w) =
1

n

n∑
i=1

fi(w) = τ. (12)

Using Assumption 1 we develop new variants of the SP as follows. First we re-write (12) by introducing
auxiliary variables αi ∈ R for i = 1, . . . , n such that

1

n

n∑
i=1

αi = τ, (13)

fi(w) = αi, for i = 1, . . . , n. (14)

This reformulation exposes the ith loss function (and thus the ith data point) as a separate equation. Because
each loss (and associated data point) is on a separate row, applying a subsampled Newton-Raphson method
results in an incremental method, as we show next.

Let wt ∈ Rd and αt = (αt1, . . . , α
t
n) ∈ Rn be the current iterates. At each iteration we can either

sample (13) or one of the equations (14). We then apply a Newton-Raphson step using just this sampled
equation. For instance, if we sample one of the equations in (14), we first linearize in w and αi around the
current iterate and set this linearization to zero, which gives

fi(w
t) +

〈
∇fi(wt), w − wt

〉
= αi. (15)

Projecting the previous iterates onto this linear equation gives

wt+1, αt+1
i = argmin

w∈Rd,αi∈R

∥∥w − wt∥∥2 + ∥∥αi − αti∥∥2 subject to fi(wt) +
〈
∇fi(wt), w − wt

〉
= αi.

The solution3 to the above is given by the updates in lines 8 and 9 in Algorithm 1 when γ = 1.
Alternatively, if we sample (13), projecting the current iterates onto this constraint gives

αt+1 = argminα∈Rn
∥∥α− αt∥∥2 subject to

1

n

n∑
i=1

αi = τ. (16)

3. Proven in Lemma 6.
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The closed form soution to (16) is given in line 6 in Algorithm 1 when γ = 1. In Algorithm 1 we give
the complete pseudocode of the subsampled Newton-Raphson method applied to (14). We refer to this
algorithm as the the Target Stochastic Polyak method, or TAPS for short.

Algorithm 1 TAPS: TArgetted Stochastic Polyak Step
Inputs: target τ ≥ 0 and stepsize γ > 0
Initialize: w0 = 0, α0

i = α0 = 0 for i = 1, . . . , n
for t = 0, . . . , T − 1 do

Sample i ∈ {1, . . . , n+ 1} according to some law
if i = n+ 1 then

αt+1
j = αtj + γ(τ − αt), for j = 1, . . . , n where αt = 1

n

∑n
i=1 α

t
i.

else
αt+1
i = αti + γ

fi(w
t)− αti

‖∇fi(wt)‖2 + 1

wt+1 = wt − γ fi(w
t)− αti

‖∇fi(wt)‖2 + 1
∇fi(wt).

Output: wT

Remark 2 (TAPS stops at the solution) Algorithm 2 stops when it reaches the solution. That is, if wt =
w∗ and αti = fi(w

∗) for all i, then both lines 8 and 9 have no affect on w or the αi’s. Furthermore
τ = αt := 1

n

∑n
i=1 α

t
i and consequently the αi’s are no longer updated in line 6. This natural stopping is a

sanity check that SGD does not satisfy.

3.1. The SGD viewpoint

The TAPSmethod in Algorithm 1 can also be cast as an online SGD method. To see this, first we re-write (7)
as the minimization of an auxiliary function

min
w∈Rd,α∈Rn

ht(w,α) :=
1

n+ 1

(
n∑
i=1

1

2

(fi(w)− αi)2
‖∇fi(wt)‖2 + 1

+
n

2
(α− τ)2

)
. (17)

In the following lemma we show that minimizing (17) is equivalent to minimizing (1).

Lemma 3 Let Assumption 1 hold. Every stationary point of (17) is a stationary point of (1). Furthermore,
every minimizer (w∗, α∗) ∈ Rd+n of (17) is such that w∗ is a minima of (1) and

α∗i = fi(w
∗). (18)

Consequently we have that ht(w∗, α∗) = 0.

The proof of this lemma, and all subsequent lemmas are in the appendix in Section G. Due to Lemma 3 we
can focus on minimizing (17). Furthermore, note from Lemma 3 we have that the minimizer of (17) does
not depend on t, despite the dependence of the objective ht(w,α) on t.

Since (17) is an average of (n+1) terms we can apply an online SGD method. To simplify notation, for
i = 1, . . . , n let

hi,t(w,α) :=
1

2

(fi(w)− αi)2
‖∇fi(wt)‖2 + 1

and hn+1,t(w,α) :=
n

2
(α− τ)2. (19)
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Note that despite our notation hn+1,t(w,α) does not in fact depend on t or w. We do this for notational
consistency.

Let γ > 0 be the learning rate. Starting from any w0 and with α0
i = 0 for all i, at each iteration t we

sample an index it ∈ {1, . . . , n+ 1}. If it 6= n+ 1 then we sample hit,t and update

wt+1 = wt − γ∇whit,t(wt, αt)
(19)
= wt − γ fit(w

t)− αti
‖∇fi(wt)‖2 + 1

∇fit(wt) (20)

αt+1
i = αti − γ∇αihit,t(wt, αt)

(19)
= αti + γ

fit(w
t)− αti

‖∇fit(wt)‖2 + 1
. (21)

Thus we have that (20) and (21) are equal to lines 9 and 8 in Algorithm 1, respectively. Alternatively if
it = n+ 1 then we sample hn+1,t and our SGD step is given by

αt+1 = αt − γ∇αhn+1,t(w
t, αt)

(19)
= αt − γ(αt − τ) (22)

which is equal to line 6 in Algorithm 1.
We rely on this SGD interpretation of the TAPS method to provide a convergence analysis in Section E

(specialized to TAPS in Section I). Key to this forthcoming analysis, is the following property.

Lemma 4 (Growth) The functions hi,t(w) defined in (19) satisfy∥∥∇hi,t(wt, α)∥∥2 = 2hi,t(w
t, α), for i = 1, . . . , n+ 1. (23)

Consequently the function ht(w,α) in (17) satisfies

1

n+ 1

n∑
i=1

∥∥∇hi,t(wt, α)∥∥2 = 2ht(w
t, α). (24)

In the next section we completely remove Assumption 1 to develop a stochastic method that records
only function values and needs no prior information on fi(w∗) or f(w∗).

4. Moving Targeted Stochastic Polyak Steps

Here we dispense of Assumption 1 and instead introduce τ as a variable. Our objective is to design a moving
target variant of the TAPS method that updates the target τ in a such a way that guarantees convergence.
To design this moving target variant, we rely on the SGD online viewpoint. Consider the auxiliary objective
function

min
w∈Rd,α∈Rn,τ∈R

ht(w,α, τ) :=
1

n+ 1

(
n∑
i=1

1− λ
2

(fi(w)− αi)2
‖∇fi(wt)‖2 + 1

+
1− λ
2

n(α− τ)2 + λ

2
τ2

)
, (25)

where λ > 0 is a dampening parameter. Note that for λ = 0 we recover the same auxiliary function of the
TAPS method in (17).

Lemma 5 Every stationary point of (25) is a stationary point of (1). Finally if f(w) ≥ 0 and (w∗, α̂, τ̂) is
a minima of (25) then w∗ is a minima of (1).

Since minimizing (25) is equivalent to minimizing (1), we can focus on solving (25). Following the
same pattern from the previous sections, we will minimize the sum of (n+ 1) terms in (25) using SGD. We
refer to the resulting algorithms as MOTAPS, and provide it’s detailed derivation in Section D. MOTAPS is
similar to TAPS but with an additional of target variable τ . The complete pseudocode of MOTAPS can be
found in the appendix in Algorithm 2.
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Figure 1: Comparison of SP, TAPS and MOTAPS on, from left to right, duke logistic regression, CIFAR [22],
SVHN [27] and IWSLT14 [5]. The benchmark method and test error for

5. Conclusions and Contributions

We conclude by highlighting some of our contributions.

New perspectives and analysis of Stochastic Polyak. We provide new viewpoints of the SP method: 1)
as a subsampled Newton method, 2) as a type of online SGD method.

Moving Targetted Stochastic Polyak. By leveraging the subsampled Newton viewpoint, we develop a
new variant of the SP method that does not rely on the interpolation assumption. Instead, our new TArgetted
stochastic Polyak Stepsize (TAPS) method assumes that f(w∗) is known. TAPS uses n auxiliary scalar
variables that track the evolution of the individual function values fi(w). Using the SGD viewpoint of SP,
we then propose the Moving Targetted Stochastic Polyak (MOTAPS), that does not even require knowledge
of f(w∗). MOTAPS has the same n auxiliary scalars as TAPS plus one additional variable that tracks the
global loss f(w).

Unifying Convergence Theory. We prove that all three of our methods SP, TAPS and MOTAPS can be
interpreted as variants of online SGD, and we use this to establish a unifying convergence theorem for all
three of these methods. Furthermore, we show how theses variants of online SGD enjoy a remarkable growth
property that greatly facilitates a proof of convergence. Indeed, we present a single convergence theorem
(Theorem 10) that holds for these three methods by using this online SGD viewpoint and a star-convexity
assumption [17, 23]. Star convex functions are a class of non-convex functions that include the loss function
of some neural networks along the path of SGD [21, 38], several non-convex loss functions for generalized
linear models [23], and learning linear dynamical systems [15].4

Competitive experimental results. We also show on several convex and non-convex learning problems
how MOTAPS is competitive with the relevant benchmarks. See Figure 1 for a sub-selection of these exper-
iments, and see Section F for the details on these experiments. Both TAPS and MOTAPS show favorable
results compared to SP on all three problems. On the computer vision datasets, neither method reaches
the generalization performance of SGD with a highly tuned step-wise learning rate schedule (95.2% for
CIFAR10, 95.9% on SVHN). On the IWSLT14 problem, both TAPS and MOTAPS out-perform Adam [19]
which achieved a 2.69 test loss and is the gold-standard for this task.

4. To be precise, the proof in [15] relies on a quasi-convex assumption, which is a slight relaxation over star-convex functions be
introducing a relaxing parameter.
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Appendix
The Appendix is organized as follows: In Section A we provide the related background to our methods.
In Section C, we give some additional lemmas used to establish the closed form update of the methods.
In Section D we present the detailed derivation of MOTAPS which was omitted from the main paper due.
In Section G we present the missing proofs of the lemmas and theorems. We then present our unifying
convergence theorem for SP, TAPS and MOTAPS in Section E. In Sections H, I and J we then discuss the
consequences of our unifying convergence theorem to the SP, TAPS and MOTAPS method, respectively. We
present detailed numerical experiments in Section F. Finally, in Section K and L we give further details on
our implementations of the methods and the numerical experiments.
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Appendix A. Background

Developing methods that adapt the stepsize using information collected during the iterative process is now
a very active area of research. Adaptive methods such as AdaGrad [10] and Adam [20] have a step size that
adapts to the scaling of the gradient, and thus are generally easier to tune than SGD, and have now become
staples in training DNNs (deep neural networks). While the practical success of AdaGrad and Adam are
undeniable, there lacks a fundamental understanding of why these methods work so well, particularly on
models that interpolate data such as DNNs.

Recently a new family of adaptive methods based on the Polyak step size [29] has emerged, including
the stochastic Polyak step size (SPS) method [25, 28] and ALI-G [4]. The Stochastic Polyak method (SP) is
also an adaptive method, since it adjusts its step size depending on both the current loss value and magnitude
of the stochastic gradient. Under the interpolation condition, the SPS method converges sublinearly under
convexity [25] and star-convexity [13], and linearly under strong convexity and the PL condition [13, 25].
Recently in [25] the authors proposed the SPSmax method, which is a variant of SP that caps large stepsizes
which greatly helps to stablize the convergence of SP. Prior to this, the ALI-G method [4] can be interpreted
as dampened version of SPSmax method with follow-up work highlighting the importance of momentum in
accelerating these methods in practice [24].

Our derivation of SP as a projection in (3) shows that SP can be interpreted as a extension of the
passive-aggressive methods to nonlinear models [7]. Indeed, the passive aggressive methods apply the same
projection in (3) but with the constraint fi(w) = 0. This projection has a closed form solution when fi is a
hinge loss over a linear model, which was the setting where passive-aggressive models were first developed
and most applied.

Another related set of methods are the model based methods in [2], where each new iteration is the result
of minimizing the sum of a model of fi(w) and the norm squared distance to a prior point, that is

wt+1 = argminw∈Rd

{
ft,i(w) +

1

2

∥∥w − wt∥∥2} , (26)

where ft,i(w) is some local model of fi(w) such that ft,i(wt) = fi(w
t). This model includes lineariza-

tions of fi(w) as a special case. The SPSmax method [25] is in fact a special case of the model based
methods (26), where-in the model is given by the positive part of a local linearization, that is

ft,i(w) = max{fi(wt) +
〈
∇fi(wt), w − wt

〉
, 0}. (27)
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Using the positive part is justified for non-negative loss functions. This connection was first noted in [4].
Another promising direction for adaptive methods is to use a line search that works with stochastic

gradient type methods [33, 37].

Appendix B. Comparing SP to SPS given in [25, 28]

The SP method given in (6) is closely related to the SPS method [25, 28] given by

wt+1 = wt − fi(w
t)− f∗i

‖∇fi(wt)‖2
∇fi(wt), (28)

where f∗i := infw fi(w) for i = 1, . . . , n. Note that the only difference between (28) and the SP method (6)
is that fi(w∗) has been replaced by f∗i . If the Interpolation Assumption 3 holds then f∗i = fi(w

∗) and the
two methods are equal. Outside of the interpolation regime, these two methods are not necessarily the same,
and this is where their difference lies.

In terms of convergence theory, the difference is only cosmetic, since the SPS (28) method only con-
verges when f∗i = fi(w

∗), that is, when the two methods are equal. Indeed, let

σ :=
1

n

n∑
i=1

(fi(w
∗)− f∗i ).

Note that σ ≥ 0 by the definition of f∗i . According to Theorems 3.1 and 3.4 in [25] the SPS method (28)
converges to a neighborhood of the solution with a diameter that depends on σ. Thus SPS converges to the
solution when σ = 0. This only happens when the interpolation Assumption 3 holds. Putting convergence
aside, the SPS method (28) has the advantage that for many machine learning f∗i is known. This is in
contrast to the SP method (6), where fi(w∗) is not known for most applications.

Appendix C. Auxiliary Lemmas

Lemma 6 The solution to

wt+1, αt+1
i = argmin

w∈Rd,αi∈R

∥∥w − wt∥∥2 + ∥∥αi − αti∥∥2
subject to fi(wt) +

〈
∇fi(wt), w − wt

〉
= αi (29)

is given by

αt+1
i = αti +

fi(w
t)− αti

‖∇fi(wt)‖2 + 1

wt+1 = wt − fi(w
t)− αti

‖∇fi(wt)‖2 + 1
∇fi(wt). (30)

Proof Introducing the variable x = [w, αi] ∈ Rd+1 we can re-write (31) as

xt+1 = argminx
∥∥x− xt∥∥2

subject to
[
∇fi(wt)
−1

]>
x = −fi(wt) +

〈
∇fi(wt), wt

〉
. (31)
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Using Lemma 7 (just below) we have that the solution to the above is given by

xt+1 = xt +

[
∇fi(wt)
−1

]
1

‖∇fi(wt)‖2 + 1
(−fi(wt) +

〈
∇fi(wt), wt

〉
− (
〈
∇fi(wt), wt

〉
− αti))

Substituting out x = [w, αi] and simplifying we have[
wt+1

αt+1
i

]
=

[
wt

αti

]
+

[
∇fi(wt)
−1

]
αti − fi(wt)
‖∇fi(wt)‖2 + 1

,

which is equal to (30).

Lemma 7 The solution to

x+ = argminx∈Rd
∥∥x− x0∥∥2

subject to a>x = b (32)

is given by
x+ = x0 +

a

‖a‖2
(b− a>x0) (33)

Proof Substitute z = x− x0 and consider the resulting problem

z+ = argminz∈Rd ‖z‖2

subject to a>z = b− a>x0 (34)

One of the properties of the pseudo-inverse is that the least norm solution to the linear equation in (34) is
given by

z+ = a+>(b− a>x0), (35)

where a+> is the pseudo-inverse of a>. It is now easy to show that a+> = a
‖a‖2 is the pseudo-inverse 5 of

a. Substituting back x and the definition of a+> in (35) gives (33).

C.1. Linear Algebra

Lemma 8 For any matrices A,B, and C of appropriate dimensions we have that∥∥∥∥[ A C
C> B

]∥∥∥∥ ≤ ‖A‖+ 2 ‖C‖+ ‖D‖ (36)

Proof Let [vw] we a vector of unit norm. It follows that∥∥∥∥[ A C
C> B

] [
v
w

]∥∥∥∥ =

√
‖Av + Cw‖2 + ‖C>v +Bw‖2

≤ ‖Av + Cw‖+
∥∥∥C>v +Bw

∥∥∥
≤ ‖Av‖+ ‖Cw‖+

∥∥∥C>v∥∥∥+ ‖Bw‖
≤ ‖A‖ ‖v‖+ ‖C‖ ‖w‖+ ‖C‖ ‖v‖+ ‖B‖ ‖w‖
≤ ‖A‖+ 2 ‖C‖+ ‖D‖ ,

5. This follows by the definition of pseudo-inverse since a+>a>a+> = a+>, a>a+>a> = a> and both a>a>+ and a>+a>

are symmetric.
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where in the first inequality we used that, for any a, b > 0 we have that
√
a+ b ≤ √a+

√
b, and in the last

inequality we used that ‖w‖ , ‖v‖ ≤ ‖[w v]‖ = 1.

Appendix D. MOTAPS detailed derivation

Here we provide the detailed derivation of the MOTAPS algorithm. In applying SGD, we partition the
function (25) into n+ 1 terms, where the first n terms are given by

hi,t(w,α, τ) =
1− λ
2

(fi(w)− αi)2
‖∇fi(wt)‖2 + 1

for i = 1, . . . , n.

The (n+ 1)th term is given by

hn+1,t(w,α, τ) :=
(1− λ)n

2
(α− τ)2 + λ

2
τ2 thus

∇τhn+1,t(w,α, τ) = (1− λ)n(τ − α) + λτ. (37)

Sampling the (n+ 1)th term and taking a gradient step to update τ t ∈ R gives the following update

τ t+1 = τ t − γ∇τhn+1,t(w,α, τ)|(w,α,τ)=(wt,αt,τ t)

=
(
1− γ (λ+ (1− λ)n)︸ ︷︷ ︸

:=γτ

)
τ t + γ(1− λ)nαt (38)

= (1− γτ )τ t + γτ
(1− λ)n

λ+ (1− λ)nα
t (39)

where we have introduced a separate learning rate γτ for updating τ . We find that a separate learning rate γτ
is needed for updating τ , otherwise to keep τ from being negative in (38) we would need to restrict γ to be
less than 1

λ+(1−λ)n which can be small when λ is close to zero. See Algorithm 2 for the resulting method.
We refer to this method as the Moving Target Stochastic Polyak Stepsize or MOTAPS for short.

The dampening parameter λ controls how fast the stochastic gradients of ht(w,α, τ) can grow, as we
show next. As a consequence, later on we will see that the λ will later control the rate of convergence of
MOTAPS.

Lemma 9 Consider ht(w,α, τ) given in (25). If

λ ≤ 2n+ 1

2n+ 3
< 1 (40)

then
1

n+ 1

n+1∑
i=1

∥∥∇hi,t(wt, α, τ)∥∥2 ≤ 2(1− λ)(2n+ 1)ht(w
t, α, τ). (41)

Next we establish a general convergence theory through which we will analyse SP, TAPS and MOTAPS.
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Algorithm 2 MOTAPS: Moving TArgetted Stochastic Polyak Step
1: Inputs: Dampening λ ∈ [0, 1] and learning rates γ, γτ ∈ [0, 1]
2: Default: γ = 0.9, γτ = λ = 0.1, w0 = 0, α0

i = α0 = 0 = τ for i = 1, . . . , n
3: for t = 0, . . . , T − 1 do
4: Sample i ∈ {1, . . . , n+ 1} according to some law
5: if i = n+ 1 then
6: αt+1

j = αtj + γ(τ − αt), for j = 1, . . . , n. . Updating all α’s

7: τ = (1− γτ )τ + γτ
(1−λ)n

λ+(1−λ)nα . Updating target τ

8: αt+1 = αt + γ(τ − αt)
9: else

10: αt+1
i = αti + γ

fi(w
t)− αti

‖∇fi(wt)‖2 + 1
. Updating αi

11: wt+1 = wt − γ fi(w
t)− αti

‖∇fi(wt)‖2 + 1
∇fi(wt). . Updating w

12: αt+1 = αt +
1

n
(αt+1

i − αti)
13: Output: wT

Appendix E. Convergence Theory

All of our methods presented thus far can be cast as a particular variant of online SGD. Indeed, SP, TAPS
and MOTAPS given in (6), Algorithms 1 and 2, respectively, are equivalent to applying SGD to (7), (17)
and (25), respectively. We will leverage this connection to provide a convergence theorem for these three
methods. Throughout our proofs we use

min
z
ht(z) :=

1

n

n∑
i=1

hi,t(z) (42)

as the auxiliary function in consideration. Here z represents the variables of the problem. For instance, for
the SP method (6) we have that z = w ∈ Rd, for TAPS in Algorithm 1 we have that z = (w,α) ∈ Rn+d
and finally for MOTAPS in Algorithm 2 we have that z = (w,α, τ) ∈ Rn+d+1.

Consider the online SGD method applied to minimizing (42) given by

zt+1 = zt − γ∇hit,t(zt), (43)

where it ∈ {1, . . . , n} is sampled uniformly and i.i.d at every iteration and γ > 0 is a step size. For each
method we provide a growth condition (see Lemmas 1, 4, 9) that we now state as an assumption.

Assumption 2 There exists G ≥ 0 such that

E
[∥∥∇hit,t(zt)∥∥2] ≤ 2Ght(z

t). (44)

E.1. General Convergence Theory

Here we present two general convergence theorems that will then be applied to our three algorithms. The
first theorem relies on a weak form of convexity known as star convexity.
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Theorem 10 (Sublinear) Suppose Assumption 2 holds with G > 0. Let γ < 1/G and suppose there exists
z∗ such that ht is star-convex at zt and around z∗, that is

ht(z
∗) ≥ ht(z

t) +
〈
∇ht(zt), z∗ − zt

〉
, (45)

then we have that

min
t=1,...,k

E
[
ht(z

t)− ht(z∗)
]
≤ 1

k

1

2γ(1−Gγ)E
[∥∥z0 − z∗∥∥2]+ Gγ

1−Gγ
1

k

k∑
t=1

ht(z
∗). (46)

Our second theorem relies on a weakened form of strong convexity.

Theorem 11 (Linear Convergence) Suppose Assumption 2 holds withG > 0. Let γ ≤ 1/G. If there exists
µ > 0 and z∗ such that ht is µ–strongly star–convex along zt and around z∗, that is

ht(z
∗) ≥ ht(z

t) +
〈
∇ht(zt), z∗ − zt

〉
+
µ

2

∥∥z∗ − zt∥∥ , then (47)

E
[∥∥zt+1 − z∗

∥∥2] ≤ (1− γµ)t+1
∥∥z0 − z∗∥∥2 + 2Gγ2

t∑
i=0

(1− γµ)iE [hi(z
∗)] . (48)

In the next three sections we specialize these theorems, and their assumptions, to the SP, TAPS and MOTAPS
methods, respectively. In particular, in Section E.2 we show how two previously known convergence results
for SP are special cases of Theorem 10 and 11. In Section E.3 we show that the auxiliary functions of TAPS
and MOTAPS in (17) and (25) are locally strictly convex under a small technical assumption. In Section E.4
we finally prove convergence of MOTAPS.

E.2. Convergence of SPS

Before establishing the convergence of SP, we start by stating a slightly more general interpolation assump-
tion as follows.

Assumption 3 (Interpolation) We say that the interpolation assumption holds when

∃w∗ ∈ W∗ such that fi(w
∗) = min

w∈Rd
fi(w), for i = 1, . . . , n. (49)

Here we specialize Theorems 10 and 11 to the SP method (6). Both of these theorems rely on assuming that
the proxy function ht is star-convex or strongly star-convex. Thus first we establish sufficient conditions for
this to hold.

Lemma 12 Let the interpolation Assumption 3 hold. If every fi is star convex along the iterates wt given
by (6), that is,

fi(w
∗) ≥ fi(w) + 〈∇fi(w), w∗ − w〉 (50)

then hi,t(w) is star convex along the iterates wt and around w∗, that is.

hi,t(w
∗) ≥ hi,t(wt) +

〈
∇whi,t(wt), w∗ − w

〉
. (51)

Furthermore if fi is µi-strongly convex and Li–smooth then ht(w) is 1
2n

∑
i=1

µi
Li

–strongly star-convex,
that is

ht(w
∗) ≥ ht(wt) +

〈
∇wht(wt), w∗ − w

〉
+

1

4n

n∑
i=1

µ

Li

∥∥wt − w∗∥∥2 . (52)
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Using Lemma 12, we can now prove convergence of SP as a corollaries of Theorem 10 and 11.

Corollary 13 (Convergence of SPS) If γ < 1 and every fi(w) is star-convex along the iterates wt given
by (6) then

1

k

k∑
t=0

1

2n

n∑
i=1

E

[(
fi(w

t)− fi(w∗)
‖∇fi(wt)‖

)2
]
≤ 1

k

1

2γ(1− γ)E
[∥∥w0 − w∗

∥∥2] . (53)

Furthermore if the interpolation Assumption 3 holds and if each fi(w) is Li–smooth then

min
t=0,...,k

E
[
f(wt)− f∗

]
≤ 1

k

Lmax

2γ(1− γ)E
[∥∥w0 − w∗

∥∥2] , (54)

where Lmax := maxi=1,...,n Li.

The resulting convergence in (54) has already appeared in Theorem 4.4 in [13]. There in [13] the authors
use a carefully proof technique that relies on a new notion of smoothness (Lemma 4.3 in [13]). But here we
have that 13 is rather a direct consequence of interpreting SP as a type of SGD method.

Corollary 14 If γ ≤ 1, the interpolation Assumption 3 holds, and every fi is Li–smooth and µ–strongly
star-convex then the iterates wt given by (6) converge linearly according to

E
[∥∥wt+1 − w∗

∥∥2] ≤ (
1− γ 1

2n

n∑
i=1

µi
Li

)t+1 ∥∥w0 − w∗
∥∥2 . (55)

This corollary shows that Theorem D.3 in [13] is a special case of Theorem 11, and again a direct result of
interpreting SP as a type of SGD method. The rate of convergence in (55) is also tighter than the analysis

given in Theorem 3.1 in [25] where the rate is 1− γ
2

1
n

∑n
i=1 µi

Lmax
.

E.3. Convergence of TAPS

Here we explore the consequences of Theorems 10 and 11 to the TAPS method. To this end, let z := (w,α)
and let

ht(z) = ht(w,α) :=
1

n+ 1

(
n∑
i=1

1

2

(fi(w)− αi)2
‖∇fi(wt)‖2 + 1

+
n

2
(α− τ)2

)
. (56)

As a first step, we need to determine sufficient conditions for this auxiliary function ht of TAPS to be star-
convex. Unfortunately this turned out to be very challenging. This is because the star-convexity ht is not
a consequence of fi being star-convex, nor the converse. Instead, star-convexity of ht translates to new
nameless assumptions on the fi functions. As an insight into this difficulty, supposing that each fi is convex
is not enough to guarantee that ht is convex. As a simple counterexample, let n = 1 and f1(w) = w2. Thus
τ = 0 and from (56) we have

ht(z) =
1

2

(
1

2

(w2 − α1)
2

‖wt‖2 + 1
+

1

2
α2
1

)
.

It is easy to show that for α1 large enough, the hessian of ht has a negative eigenvalue, and thus ht is
non-convex. Conversely, ht can have local convexity even when the underlying loss function is arbitrarily
non-convex, as we show in the next lemma and corollary.
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Lemma 15 (Locally Convex) Consider the iterates of Algorithm 2. Let (w,α) ∈ Rd+n and consider
ht(w,α) defined in (56) . Assume that the gradients at w span the entire space, that is

span {∇f1(w), . . . ,∇fn(w)} = Rd, ∀w. (57)

If Assumption 1 holds, every fi(w) for i = 1, . . . , n is twice continuously differentiable and

1

n+ 1

n∑
i=1

∇2fi(w
t)

fi(w
t)− αti

‖∇fi(wt)‖2 + 1
� 0, (58)

then ht is strictly convex at (wt, αt) with

∇2ht(w
t, αt) � 0.

The condition on the span of the gradients (133) typically holds in the setting where we have more data
then dimensions (features). Fortunately this occurs in precisely the setting where TAPS makes most sense
since it makes sense to apply TAPS when f∗ = τ > 0. This can only occur in the underparametrized
setting, where we have more data than features.

The condition in Lemma 15 that is difficult to verify is (58). A sufficient condition for (58) to hold is

∇2fi(w
t)(fi(w

t)− αti) � 0. (59)

Since αti are essentially tracking fi(wt) (see line 8 in Algorithm 1 ), we can state (59) in words as: if αti is
underestimating fi(wt) then fi should be convex at wt, and conversely if αti is overestimating fi(wt) then
fi should be concave at wt.

There is one point where (58) holds trivially, and that is at every point such that αi = fi(w). This
includes every minimizer (w∗, α∗) since by Lemma 3 we have that α∗i = fi(w

∗). Consequently, as we state
in the following corollary, under minor technical assumption, we have that ht(w,α) has no degenerate local
minimas. This shows that ht has some local convexity.

Corollary 16 ( Locally Strictly Convex TAPS) Consider the iterates of the TAPS method given in Algo-
rithm 1. Let w∗ be a minimizer of (1) and let α∗i = fi(w

∗) for i = 1, . . . , n. Assume that the gradients at
w∗ span the entire space, that is

span {∇f1(w∗), . . . ,∇fn(w∗)} = Rd. (60)

If Assumption 1 holds and if every fi(w) for i = 1, . . . , n is twice continuously differentiable then∇2ht(w,α) �
0 and thus ht(w,α) is strictly convex at (w∗, α∗).

Next we specialize Theorem 10 to the TAPS method in the following corollary.

Corollary 17 (Sublinear Convergence of TAPS)
Let ht(z) in (17) be star–convex (107) around z∗ = (w∗, α∗) and along the iterates zt = (wt, αt) of

Algorithm 1. If γ < 1 and fi(w) is Lmax–Lipschitz then

min
t=1,...,k

1

n+ 1

(
n∑
i=1

E
[
fi(w

t)− αti
]2

Lmax + 1
+ E

[
αt − τ

]2) ≤ 1

k

1

γ(1− γ)E
[∥∥w0 − w∗

∥∥2] . (61)

Alternatively, if ht(z) is µ–strongly star–convex (111) then

E

[∥∥wt − w∗∥∥2 + n∑
i=1

∥∥αti − fi(w∗)∥∥2
]
≤ (1− γµ)t

(∥∥w0 − w∗
∥∥2 + n∑

i=1

∥∥α0
i − fi(w0)

∥∥2) . (62)
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E.4. Convergence of MOTAPS

Here we explore the consequences of Theorems 10 and 11 specialized to Algorithm 2. In this case, the
proxy function ht(z) = ht(w,α, τ) is given

ht(z) :=
1

n+ 1

(
n∑
i=1

1− λ
2

(fi(w)− αi)2
‖∇fi(wt)‖2 + 1

+
n(1− λ)

2
(α− τ)2 + λ

2
τ2

)
. (63)

Before applying Theorems 10 and 11 we should verify when ht(z) is star-convex or convex. This turns
out to be much the same task as verifying that the auxiliary function for TAPS given in (56) is star-convex.
This is because the only difference between the two functions is that (140) has an additional λ

2 τ
2 which

adds strong convexity in the new τ dimension. Thus the discussion, and results around Lemma 15 and
Corollary 16 remain largely true for (63). That is, we are only really able to establish when ht is locally
convex.

For the remainder of this section we impose that the dampening parameter satisfies

λ ≤ 2n+ 1

2n+ 3
< 1, (64)

so that we can apply Lemma 9. In our forth coming corollaries we will prove convergence of MOTAPS to
the point z∗ = (w∗, α∗, τ∗) where w∗ is a minimizer of (1) and

α∗i := fi(w
∗) and τ∗ = f(w∗), for i = 1, . . . , n. (65)

First we develop a corollary based on Theorem 10.

Corollary 18 Let λ ∈ [0, 1] satisfy (64) and let zt := (wt, αt, τt) be the iterates of Algorithm 2 when using
a stepsize γ = 1

2(1−λ)(2n+1) and γτ = γ (λ+ (1− λ)n) . If ht(z) is star convex along the iterates zt and
around z∗ := (w∗, α∗, τ∗) then

min
t=0,...,k

E
[
ht(z

t)− ht(z∗)
]
≤ 2(1− λ)(2n+ 1)

k

∥∥z0 − z∗∥∥2 + λf(w∗)2

2(n+ 1)
. (66)

Furthermore, if fi is Lmax–Lipschitz then

1

n+ 1
E

[
n∑
i=1

1

2

(fi(w
t)− αti)2

Lmax + 1
+
n

2
(αt − τ t)2 + λ

2

(
(τ t)2 − f(w∗)2

)]

≤ 2(1− λ)(2n+ 1)

k

∥∥z0 − z∗∥∥2 + λf(w∗)2

2(n+ 1)
. (67)

This Corollary 18 shows that (fi(wt), αt, τ t) converges to (αti, τ
t, f(w∗)) sublinearly up to an additive error

λf(w∗)2

2(n+1) which is controlled by λ: When λ is very small, this additive error is very small. But λ also controls
the speed of convergence. Indeed for λ close to 1 the method converges faster upto this additive error. Thus
λ controls a trade-off between speed of convergence and radius of convergence.

The next corollary is based on Theorem 11.

Corollary 19 Let λ ∈ [0, 1] satisfy (64) and let zt := (wt, αt, τt) be the iterates of Algorithm 2 when
using a stepsize γ = 1

2(1−λ)(2n+1) and γτ = γ (λ+ (1− λ)n) . If ht(z) is µ–strongly star–convex along the
iterates zt and around z∗ := (w∗, α∗, τ∗) then

E
[∥∥zt+1 − z∗

∥∥2] ≤ (
1− µ

(1− λ)(2n+ 1)

)t+1 ∥∥z0 − z∗∥∥2 + λf(w∗)2

µ(n+ 1)
. (68)
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In both Corollary 18 and 19 the λ parameter controls a trade-off between speed of convergence and an
additive error term. For example, for the largest value λ = 2n+1

2n+3 (due to (64)) we have that (68), after some
simplifications, gives

E
[∥∥zt+1 − z∗

∥∥2] ≤ (
1− µ/2

)t+1 ∥∥z0 − z∗∥∥2 + f(w∗)2

µ(n+ 1)
.

Thus the convergence rates is now 1−µ/2 and independent of n. But the additive error terms f(w∗)2

µ(n+1) is now
larger. On the other end, as λ → 0 the rate of convergence tends to (1 − µ

2n+1), which now depends on n,
and the additive error term tends to zero.

By controlling this trade-off, next we use Corollary 33 to establish a total complexity of Algorithm 2.

Theorem 20 Consider the setting of Corollary 19. For a given ε > 0 it follows that

t ≥ (1− λ)(2n+ 1)

µ
log

(
2
∥∥z0 − z∗∥∥2

ε

)
=⇒ E

[∥∥zt+1 − z∗
∥∥2] < ε

2
+
λf(w∗)2

µ(n+ 1)
. (69)

Consequently if we could choose

λ < min

{
µ(n+ 1)

f(w∗)2
ε

2
,
2n+ 1

2n+ 3

}
(70)

then

t ≥ 2n+ 1

µ
log

(
2
∥∥z0 − z∗∥∥2

ε

)
=⇒ E

[∥∥zt+1 − z∗
∥∥2] < ε. (71)

Proof By stand arguments using the properties of logarithm we have that

t ≥ (1− λ)(2n+ 1)

µ
log

(
2

ε

)
=⇒

(
1− µ

(1− λ)(2n+ 1)

)t+1
<
ε

2
.

See for instance Lemma 11 in [12]. Furthermore, by using (70) we have that

t ≥
(
1− µ(n+ 1)

f(w∗)2
ε

2

)
2n+ 1

µ
log

(
2
∥∥z0 − z∗∥∥2

ε

)
≥ 2n+ 1

µ
log

(
2
∥∥z0 − z∗∥∥2

ε

)
=⇒ E

[∥∥zt+1 − z∗
∥∥2] < ε. (72)

Thus by choosing λ small enough, we can show that the MOTAPS method converges linearly. This is in
stark contrast to SGD where, despite the presence of an additive error when using a constant step size (See
Theorem 1 in [26]), this additive term only vanishes by setting the stepsize to zero. In contrast for MOTAPS
we can set λ arbitrarily small without halting the method.

In practice, we would not know how to set λ using (70) since we would not know f(w∗). Furthermore,
we may not have a particular ε in mind, and instead, prefer to monitor the error and stop when resources are
exhausted. To address both of these concerns, the next theorem offers another way to deal with the additive
error by eventually decreasing the step size.
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Theorem 21 Consider the setting of Corollary 19. For a given ε > 0 if we use an iteration dependent
stepsize in Algorithm 2 given by

γt =


1

(1− λ)(2n+ 1)
if t ≤ 2(2n+ 1)

⌈
1−λ
µ

⌉
(t+ 1)2 − t2
µ(t+ 1)2

if t ≥ 2(2n+ 1)
⌈
1−λ
µ

⌉ (73)

and if

λ ≤ min

{
1− 2µ

2n+ 1
,
2n+ 1

2n+ 3

}
.

then

E
[∥∥zt − z∗∥∥2] ≤ (1− λ)λf(w∗)2

µ2
16

t
+

4(2n+ 1)2

e2t2

⌈
1− λ
µ

⌉2 ∥∥z0 − z∗∥∥2 . (74)

This Theorem 34 relies on knowing µ to set a switching point and the step size in (147). In practice it can
also be difficult to estimate µ, but this theorem is still useful in that, it suggests that at some point in the
execution we should decrease the stepsize

γt = O
(
(t+ 1)2 − t2

(t+ 1)2

)
= O

(
2t+ 1

(t+ 1)2

)
= O

(
1

t+ 1

)
,

much in the same way that SGD is used in practice.

Appendix F. Experiments

F.1. Convex Classification

We first experiment with a classification task using logistic regression. Details of these experiments and the
data sets used are in Section K. For the sake of simplicity, here we test the MOTAPS method in Algorithm 2
with λ = 0.5. To determine a reasonable parameter setting for the MOTAPS methods we performed a
grid search over the two parameters γ and γτ . See Figure 4 for the results of the grid search for an over-
parametrized problem colon-cancer and an under-parametrized problem mushrooms. Through these
grid searches we found that the determining factor for setting the best stepsize was the magnitude of the
regularization parameter σ > 0. If σ was small or zero then γ = 1 and γτ = 0.001 resulted in a good
performance. On the other hand, if σ is large then γ = 0.01 and γτ = 0.9 resulted in the best performance.
This is most likely due to the effect that σ has on the optimal value f(w∗).

F.2. Comparison to Variance Reduced Methods

We compare our methods against SGD, and two variance reduced gradient methods SAG [8, 30] and
SVRG [18] which are arguably among the state-of-the-art methods for minimizing logistic regression. For
setting the parameters for SGD, based on [14] we used the learning rate schedule γt = Lmax/t where Lmax

is the smoothness constant. For SVRG and SAG we used γ = 1/2Lmax. For SP and TAPS we used γ = 1
and approximated fi(w∗) = 0. Because of this the SP is equivalent to the SPS method given in [25]. Fol-
lowing [25] experimental results, we also implemented SP with a max stepsize rule6. For MOTAPS, based

6. In [25] the authors also recommend the use of a further smoothing trick, but we opted for simplicity and chose not to use this
smoothing.
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Figure 2: duke (n, d) = (7130, 44) Left: σ = 0.0. Right: σ = mini=1,...,n ‖xi‖2 /n = 5.06
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Figure 3: mushrooms (n, d) = (62, 2001) Left: σ = 0.0. Right: σ = mini=1,...,n ‖xi‖2 /n = 2.66

Figure 4: The resulting gradient norm of MOTAPS after running 50 epochs on a logistic regression
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Figure 5: Logistic Regression with data set Left: duke (n, d) = (44, 7130) and Right: mushrooms (n, d) =
(8124, 113) with regularization σ = 1/n.

on our observations in the grid search, we used the rule of thumb γ = 1.0/(1 + 0.25σeσ) and γτ = 1− γ.
We compare all the algorithms in terms of epochs (effective passes over the data) in Figure 5. We found
that in under-parametrized problem such as the mushrooms data set in Figure 5, and problems with a large
regularization, SAG and SVRG were often the most efficient methods. For over-parametrized problems
such as duke, with moderate regularization, the MOTAPS methods was the most efficient. Finally, for over-
parametrized problems with very small regularization the SP method was the most efficient, see Section K.2
.

Furthermore MOTAPS has two additional advantages over SAG and SVRG 1) setting the stepsize does
not require computing the smoothness constant and 2) does not require storing a n×d table of gradient (like
SAG) or doing an occasional full pass over the date (like SVRG). We also found that adding momentum to
SP and MOTAPS could speed up the methods. See Section K.3 for details on how we added momentum and
additional experiments.

F.3. Deep learning tasks

We preformed a series of experiments on three benchmark problems commonly used for testing optimization
methods for deep learning. CIFAR10 [22] is a computer vision classification problem and perhaps the most
ubiquitous benchmark in the deep learning. We used a large and over-parameterized network for this task,
the 152 layer version of the pre-activation ResNet architecture [16], which has over 58 million parameters.

For our second problem, we choose an under-parameterized computer vision task. The street-view house
numbers dataset [27] is similar to the CIFAR10 dataset, consisting of the same number of classes, but with
a much larger data volume of over 600k training images compared to 50k. To ensure the network can not
completely interpolate the data, we used a much smaller ResNet network with 1 block per layer and 16
planes at the first layer, so that there are fewer parameters than data-points.

For our final comparison we choose one of the most popular NLP benchmarks, the IWSLT14 english-
german translation task [5], consisting of approximately 170k sentence pairs. This task is relatively small
scale and so overfitting is a concern on this problem. We applied a modern Transformer network with
embedding size of 512, 8 heads and 3/3 encoding/decoding layers.

In each case the minimum loss is unknown so for the TAPSmethod we assume it is 0. Due to a combina-
tion of factors including the use of data-augmentation and L2 regularization, this is only an approximation.
The learning rate for each method was swept on a power-of-2 grid on a single training seed, and the best
value was used for the final comparison, shown over an average of 10 seeds. Error bars indicate 2 standard
errors. L2 regularization was used for each task, and tuned for each problem and method separately also on
a power-of-2 grid. We found that the optimal amount of regularization was not sensitive to the optimization
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Figure 6: Deep learning experiments

method used. Results on held-out test data are shown in Figure 6; training loss plots can be found in the
appendix in Figure 16.

Both TAPS and MOTAPS show favorable results compared to SP on all three problems. On the computer
vision datasets, neither method quite reaches the generalization performance of SGD with a highly tuned
step-wise learning rate schedule (95.2% for CIFAR10, 95.9% on SVHN). On the IWSLT14 problem, both
TAPS and MOTAPS out-perform Adam [19] which achieved a 2.69 test loss and is the gold-standard for this
task.

Appendix G. Missing Proofs

Here we present the missing proofs from the main text.

G.1. Proof of Lemma 3

First note that for the function in (19) we have that

∇whi,t(w,α) =
fi(w)− αi

‖∇fi(wt)‖2 + 1
∇fi(w), ∇αihi,t(w,α) = − fi(w)− αi

‖∇fi(wt)‖2 + 1
, (75)

and ∇αihn+1,t(w,α) = (α− τ). (76)

Proof The stationarity conditions of (17) are given by setting the gradients to zero, which from (76) we
have that

∇wht(w,α) = 0

∇αiht(w,α) = 0, for i = 1, . . . , n

m
1

n+ 1

n∑
i=1

fi(w)− αi
‖∇fi(wt)‖2 + 1

∇fi(w) = 0 (77)

fi(w)− αi
‖∇fi(wt)‖2 + 1

= (α− τ), for i = 1, . . . , n. (78)

If α = τ then from (78) we have that fi(w) = αi for all i, and thus from Assumption 1 we have that w must
be a minimizer of (1), and thus a stationary point.

On the other hand, if α 6= τ, then by substituting (78) into (77) gives

1

n+ 1

n∑
i=1

(α− τ)∇fi(w) =
n(α− τ)
n+ 1

(
1

n

n∑
i=1

∇fi(w)
)

= 0. (79)
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Consequently since α 6= τ, we have 1
n

∑n
i=1∇fi(w) = 0 and thus w is a stationary point of (1).

Finally, if (w∗, α∗) is a minimizer of (17) then by Assumption 1 necessarily ht(w∗, α∗) = 0. Thus
fi(w

∗) = α∗i and α∗ = τ. Thus again by Assumption 1 we have that w∗ must be a minimizer of (1).

G.2. Proof of Lemma 4

Proof First note that ∥∥∇whi,t(wt, α)∥∥2 (76)
=

(
fi(w

t)− αi
‖∇fi(wt)‖2 + 1

)2 ∥∥∇fi(wt)∥∥2 . (80)

Furthermore ∥∥∇αihi,t(wt, α)∥∥2 (76)
=

(
fi(w

t)− αi
‖∇fi(wt)‖2 + 1

)2

. (81)

Consequently adding (80) and (81) gives∥∥∇hi,t(wt, α)∥∥2 =
∥∥∇whi,t(wt, α)∥∥2 + ∥∥∇αihi,t(wt, α)∥∥2

(80)+(81)
=

(
fi(w

t)− αi
‖∇fi(wt)‖2 + 1

)2 (∥∥∇fi(wt)∥∥2 + 1
)

=
(fi(w

t)− αi)2
‖∇fi(wt)‖2 + 1

(19)
= 2hi,t(w

t, α). (82)

Furthermore

‖∇hn+1,t(w,α)‖2 (76)
=

n∑
i=1

(α− τ)2 (19)
= 2hn+1,t(w,α). (83)

Consequently

1

n+ 1

n+1∑
i=1

∥∥∇hi,t(wt, α)∥∥2 (83)+(82)
=

1

n+ 1

n+1∑
i=1

2hi,t(w
t, α) = 2ht(w

t, α).

G.3. Proof of Lemma 5

Lemma 22 Let
α∗i := fi(w

∗) and τ∗ = f(w∗), for i = 1, . . . , n. (84)

It follows that

ht(w
∗, α∗, τ∗) =

λf(w∗)2

2(n+ 1)
. (85)

Furthermore, every stationary point of (25) is a stationary point of (1). Finally if f(w) ≥ 0 and (w∗, α̂, τ̂)
is a minima of (25) then w∗ is a minima of (1).
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Proof Substituting (84) into (25) gives

ht(w
∗, α∗, τ∗) :=

1

n+ 1

λ

2
(τ∗)2 =

λf(w∗)2

2(n+ 1)
.

Each stationary point of (25) satisfies

∇wht(w,α, τ) =
1− λ
n+ 1

n∑
i=1

fi(w)− αi
‖∇fi(wt)‖2 + 1

∇fi(w) = 0, (86)

∇αiht(w,α, τ) =
1− λ
n+ 1

αi − fi(w)
‖∇fi(wt)‖2 + 1

+
1− λ
n+ 1

(α− τ) = 0, (87)

∇τht(w,α, τ) = (1− λ)n(τ − α) + λτ = 0. (88)

From the last equation we have that

α− τ =
λ

(1− λ)nτ, (89)

and consequently substituting out α− τ in (87) by using (89) gives

∇αiht(w,α, τ) =
1− λ
n+ 1

αi − fi(w)
‖∇fi(wt)‖2 + 1

+
1

n+ 1

λ

n
τ = 0. (90)

Passing the τ term to the other side gives

λ

n
τ = (1− λ) fi(w)− αi

‖∇fi(wt)‖2 + 1
, for i = 1, . . . , n. (91)

This allows us to substitute in (86) giving

∇wht(w,α, τ) =
λτ

n+ 1

(
1

n

n∑
i=1

∇fi(w)
)

= 0. (92)

From this we can conclude that if (w,α, τ) is a stationary point of (25), then w is a stationary point of
our original objective function. Let (w,α, τ) be a stationary point. It follows from (89) that τ = (1−λ)n

(1−λ)n+λα,
and thus after substituting into (25) gives

ht(w,α, τ) :=
1

n+ 1

(
n∑
i=1

1− λ
2

(fi(w)− αi)2
‖∇fi(wt)‖2 + 1

+
n(1− λ)

2
(α− τ)2 + λ

2
τ2

)
.

ht(w,α, τ) =
1

n+ 1

(
n∑
i=1

1− λ
2

(fi(w)− αi)2
‖∇fi(wt)‖2 + 1

+
n(1− λ)

2

(
λ

n(1− λ) + λ
α

)2

+
λ

2

(1− λ)2n2
(n(1− λ) + λ)2

α2

)

=
1− λ
n+ 1

(
n∑
i=1

1

2

(fi(w)− αi)2
‖∇fi(wt)‖2 + 1

+
1

2

nλ

n(1− λ) + λ
α2

)
(93)

Furthermore, τ = (1−λ)n
(1−λ)n+λα substituting into (90) and multiplying the result by (n+ 1) gives

αi − fi(w)
‖∇fi(wt)‖2 + 1

+
λ

n(1− λ) + λ
α = 0, for i = 1, . . . , n.
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This can be re-arranged and written more compactly as the linear system(
D−1 + λ

11>

n(n(1− λ) + λ)

)
α = D−1F, (94)

where

D := diag
(∥∥∇f1(wt)∥∥2 + 1, . . . ,

∥∥∇fn(wt)∥∥2 + 1
)

and

F = (f1(w), . . . , fn(w)) .

Using the Woodbury identity, the solution to the above is given by

α =

(
D−1 + λ

11>

n(n(1− λ) + λ)

)−1
D−1F, (95)

=

(
I−D1

(
n(n(1− λ) + λ)

λ
+ 1>D1

)−1
1>

)
F (96)

=

(
I− λ D11>

n(n(1− λ) + 2λ) + λ
∑n

i=1 ‖∇fi(wt)‖2

)
F. (97)

Which reading line by line gives

αi = fi(w)− λ
Dei

∑
j=1 fj(w)

n(n(1− λ) + 2λ) + λ
∑n

j=1 ‖∇fj(wt)‖2

= fi(w)− λ

(∥∥∇fi(wt)∥∥2 + 1
)∑

j=1 fj(w)

n(n(1− λ) + 2λ) + λ
∑n

j=1 ‖∇fj(wt)‖2
. (98)

Taking the average over i in the above gives

α = f(w)− λf(w)
n+

∑n
j=1

∥∥∇fj(wt)∥∥2
n(n(1− λ) + 2λ) + λ

∑n
j=1 ‖∇fj(wt)‖2

= f(w)

(
1− λ

n+
∑n

j=1

∥∥∇fj(wt)∥∥2
n(n(1− λ) + 2λ) + λ

∑n
j=1 ‖∇fj(wt)‖2

)

= f(w)
n(n(1− λ) + λ)

n(n(1− λ) + 2λ) + λ
∑n

j=1 ‖∇fj(wt)‖2
(99)
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Substituting (98) and (99) into (93) gives

ht(w,α, τ)
n+ 1

1− λ =
n∑
i=1

λ2

2

( (
‖∇fi(wt)‖2+1

)∑
j=1 fj(w)

n(n(1−λ)+2λ)+λ
∑n
j=1‖∇fj(wt)‖

2

)2

‖∇fi(wt)‖2 + 1
+

1

2

nλ

n(1− λ) + λ
α2

=
n∑
i=1

λ2n2

2
f(w)2

∥∥∇fi(wt)∥∥2 + 1(
n(n(1− λ) + 2λ) + λ

∑n
j=1 ‖∇fj(wt)‖2

)2 +
1

2

nλ

n(1− λ) + λ
α2

=
n∑
i=1

λ2n2

2
f(w)2

∥∥∇fi(wt)∥∥2 + 1(
n(n(1− λ) + 2λ) + λ

∑n
j=1 ‖∇fj(wt)‖2

)2
+

1

2

nλ

n(1− λ) + λ

(
f(w)

n(n(1− λ) + λ)

n(n(1− λ) + 2λ) + λ
∑n

j=1 ‖∇fj(wt)‖2

)2

=
λ

2
f(w)2

n2

n(n(1− λ) + 2λ) + λ
∑n

j=1 ‖∇fj(wt)‖2
,

where in first equality we used (98) and in the third equality we used (99). Since wt is fixed, and every
minima of (25) is a stationary point, we have that the minima in w of the above is given by

w∗ ∈ argmin f(w)2 = argmin f(w),

where we used the positivity of f(w).

G.4. Proof of Lemma 9

Here we prove an extended version of Lemma 9 with some additional intermediary results that make the
lemma easier to follow.

Lemma 23 Consider the functions

hi,t(w,α, τ) :=
1− λ
2

(fi(w)− αi)2
‖∇fi(wt)‖2 + 1

, for i = 1, . . . , n, (100)

and hn+1,t(w,α, τ) given in (37). It follows that ht(w,α, τ) defined in (25) is equivalent to

ht(w,α, τ) =
1

n+ 1

n∑
i=1

hi,t(w,α, τ) (101)

Furthermore, if

λ ≤ 2n+ 1

2n+ 3
< 1 (102)

then ∥∥∇hi,t(wt, α, τ)∥∥2 = 2hi,t(w
t, α, τ), (103)

‖∇hn+1,t(w,α, τ)‖2 ≤ 2(1− λ)(2n+ 1)hn+1,t(w,α, τ), (104)
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and consequently

1

n+ 1

n+1∑
i=1

∥∥∇hi,t(wt, α, τ)∥∥2 ≤ 2(1− λ)(2n+ 1)ht(w
t, α, τ). (105)

Proof Using the definitions of ht(wt, α, τ) in (25) we have that (101) holds.
Furthermore (103) follows from Lemma 4. As for hn+1,t(w,α, τ) in (37) we have that

hn+1,t(w,α, τ) =
n(1− λ)

2
(α− τ)2 + λ

2
τ2

∇τhn+1,t(w,α, τ) = (1− λ)n(τ − α) + λτ.

∇αhn+1,t(w,α, τ) = (1− λ)1(α− τ) (106)

Consequently

‖∇hn+1,t(w,α, τ)‖2 = ((1− λ)n(τ − α) + λτ)2 + (1− λ)2 ‖1‖2 (α− τ)2
≤ 2(1− λ)2n2(τ − α)2 + 2λ2τ2 + (1− λ)2n(α− τ)2

= 2(1− λ)(2n+ 1)
(1− λ)n(τ − α)2

2
+ 4λ

λτ2

2
≤ 2max{(1− λ)(2n+ 1), 2λ}hn+1,t(w,α, τ).

Due to (102) we have that

max{(1− λ)(2n+ 1), 2λ} = (1− λ)(2n+ 1).

This proves (103). As a consequence from (103) and (104) we have that

1

n+ 1

n+1∑
i=1

∥∥∇hi,t(wt, α, τ)∥∥2 ≤ 2max {1, (1− λ)(2n+ 1)}
n+ 1

n+1∑
i=1

hi,t(w
t, α, τ) (Using (103) and (104))

≤ 2(1− λ)(2n+ 1)ht(w
t, α, τ). (Using (102) and (25))

G.5. Proof of Theorem 10

Here we give the proof of Theorem 10. We prove a slightly more general version of Theorem 10 by not
requiring that the auxiliary function is zero at the optimal. That is ht(z∗) may be non-zero. The exact result
in Theorem 10 follows from applying the following Theorem 24 with ht(z∗) = 0.

Theorem 24 (Star-convexity) Suppose Assumption 2 holds with G > 0. Let γ < 1/G and suppose there
exists z∗ such that ht is star-convex at zt and around z∗, that is

ht(z
∗) ≥ ht(z

t) +
〈
∇ht(zt), z∗ − zt

〉
, (107)

then we have that

min
t=1,...,k

E
[
ht(z

t)− ht(z∗)
]
≤ 1

k

k∑
t=0

E
[
ht(z

t)− ht(z∗)
]

≤ 1

k

1

2γ(1−Gγ)E
[∥∥z0 − z∗∥∥2]+ Gγ

1−Gγ
1

k

k∑
t=1

ht(z
∗). (108)
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Proof []
This proof is partially based on Theorems 4.3 [35]. Let Et [·] := E

[
· | zt

]
denote the expectation

conditioned on zt.
Expanding the squares we have

Et
[∥∥zt+1 − z∗

∥∥2] ≤
∥∥zt − z∗∥∥2 − 2γ

〈
∇wht(zt), zt − z∗

〉
+ γ2Et

[∥∥∇wht,it(zt)∥∥2]
(44)
≤

∥∥zt − z∗∥∥2 − 2γ
〈
∇wht(zt), zt − z∗

〉
+ 2Gγ2ht(z

t)

(107)
≤

∥∥zt − z∗∥∥2 − 2γ(ht(z
t)− ht(z∗)) + 2Gγ2ht(z

t)

=
∥∥zt − z∗∥∥2 − 2γ(1−Gγ)(ht(zt)− ht(z∗)) + 2Gγ2ht(z

∗) (109)

Taking expectation, re-arranging and summing both sides from t = 0, . . . , k we have that

k∑
t=0

E
[
ht(z

t)− ht(z∗)
]
≤ 1

2γ(1−Gγ)
k∑
t=0

(
E
[∥∥zt − z∗∥∥2]− E

[∥∥zt+1 − z∗
∥∥2])+ Gγ

1−Gγ
k∑
t=0

ht(z
∗)

≤ 1

2γ(1−Gγ)E
[∥∥z0 − z∗∥∥2]+ Gγ

1−Gγ
k∑
t=0

ht(z
∗). (110)

Now dividing through by k gives (108).

G.6. Proof of Theorem 11

Theorem 25 Suppose Assumption 2 holds with G > 0. Let γ ≤ 1/G. If there exists µ > 0 and z∗ such that
ht is µ–strongly star–convex along zt and around z∗, that is

ht(z
∗) ≥ ht(z

t) +
〈
∇ht(zt), z∗ − zt

〉
+
µ

2

∥∥z∗ − zt∥∥ , (111)

then

E
[∥∥zt+1 − z∗

∥∥2] ≤ (1− γµ)t+1
∥∥z0 − z∗∥∥2 + 2Gγ2

t∑
i=0

(1− γµ)iE [hi(z
∗)] . (112)

Finally, if ht(z∗) = 0 for all t then we have that (112) and (44) together imply that µ ≤ G and thus (112)
gives linear convergence.

Proof This proof is partially based on 4.10 in [35], which in turn is based on Theorem 6 in [32], Thereom
4.1 in [13] and Theorem 3.1 in [14].

Expanding the squares we have that

Et
[∥∥zt+1 − z∗

∥∥2] ≤
∥∥zt − z∗∥∥2 − 2γ

〈
∇wht(zt), zt − z∗

〉
+ γ2Et

[∥∥∇wht,it(zt)∥∥2]
(44)
≤

∥∥zt − z∗∥∥2 − 2γ
〈
∇wht(zt), zt − z∗

〉
+ 2Gγ2ht(z

t)

(111)
≤ (1− γµ)

∥∥zt − z∗∥∥2 − 2 γ(1−Gγ)(ht(zt)− ht(z∗))︸ ︷︷ ︸
≥0

+2Gγ2ht(z
∗)

≤ (1− γµ)
∥∥zt − z∗∥∥2 + 2Gγ2ht(z

∗), (113)
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where to get to the last line we used that (1 − Gγ)(ht(zt) − ht(z∗)) ≥ 0 which holds because γ ≤ 1
G .

Taking the expectation and applying the above recursively gives

Et
[∥∥zt+1 − z∗

∥∥2] ≤ (1− γµ)t+1
∥∥z0 − z∗∥∥2 + 2Gγ2

t∑
i=0

(1− γµ)ihi(z∗) (114)

which is the result (112).
Furthermore, if ht(z∗) = 0 we have that µ ≤ G follows from a small modification of Theorem 4.10

in [35]. Indeed taking expectation over (111) and using (44) we have that

ht(z
∗) ≥ 1

2G
E
[∥∥∇ht,it(zt)∥∥2]+ 〈∇ht(zt), z∗ − zt〉+ µ

2

∥∥z∗ − zt∥∥
=

G

2
E

[∥∥∥∥z∗ − zt − 1

L
∇ht,it(zt)

∥∥∥∥2
]
− G− µ

2

∥∥z∗ − zt∥∥ . (115)

Rearranging and using that ht(z∗) = 0 gives

G− µ
2

∥∥z∗ − zt∥∥ ≥ L

2
E

[∥∥∥∥z∗ − zt − 1

G
∇ht,it(zt)

∥∥∥∥2
]
≥ 0.

Thus µ ≤ G.

Appendix H. Convergence of The Stochastic Polyak Method

Here we explore sufficient conditions for the assumptions in Theorems 10 and 11 to hold for the SP
method (6). To this end, let

ht(w) :=
1

n

n∑
i=1

1

2

(fi(w)− fi(w∗))2
‖∇fi(wt)‖2

, (116)

hi,t(w) :=
1

2

(fi(w)− fi(w∗))2
‖∇fi(wt)‖2

. (117)

We will also explore the consequences of these theorems. In these section we say that fi is Li smooth if

fi(z) ≤ fi(w) + 〈∇fi(w), z − w〉+
Li
2
‖z − w‖2 , ∀z, w ∈ Rd. (118)

We will also use the interpolation Assumption 3 throughout this section. Thus

fi(w
∗) = min

w∈Rd
fi(w) ≤ f(z), for all i ∈ {1, . . . , n}, z ∈ Rd.

Using smoothness and interpolation, we first establish the following descent lemma.

Lemma 26 If the interpolation Assumption 3 holds and each fi(w) is Li–smooth (118) then

fi(w)− fi(w∗) ≥
1

2Li
‖∇fi(w)‖2 , ∀w ∈ Rd, i = 1, . . . , n. (119)
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Proof Let w∗ be a minimizer of f(w). Consequently by the interpolation assumption for every z ∈ Rd we
have that fi(w∗)− fi(z) ≤ 0 and for every w ∈ Rd we have that

fi(w
∗)− fi(w) ≤ fi(w

∗)− fi(z) + fi(z)− fi(w)
≤ fi(z)− fi(w)

(118)
≤ 〈∇fi(w), z − w〉+

Li
2
‖z − w‖2

Minimizing the right hand side in z gives z = w − 1
Li
∇fi(w) which when plugged in the above gives

fi(w
∗)− fi(w) ≤ − 1

2Li
‖∇fi(w)‖2 .

Re-arranging gives (119).

H.1. Proof of Lemma 12

First we show that, under interpolation, if fi is star-convex, then the auxiliary functions in (116) and (117)
are also star convex....

Lemma 27 Let the interpolation Assumption 3 hold. If every fi is star convex along the iterates (wt) given
by (6), that is,

fi(w
∗) ≥ fi(w) + 〈∇fi(w), w∗ − w〉 (120)

then hi,t(w) is star convex along the iterates (wt) with

hi,t(w
∗) ≥ hi,t(wt) +

〈
∇whi,t(wt), w∗ − w

〉
, (121)

so long as wt 6= w∗. Consequently we have that ht is star convex around w∗.
Furthermore if fi is µi-strongly convex and Li–smooth then hi,t is 1

2
µi
Li

–strongly star-convex. Conse-
quently ht(w) is 1

2n

∑
i=1

µi
Li

–strongly star-convex

ht(w
∗) ≥ ht(wt) +

〈
∇wht(wt), w∗ − w

〉
+

1

4n

n∑
i=1

µ

Li

∥∥wt − w∗∥∥2 . (122)

Proof Using that hi,t(w∗) = 0 and that hi,t(wt) > 0 since wt 6= w∗ we have that

hi,t(w
∗) ≥ hi,t(wt) +

〈
∇whi,t(wt), w∗ − w

〉
m (By definition (117) )

0 ≥ 1

2

(
fi(w

t)− fi(w∗)
‖∇fi(wt)‖

)2

+

〈
fi(w

t)− fi(w∗)
‖∇fi(wt)‖2

∇fi(wt), w∗ − wt
〉

m
(

Multipling by
∥∥∇fi(wt)∥∥2 /(fi(wt)− fi(w∗)) ≥ 0.

)
0 ≥ 1

2
(fi(w

t)− fi(w∗)) +
〈
∇fi(wt), w∗ − wt

〉
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⇑ (Using that fi(wt)− fi(w∗) ≥ 0 )

fi(w
∗) ≥ fi(wt) +

〈
∇fi(wt), w∗ − wt

〉
,

where we used fi(wt)− fi(w∗) ≥ 0 which is a consequence of interpolation. This proves (121)
Now if we assume that fi is µ-strongly star-convex and Li–smooth then we have that by

hi,t(w
∗) ≥ hi,t(wt) +

〈
∇whi,t(wt), w∗ − w

〉
+

1

4

µ

Li

∥∥wt − w∗∥∥2 (123)

m (By definition (117) )

0 ≥ 1

2

(
fi(w

t)− fi(w∗)
‖∇fi(wt)‖

)2

+

〈
fi(w

t)− fi(w∗)
‖∇fi(wt)‖2

∇fi(wt), w∗ − wt
〉
+

1

4

µ

Li

∥∥wt − w∗∥∥2
m
(

Multipling by
∥∥∇fi(wt)∥∥2 /(fi(wt)− fi(w∗)) ≥ 0.

)
0 ≥ 1

2
(fi(w

t)− fi(w∗)) +
〈
∇fi(wt), w∗ − wt

〉
+

∥∥∇fi(wt)∥∥2
fi(wt)− fi(w∗)

1

4

µ

Li

∥∥wt − w∗∥∥2
⇑ (Using that fi(wt)− fi(w∗) ≥ 0 )

fi(w
∗) ≥ fi(wt) +

〈
∇fi(wt), w∗ − wt

〉
+

∥∥∇fi(wt)∥∥2
fi(wt)− fi(w∗)

1

4

µ

Li

∥∥wt − w∗∥∥2 .
Finally, from smoothness and Lemma 26 we have that 1 ≥ 1

2Li

‖∇fi(wt)‖2
fi(wt)−fi(w∗) consequently

fi(w
∗) ≥ fi(wt) +

〈
∇fi(wt), w∗ − wt

〉
+
µ

2

∥∥wt − w∗∥∥2
≥ fi(wt) +

〈
∇fi(wt), w∗ − wt

〉
+

1

4

µ

Li

∥∥∇fi(wt)∥∥2
fi(wt)− fi(w∗)

∥∥wt − w∗∥∥2 . (124)

Consequently the above implications hold, and thus hi,t is 1
4
µ
Li

-strongly star convex. Taking the average
of (123) over i gives (122), which concludes the proof.

H.2. Proof of Corollary 13 and 14

Having established when ht is star convex and strongly star convex, we can now apply Theorems 10 and
Theorem 11, which when specialized to SP gives the following corollaries. This result has already been
established in Theorem 4.4 and Theorem D.3 in [13]. Thus here we have showed that the results in [13]
follow as a direct consequence of the interpretation of SP as a variant of the online SGD method.

Corollary 28 If γ < 1 and every fi(w) is star-convex along the iterates (wt) given by (6) then

1

k

k∑
t=0

1

2n

n∑
i=1

E

[(
fi(w

t)− fi(w∗)
‖∇fi(wt)‖

)2
]
≤ 1

k

1

2γ(1− γ)E
[∥∥w0 − w∗

∥∥2] . (125)

Furthermore if the interpolation Assumption 3 holds and if each fi(w) is Li–smooth then

min
t=0,...,k

E
[
f(wt)− f∗

]
≤ 1

k

Lmax

2γ(1− γ)E
[∥∥w0 − w∗

∥∥2] , (126)

where Lmax := maxi=1,...,n Li.
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Proof The proof of (125) follows as a special case of Theorem 10 by identifying ht with (116) and hit,t
with (117). Indeed, according to (10) we have that ht satisfies the growth condition (44) with G = 1 and
according to (121) ht is star-convex (107) around w∗. Finally since ht(w∗) = 0 the result (125) follows by
Theorem 10.

The result (126) would follow from (125) if

Lmax
1

n

n∑
i=1

(fi(w)− fi(w∗))2
‖∇fi(w)‖2

≥ 2(f(w)− f∗). (127)

This Assumption has appeared recently in [13] where it was proven that (127) is a consequence of each
fi(w) being Li–smooth. We give a simpler proof next for completeness. That is, assuming that there exists
w such that fi(w) 6= fi(w

∗) and thus∇fi(w) 6= 0 (otherwise (127) holds trivially) we have from (119) that

1

‖∇fi(w)‖2
≥ 1

2Li(fi(w)− fi(w∗))
.

Multiplying both sides by (fi(w)− fi(w∗))2 and averaging over i = 1, . . . , n gives

1

n

n∑
i=1

(fi(w)− fi(w∗))2
‖∇fi(w)‖2

≥ 2
1

n

n∑
i=1

fi(w)− fi(w∗)
Li

≥ 1

n

n∑
i=1

2fi(w)− fi(w∗)
maxi=1,...,n Li

=
2(f(w)− f∗)

Lmax
.

Using (127) and (125) we have

min
t=0,...,k

E
[
f(wt)− f∗

]
≤ 1

k

k∑
t=0

E
[
f(wt)− f∗

]
≤ 1

k

k∑
t=0

Lmax

2n

n∑
i=1

E

[(
fi(w

t)− fi(w∗)
‖∇fi(wt)‖

)2
]

≤ 1

k

Lmax

2γ(1− γ)E
[∥∥w0 − w∗

∥∥2]
which concludes the proof of

Corollary 29 If γ ≤ 1, the interpolation Assumption 3 holds, and every fi is Li–smooth and µ–strongly
star-convex then the iterates wt given by (6) converge linearly according to

E
[∥∥wt+1 − w∗

∥∥2] ≤ (
1− γ 1

2n

n∑
i=1

µi
Li

)t+1 ∥∥w0 − w∗
∥∥2 (128)

Proof The proof of (128) follows as a special case of Theorem 11 by identifying ht with (116) and hit,t
with (117). Indeed, according to (10) we have that ht satisfies the growth condition (44) with G = 1. Fur-
thermore fi is µi–strongly star convex and Li–smooth, then from Lemma 27 we have that ht is 1

2n

∑n
i=1

µi
Li

–
strongly star convex. Finally since ht(w∗) = 0 the result (125) follows by Theorem 11.
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Appendix I. Convergence of the Targeted Stochastic Polyak Stepsize

Here we explore the consequences and conditions of Theorem 10 for the TAPS method given in Algorithm 1.

I.1. Proof of Corollary 30 and more

First we re-state Theorem 10 specialized to Algorithm 1.

Corollary 30 Let ht(z) be defined in (17) and suppose that ht(z) is star convex (107) around z∗ = (w∗, α∗)
and along the iterates zt = (wt, αt) of Algorithm 1.

If γ < 1 and in addition fi(w) is Lmax–Lipschitz then

min
t=1,...,k

1

n+ 1

(
n∑
i=1

E
[
fi(w

t)− αti
]2

Lmax + 1
+ E

[
αt − τ

]2) ≤ 1

k

1

γ(1− γ)E
[∥∥w0 − w∗

∥∥2] . (129)

Alternatively, if ht(z) is µ–strongly star–convex (111) then

E

[∥∥wt − w∗∥∥2 + n∑
i=1

∥∥αti − fi(w∗)∥∥2
]
≤ (1− γµ)t

(∥∥w0 − w∗
∥∥2 + n∑

i=1

∥∥α0
i − fi(w0)

∥∥2) . (130)

Theorem 30 provides us with a O(1/k) convergence in expectation when ht(z) is star convex. Indeed, the
bound in (129) shows that α converges to τ at a rate of O(1/k). Finally from the target assumption (12) we
have that ht(z∗) = 0, thus fi(wt) and αti converge to fi(w∗) at a rate of O(1/k).
Proof The proof follows by applying Theorem 10. Indeed, by letting hi,t(z) = 1

2
(fi(w)−αi)2
‖∇fi(wt)‖2+1

for i =

1, . . . , n and hn+1,t(z) =
n
2 (α− τ)2. Thus ht(z) = 1

n+1

∑n+1
i=1 hi,t(z). By Lemma 4 we have that

Ei∼ 1
n+1

[
‖∇hi,t(zt)‖2

]
=

1

n+ 1

n+1∑
i=1

‖∇hi,t(zt)‖2

=
1

n+ 1

(
n∑
i=1

∥∥∇fi,wt(wt, αt)∥∥2 + ∥∥∇hn+1(α
t)
∥∥2)

(23)
=

1

n+ 1

(
n∑
i=1

2fi,wt(w
t, αt) + 2fn1(α

t)

)
(56)+(19)

= 2ht(z
t).

Consequently ht satisfies the growth condition (44) with G = 1. By assumption ht is star convex along the
iterates zt, thus the two condition required for Theorem 10 to hold are satisfied, and as a consequence, we
have that (108) holds. Substituting out ht(zt) we have that

1

k

k∑
t=0

1

n+ 1

(
n∑
i=1

1

2

(fi(w
t)− αti)2

‖∇fi(wt)‖2 + 1
+
n

2
(αt − τ)2

)
≤ 1

k

1

2γ(1− γ)E
[∥∥w0 − w∗

∥∥2] . (131)

Furthermore, if fi is Lmax–Lipschitz, that is if ‖∇fi(wt)‖ ≤ Lmax then from (131) we have that

1

k

k∑
t=0

1

n+ 1

(
n∑
i=1

1

2

(fi(w
t)− αti)2

Lmax + 1
+
n

2
(αt − τ)2

)
≤ 1

k

1

2γ(1− γ)E
[∥∥w0 − w∗

∥∥2] , (132)
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from which (129) follows by lower bounding the average over k by the minimum.
Finally, if there exists µ > 0 such that ht(z) is strongly star-convex (111), then by noting that

‖z − z∗‖2 =
∥∥wt − w∗∥∥2 + ∥∥αt − α∗∥∥2 = ∥∥wt − w∗∥∥2 + n∑

i=1

∥∥αti − fi(w∗)∥∥2
we have that (112) gives (130).

I.2. Proof of Lemmas 15 and Corollary 16

For ease of reference, we first re-state the lemmas.

Lemma 31 (Locally Convex) Consider the iterates of Algorithm 2. Let (w,α) ∈ Rd+n and consider
ht(w,α) defined in (56) . Assume that the gradients at w spans the entire space, that is

span {∇f1(w), . . . ,∇fn(w)} = Rd, ∀w. (133)

If Assumption 1 holds, every fi(w) for i = 1, . . . , n is twice continuously differentiable and

1

n+ 1

n∑
i=1

∇2fi(w
t)

fi(w
t)− αti

‖∇fi(wt)‖2 + 1
� 0, ∀t, (134)

then ht is strictly convex with at (wt, αt) that is

∇2ht(w
t, αt) � 0, ∀t.

Proof We have (fi(w) − αi)2 is locally convex, and thus star convex, iff its Hessian is positive definite
around (w∗, α∗). Computing the gradient of (fi(w)− αi)2 we have that

∇(fi(w)− αi)2 = 2

[
∇fi(w)
−1

]
(fi(w)− αi)

Computing the Hessian gives

∇2(fi(w)− αi)2 = 2

[
∇fi(w)
−1

] [
∇fi(w)> −1

]
+ 2

[
∇2fi(w) 0

0 0

]
(fi(w)− αi)

= 2

[
∇fi(w)∇fi(w)> −∇fi(w)
−∇fi(w)> 1

]
+ 2

[
∇2fi(w) 0

0 0

]
(fi(w)− αi) (135)

Now let In ∈ Rn×n be the identity matrix in Rn×n, let

Dt := diag

(
1

‖∇f1(wt)‖2 + 1
, . . . ,

1

‖∇fn(wt)‖2 + 1

)
∈ Rn×n

Ht(w,α) :=

n+1∑
i=1

∇2fi(w)
fi(w)− αi

‖∇fi(wt)‖2 + 1
(136)
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and let
DF (w) :=

[
∇f1(w), . . . ,∇fn(w)

]
∈ Rd×n.

Using (135) and by the definition of ht in (56) we have that

∇2ht(w,α) =
1

n+ 1

[
DF (w)DtDF (w)

> −DF (w)Dt

−(DF (w)Dt)
> In(1 +

1
n),

]
︸ ︷︷ ︸

:=Mt(w)

+

[
Ht(w,α) 0

0 0

]
(137)

where we used the ∇2 n
2 (α − τ)2 = 1

nIn. Thus the matrix (137) is a sum of two terms. By the assump-
tion (134) we have that the second part that contains Ht(w,α) is positive semi-definite. Next we will show
that the first matrix Mt(w) is symmetric positive definite. Indeed, left and right multiplying the above by
[x, a] ∈ Rd+n gives

[
x a

]>
Mt(w)

[
x
a

]
(137)
=

[
x a

]> [DF (w)DtDF (w)
>x−DF (w)Dta

−(DF (w)Dt)
>x+ a(1 + 1

n).

]
=

∥∥∥D1/2
t DF (w)>x

∥∥∥2 − 2a(DF (w)Dt)
>x+ (1 +

1

n
) ‖a‖2

=
∥∥∥D1/2

t (DF (w)>x− a)
∥∥∥2 − ∥∥∥D1/2

t a
∥∥∥2 + (1 +

1

n
) ‖a‖2 ,

or in short [
x a

]>
Mt(w)

[
x
a

]
=
∥∥∥DF (w)>x− a∥∥∥2

Dt

+ ‖a‖2(1+ 1
n
)In−Dt

(138)

Next we show that (138) is strictly positive for every (x, a) 6= 0. To this end, first note that the matrix
(1 + 1

n)In −Dt is positive definite, which follows since the ith diagonal element is positive with[
(1 + 1

n)In −Dt

]
ii

= 1 +
1

n
− 1

‖∇fi(wt)‖2 + 1
> 0.

Consequently if a 6= 0 we have that (138) is strictly positive. On the other hand, if a = 0 let us prove by
contradiction that (138) is still positive for x 6= 0. Indeed suppose that x 6= 0 and∥∥∥DF (w)>x∥∥∥2

Dt

= 0
Dt�0=⇒

n∑
i=1

∇fi(w)>x = 0.

But due to our assumption (60), we have that DF (w)> has full column rank, and thus x = 0, which is
a contradiction. Thus (138) is positive for every (x, a) 6= 0 from which we conclude that the Hessian
∇2ht(w,α) in (137) is positive definite.

The proof of Corollary 16 then follows from Lemma 31 by plugging in α∗i = fi(w
∗) into (136).

Appendix J. Convergence of the Moving Target Stochastic Polyak Stepsize

Here we explore the consequences of Theorems 10 and 11 specialized to Algorithm 2. Throughout this
section let

λ ≤ 2n+ 1

2n+ 3
< 1 (139)
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and let zt := (wt, αt, τt) be the iterates of Algorithm 2 when using a stepsize γ = γτ . Let

ht(z) :=
1

n+ 1

(
n∑
i=1

1− λ
2

(fi(w)− αi)2
‖∇fi(wt)‖2 + 1

+
n(1− λ)

2
(α− τ)2 + λ

2
τ2

)
. (140)

and let w∗ be a minimizer of (1) and let

α∗i := fi(w
∗) and τ∗ = f(w∗), for i = 1, . . . , n. (141)

J.1. Proof of Corollary 18

Corollary 32 If γ = γτ = 1
2(1−λ)(2n+1) and if ht(z) is star convex along the iterates zt and around

z∗ := (w∗, α∗, τ∗) then

min
t=0,...,k

E
[
ht(z

t)− ht(z∗)
]
≤ 2(1− λ)(2n+ 1)

k

∥∥z0 − z∗∥∥2 + λf(w∗)2

2(n+ 1)
. (142)

Furthermore, if fi is Lmax–Lipschitz then

1

n+ 1
E

[
n∑
i=1

1

2

(fi(w
t)− αti)2

Lmax + 1
+
n

2
(αt − τ t)2 + λ

2

(
(τ t)2 − f(w∗)2

)]

≤ 2(1− λ)(2n+ 1)

k

∥∥z0 − z∗∥∥2 + λf(w∗)2

2(n+ 1)
. (143)

Proof The proof follows by applying Theorem 10 and Lemmas 9 and 5. Indeed ht satisfies the growth
condition (44) with G = (1 − λ)(2n + 1). By assuming that ht is star convex along the iterates zt we
have satisfied the two condition required for Theorem 10 to hold, which when substituting in G and γ =

1
2(1−λ)(2n+1) gives

min
t=1,...,k

E
[
ht(z

t)− ht(z∗)
]
≤ 2(1− λ)(2n+ 1)

k
E
[∥∥z0 − z∗∥∥2]+ 1

k

k∑
t=1

ht(z
∗). (144)

Furthermore using the bound in Lemma 22 we have that

1

k

k∑
t=1

ht(z
∗) =

λf(w∗)2

2(n+ 1)

and thus (142) holds. Finally, if fi is Lmax–Lipschitz, that is if ‖∇fi(wt)‖ ≤ Lmax, then using the definition
of ht(z) in (140) we can lower bound ht(zt)− ht(z∗) by the left-hand side of (143).

J.2. Proof of Corollary 33

Corollary 33 If γ = γτ = 1
(1−λ)(2n+1) and if ht(z) is µ–strongly star–convex along the iterates zt and

around z∗ := (w∗, α∗, τ∗) then

E
[∥∥zt+1 − z∗

∥∥2] ≤ (
1− µ

(1− λ)(2n+ 1)

)t+1 ∥∥z0 − z∗∥∥2 + λf(w∗)2

µ(n+ 1)
. (145)

39



Proof The proof follows by applying Theorem 11 and Lemmas 9 and 5. Indeed by Lemma 9 ht satisfies
the growth condition (44) with (1 − λ)(2n + 1). By assuming that ht is µ–strongly star convex along the
iterates zt we have satisfied the two condition required for Theorem 11 to hold. Finally using Lemma 22 we
have that

ht(z
∗) =

λf(w∗)2

2(n+ 1)

and as a consequence Theorem 11 gives

E
[∥∥zt+1 − z∗

∥∥2] ≤ (1− µ

(1− λ)(2n+ 1)
)t+1

∥∥z0 − z∗∥∥2
+

2

(1− λ)(2n+ 1)

t∑
i=0

(1− γµ)iλf(w
∗)2

2(n+ 1)
.

≤ (1− µ

(1− λ)(2n+ 1)
)t+1

∥∥z0 − z∗∥∥2
+

2

(1− λ)(2n+ 1)

1

γµ

λf(w∗)2

2(n+ 1)
.

= (1− µ

(1− λ)(2n+ 1)
)t+1

∥∥z0 − z∗∥∥2 + λf(w∗)2

µ(n+ 1)
, (146)

where in the last equality we used that γ = 1
(1−λ)(2n+1) .

J.3. Proof of Theorem 34

Theorem 34 Let ht(z) be µ-strongly star–convex along the iterates zt and around z∗ := (w∗, α∗, τ∗). Let
ε > 0. If we use an iteration dependent stepsize in Algorithm 2 given by

γt =


1

(1− λ)(2n+ 1)
if t ≤ 2(2n+ 1)

⌈
1−λ
µ

⌉
(t+ 1)2 − t2
µ(t+ 1)2

if t ≥ 2(2n+ 1)
⌈
1−λ
µ

⌉ (147)

and if

λ ≤ min

{
1− 2µ

2n+ 1
,
2n+ 1

2n+ 3

}
.

then

E
[∥∥zt − z∗∥∥2] ≤ (1− λ)λf(w∗)2

µ2
16

t
+

4(2n+ 1)2

e2t2

⌈
1− λ
µ

⌉2 ∥∥z0 − z∗∥∥2 . (148)

Proof
Following the proof of Theorem 11 upto (113), we have that for γ ≤ 1

G = 1
(1−λ)(2n+1) and ht(z∗) =

λf(w∗)2

2(n+1) that

Et
[∥∥zt+1 − z∗

∥∥2] ≤ (1− γµ)
∥∥zt − z∗∥∥2 + 2γ2(1− λ)(2n+ 1)

λf(w∗)2

2(n+ 1)

≤ (1− γµ)
∥∥zt − z∗∥∥2 + 4γ2(1− λ)λf(w∗)2. (149)
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Taking expectation and using the abbreviations

rt := E
[∥∥zt − z∗∥∥2] and σ2 := 2(1− λ)λf(w∗)2, (150)

gives that
rt+1 ≤ (1− γµ)rt + 2γ2σ2. (151)

With this notation, this is now identical to the setting of Theorem 3.2 in [14]. Using the notation of Theorem
3.2 in [14] we have that 2L = (1− λ)(2n+ 1) and consequently K = L

µ = 1
2(2n+ 1)

⌈
1−λ
µ

⌉
. As a result

of Theorem 3.2 in [14] we have that

rt ≤ σ2

µ2
8

t
+

16dKe2
e2t2

r0. (152)

Substituting back the definitions given in (150) gives (148). Though one detail in the proof of Theorem 3.2
in [14] is that K ≥ 1, which in our case holds it

λ ≤ 1− 2µ

2n+ 1
.

Appendix K. Convex Classification: Additional Experiments

For our experiments on convex classification tasks, we focused on logistic regression. That is

f(w) =
1

n

n∑
i=1

φ(x>i w) +
σ

2
‖w‖22 (153)

where φi(t) = ln
(
1 + e−yit

)
, (xi, yi) ∈ Rd+1 are the features and labels for i = 1, . . . , n, and σ > 0 is

the regularization parameter. We experimented with the five diverse data sets: leu [11] , duke [34], colon-
cancer [1], mushrooms [9] and phishing [9]. Details of these datasets and their properties can be found in
Table 1.

σ = 0 σ = mini=1,...,n ‖xi‖2 /n
dataset d n Lmax γ∗ γ∗τ f∗ γ∗ γ∗τ f∗ σ

leu 7130 38 824.6 1.1 10−5 0.0 0.01 0.4 0.449 11.74
duke 7130 44 683.2 1.1 10−3 0.0 0.1 0.4 0.4495 5.06

colon-cancer 2001 62 137.8 1.1 10−5 0.0 0.1 0.9 0.453 2.66
mushrooms 112 8124 5.5 1.1 10−4 0.0 1.0 0.01 0.083 0.0027

phishing 68 11055 7.75 0.01 0.5 0.142 0.01 0.9 0.188 0.0028

Table 1: Binary datasets used in the logistic regression experiments together with the best parameters settings
for γ and γτ for two different regularization settings.
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Figure 7: colon-cancer (n, d) = (62, 2001) Left: σ = 0.0. Right: σ = mini=1,...,n ‖xi‖2 /n = 2.66.
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Figure 8: Logistic Regression with data set phishing (n, d) = (11055, 68) and regularization. Left: σ = 0.0
and Right: σ = mini=1,...,n ‖x‖2i /n .

K.1. Grid search and Parameter Sensitivity

To investigate how sensitve MOTAPS is to setting its two parameters γ ∈ [0, 1] and γτ ∈ [0, 1] we did a
parameter sweep. We searched over the grid given by

γ ∈ {0.01, 0.1, 0.4, 0.7, 0.9, 1.0, 1.1}

and
γτ ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1, 0.5, 0.9}

and ran MOTAPS for 50 epochs over the data, and recorded the resulting norm of the gradient. See Figures 3,
8, 7 and 4 2 for the results of the grid search on the datasets mushrooms, phishing, colon-cancer
and duke respectively. In Table 1 we resume the results of the parameter search, together with the details
of each data set.

Ultimately the determining factor for finding the best parameter was the magnitude of the optimal value
f(w∗). Since this quantity is unknown to us a priori, we used the size of the regularization parameter as an
proxy. Based on these parameter results we devised the following rule-of-thumb for setting γ and γτ with

γ = 1.0/(1 + 0.25σeσ) and γτ = 1− γ (154)

where σ is regularization parameter.
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Figure 9: Logistic Regression with data set mushrooms (n, d) = (8124, 112). Left: σ = 1/n and Right:
σ = 1/n2 . See [6]
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Figure 10: Logistic Regression with data set colon-cancer (n, d) = (62, 2001) and regularization. Left:
σ = 1/n and Right: σ = 1/n2 . See [6]

K.2. Comparing to Variance Reduced Gradient Methods

In Figures 9, 10, 11 and 12 we present further comparisons between SP, TAPS and MOTAPS against
SGD, SAG and SVRG. We found that the variance reduced gradients methods were able to better exploit
strong convexity, in particular for problems with a large regularization, and problems that were under-
parameterized, with the phishing problem in Figure 12 being the most striking example. For problems
with moderate regularization, and that were over-parametrized, the MOTAPS performed the best. See for
example the left of Figure 10 and Figure 11. When the regularization is very small, and the problem is over-
parameterized, thus making interpolation much more likely, the SP converged the fastest. See for example
the right of Figure 10 and 9.
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Figure 11: Logistic Regression with data set duke (n, d) = (44, 7130). Left: σ = 1/n and Right: σ = 1/n2

.
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Figure 12: Logistic Regression with data set phishing (n, d) = (11055, 68). Left: σ = 1/n and Right:
σ = 1/n2 .

K.3. Momentum variants

We also found that adding momentum to SP and MOTAPS could speed up the methods. To add momentum
we used the iterate averaging viewpoint of momentum [31] where by we replace the updates in wt by a
weighted average over past iterates. For TAPS and MOTAPS this is equivalent to introducing a sequences of
zt variables and updating according to

zt+1 = zt − η fi(w
t)− αti

‖∇fi(wt)‖2 + 1
∇fi(wt)

wt+1 = βwt + (1− β)zt+1

where η = γ
(
1 + β

1−β

)
is the adjusted stepsize 7. See Figures 13, 14 and 15 for the results of our exper-

iments with momentum as compared to ADAM [20]. We found that in regimes of moderate regularization
(σ = 1/n) the MOTAPS method was the fastest among all method, even faster than TAPS despite not having
access to f∗, see the left side of Figures 13, 14 and 15. Yep when using moderate regularization, adding on
momentum gave no benefit to SP, TAPS, and MOTAPS. Quite the opposite, for momentum β = 0.5, we see
that MOTAPSM-0.5, which is the MOTAPS method with momentum and β = 0.5, hurt the convergence rate
of the method.

In the regime of small regularization σ = 1
n2 , we found that momentum sped up the convergence of

our methods, see the right of Figures 13, 14 and 15. On the under-parameterized problem mushrooms,
the gains from momentum were marginal, and the ADAM method was the fastest overall, see the right
of Figure 13. On the over-parametrized problem colon-cancer, adding momentum to SP gave a significant
boost in convergence speed, see the right of Figure 14. Finally on the most over-parametrized problem duke,
adding momentum offered a significant speed-up for MOTAPS, but still the ADAM method was the fastest,
see the right of Figure 15.

Appendix L. Deep learning experimental setup details

In this section we detail the specific implementation choices for each environment. Across all environments,
minibatching was accomplished by treating each minibatch as a single data-point. Since per-datapoint values
are tracked across epochs, our training setup used minibatches which contain the same set of points each
epoch.

7. See Proposition 1.6 in [31] for the details of form of momentum and parameter settings.
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Figure 13: Experiments on momentum with mushrooms (n, d) = (8124, 112). Left: σ = 1/n and Right:
σ = 1/n2 .
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Figure 14: Experiments on momentum with colon-cancer (n, d) = (62, 2001) and regularization. Left:
σ = 1/n and Right: σ = 1/n2 .
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Figure 15: Experiments on momentum with duke (n, d) = (44, 7130). Left: σ = 1/n and Right: σ = 1/n2

.
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Figure 16: Deep learning experiments training loss

L.1. CIFAR10

We trained for 300 epochs using batch size 256 on 1 GPU. Momentum 0.9 was used for all methods.
The pre-activation ResNet used has 58,144,842 parameters. Following standard practice we apply data
augmentation of the training data; horizontal flipping, 4 pixel padding followed by random cropping to
32x32 square images.

L.2. SVHN

We trained for 150 epochs on a single GPU, using a batch size of 128. Momentum 0.9 was used for each
method. Data augmentations were the same as for our CIFAR10 experiments. The ResNet-1-16 network
has a total of 78,042 parameters, and uses the classical, non-preactivation structure.

L.3. IWSLT14

We used a very simple preprocessing pipeline, consisting of the Spacy de core news sm/en core web sm
tokenizers and filtering out of sentences longer than 100 tokens to fit without our GPU memory constraints.
Training used batch-size 32, across 1 GPU for 25 epochs. Other hyper-parameters include momentum of
0.9, weight decay of 5e-6, and a linear learning rate warmup over the first 5 epochs
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