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Abstract
In this paper, we propose a novel accelerated gradient method called ANITA for solving the fun-
damental finite-sum optimization problems. Concretely, we consider both general convex and
strongly convex settings: i) For general convex finite-sum problems, ANITA improves previous
state-of-the-art result given by Varag [17]. In particular, for large-scale problems or the target
error is not very small, i.e., n ≥ 1

ε2 , ANITA obtains the first optimal result O(n), matching the
lower bound Ω(n) provided by Woodworth and Srebro [46], while previous results are O(n log 1

ε )
of Varag [17] and O( n√

ε
) of Katyusha [1]. ii) For strongly convex finite-sum problems, we also

show that ANITA can achieve the optimal convergence rate O
(
(n +

√
nL
µ ) log 1

ε

)
matching the

lower bound Ω
(
(n+

√
nL
µ ) log 1

ε

)
provided by Lan and Zhou [15]. Besides, ANITA enjoys a sim-

pler loopless algorithmic structure unlike previous accelerated algorithms such as Varag [17] and
Katyusha [1] where they use an inconvenient double-loop structure. Moreover, we provide a new
dynamic multi-stage convergence analysis, which is the key technical part for improving previous
results to the optimal rates. Finally, the numerical experiments show that ANITA converges faster
than the previous state-of-the-art Varag [17], validating our theoretical results and confirming the
practical superiority of ANITA. We believe that our new theoretical rates and convergence analy-
sis for this fundamental finite-sum problem will directly lead to key improvements for many other
related problems, such as distributed/federated/decentralized optimization problems. For instance,
Li and Richtárik [26] obtain the first compressed and accelerated result, substantially improving
previous state-of-the-art results, by applying ANITA to the distributed optimization problems with
compressed communication.

1. Introduction

In this paper, we consider the fundamental finite-sum problems of the form

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), (1)

where f : Rd → R is a smooth and convex function. We consider two settings in this paper, i)
general convex setting (µ = 0); ii) strongly convex setting (µ > 0), where µ is the strongly convex
parameter for f(x), i.e., f(x) − f(y) − 〈∇f(y), x − y〉 ≥ µ

2‖x − y‖
2. Note that the case µ = 0

reduces to the standard convexity. Also note that the strong convexity is only corresponding to the
average function f , is not needed for these component functions fis.

Finite-sum problem (1) captures the standard empirical risk minimization (ERM) problems in
machine learning [42]. There are n data samples and fi denotes the loss associated with i-th data
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sample, and the goal is to minimize the loss over all data samples. This optimization problem has
found a wide range of applications in machine learning, statistical inference, and image processing.
In recent years, there has been extensive research in designing gradient-type methods for solving
this problem (1). To measure the efficiency of algorithms for solving (1), it is standard to bound the
number of stochastic gradient computations for finding a suitable solution. In particular, our goal
is to find a point x̂ ∈ Rd such that E[f(x̂) − f(x∗)] ≤ ε, where the expectation is with respect
to the randomness inherent in the algorithm. We use the term ε-approximate solution to refer to
such a point x̂, and use the term stochastic gradient complexity to describe the convergence result
(convergence rate) of algorithms.

Two of the most classical gradient-type algorithms are gradient descent (GD) and stochastic
gradient descent (SGD) (e.g., 7, 10, 11, 14, 33, 34, 36). However, GD requires to compute the
full gradient over all n data samples for each iteration (xt+1 = xt − η 1

n

∑n
i=1∇fi(xt)) which

is inefficient especially for large-scale machine learning problems where n is very large. Al-
though SGD only needs to compute a single stochastic gradient (e.g., ∇fi(x)) for each iteration
(xt+1 = xt − η∇fi(xt)), it requires an additional bounded variance assumption for the stochastic
gradients (i.e.,∃σ > 0, Ei[‖∇fi(x)−∇f(x)‖2] ≤ σ2) since it does not compute the full gradients
(∇f(x), i.e., 1

n

∑n
i=1∇fi(x)). More importantly, for strongly convex problems, SGD only obtains

a sublinear convergence rate O(σ
2

µε ) rather than a linear rate O(· log 1
ε ) achieved by GD.

To remedy the variance term E[‖∇fi(x)−∇f(x)‖2] in SGD, the variance reduction technique
has been proposed and it has been widely-used in a lot of algorithms in recent years. In particular,
Le Roux et al. [18] (later version [41]) propose the first variance-reduced algorithm called SAG and
show that by incorporating new gradient estimators into SGD one can possibly achieve the linear
convergence rate for strongly convex problems. Then this variance reduction direction is followed
by many works such as [6, 12, 31, 32, 37, 43]. Particularly, SAG [18] uses a biased gradient esti-
mator while SAGA [6] modifies it to an unbiased estimator and provides better convergence results.
Johnson and Zhang [12] propose a novel unbiased stochastic variance reduced gradient (SVRG)
method which directly incorporates the full gradient term∇f(x) into SGD. More specifically, each
epoch of SVRG starts with the computation of the full gradient ∇f(x̃) at a snapshot point x̃ ∈ Rn
and then runs SGD for a fixed number of steps using the modified stochastic gradient estimator

∇̃t = ∇fi(xt)−∇fi(x̃) +∇f(x̃), (2)

i.e., xt+1 = xt−η∇̃t, where i is randomly picked from {1, 2, . . . , n}. In particular, if each full gra-
dient ∇f(x̃) (which requires n stochastic gradient computations) at the snapshot point x̃ is reused
for n iterations (i.e., x̃ is changed after every n iterations), then the amortized stochastic gradient
computations for each iteration is the same as SGD. Note that E[∇̃t] = ∇f(xt) is an unbiased
estimator, and its variance E[‖∇̃t−∇f(xt)‖2] ≤ 4L

(
f(xt)− f(x∗) + f(x̃)− f(x∗)

)
is reduced as

the algorithm converges xt, x̃→ x∗, while the variance term is uncontrollable for plain SGD where
∇̃t = ∇fi(xt). Johnson and Zhang [12] also show that SVRG obtains the linear convergence
O((n + L

µ ) log 1
ε ) which can be better than the sublinear convergence rate O(σ

2

µε ) of plain SGD,
for strongly convex problems. The SVRG gradient estimator (2) is adopted in many algorithms
(e.g., 2, 4, 9, 13, 19, 20, 23, 25, 39, 40, 47, 48) and also is used in our ANITA.

The aforementioned variance-reduced methods are not accelerated and hence they do not achieve
the optimal convergence rates for convex finite-sum problem (1). See the non-accelerated variance-
reduced algorithms listed in the first part of Table 1, i.e., SAG, SVRG, SAGA and SVRG++, they do
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not achieve the accelerated rates, i.e., Lµ vs.
√

L
µ (strongly convex case) and L

ε vs.
√

L
ε (general con-

vex case). Note that we do not list the SCSG [19] and SARAH [37] in Table 1 since SCSG requires
an additional bounded variance assumption (without this assumption, its result is the same as SVRG
and SAGA) and SARAH uses E[‖∇f(x̂)‖2] ≤ ε as the convergence criterion which can not be di-
rectly converted to E[f(x̂)− f(x∗)] ≤ ε. SARAH is usually used for solving nonconvex problems
where the convergence criterion is typically the norm of gradient (e.g., 8, 21, 22, 27, 29, 38, 45).
Also both SCSG and SARAH are non-accelerated methods and thus do not achieve the optimal
convergence results. Therefore, much recent research effort has been devoted to the design of accel-
erated gradient methods (e.g., 1, 3, 14, 16, 17, 24, 28, 30, 36, 44). As can be seen from Table 1, for
strongly convex finite-sum problems, existing accelerated methods such as RPDG [15], Katyusha
[1], Varag [17] and our ANITA are optimal since their convergence results areO

((
n+

√
nL
µ

)
log 1

ε

)
matching the lower bound Ω

((
n+

√
nL
µ

)
log 1

ε

)
given by Lan and Zhou [15].

However, for general (non-strongly) convex finite-sum problems, all previous accelerated meth-
ods do not achieve the optimal convergence result. In particular, Varag [17] obtains the current

best result O
(
nmin{log 1

ε , log n} +
√

nL
ε

)
, while the lower bound in this general convex case is

Ω
(
n+

√
nL
ε

)
provided by Woodworth and Srebro [46]. More importantly, for large-scale problems

where the number of data samples n is very large, or the target error ε is not very small, then the
convergence result of Varag is O(n log 1

ε ) which is not optimal since the lower bound is Ω(n) (see
Table 2). Note that the case of large-scale problems or the case of moderate target error often exists
in machine learning applications. We show that our ANITA takes an important step towards the
ultimate limit of accelerated methods and it is the first algorithm to achieve the optimal convergence
rate O(n) in this case matching the lower bound Ω(n). See Table 1 and Table 2 for more details.

2. Our Contributions

In this paper, we propose a novel simple accelerated variance-reduced gradient method, called
ANITA (Algorithm 1), for solving both general convex and strongly convex finite-sum problems
given in the form of (1). Table 1 and Table 2 summarize the convergence results of ANITA and
previous algorithms. The proposed ANITA takes an important step towards the ultimate limit of
accelerated methods and can achieve the optimal convergence rates.

As we mentioned before (see the last paragraph of Section 1), although accelerated methods
have been widely studied in the optimization and machine learning literature, the limit of accelerated
methods is still not be achieved for general convex finite-sum problems. Especially for the case of
large-scale finite-sum problems or moderate target error, they do not achieve the optimal result
O(n). Motivated by this, in this paper we mainly focus on further improving the convergence result
in order to close the gap between the upper bound and lower bound. Now, we highlight the following
results achieved by ANITA:
• For general convex problems, ANITA obtains the rate O

(
nmin

{
1 + log 1

ε
√
n
, log

√
n
}

+√
nL
ε

)
for finding an ε-approximate solution of problem (1), which improves previous best result

O
(
nmin{log 1

ε , log n}+
√

nL
ε

)
given by Varag [17] (see the ‘general convex’ column of Table 1).

Moreover, for a very wide range of ε, i.e., ε ∈ (0, L
n log2√n ] ∪ [ 1√

n
,+∞), or the number of data
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Table 1: Convergence rates for finding an ε-approximate solution E[f(x̂)− f(x∗)] ≤ ε of (1)

Algorithms µ-strongly convex General convex
Loopless
(Simple)

GD O
(
nL
µ

log 1
ε

)
O
(
nL
ε

)
Yes

Nesterov’s accelerated GD

[35, 36]
O
(
n
√
L
µ

log 1
ε

)
O

(
n
√
L
ε

)
Yes

SAG [18] O
((
n+ n2b L

nµ
c
)

log 1
ε

)
— Yes

SVRG [12] O
((
n+ L

µ

)
log 1

ε

)
— No

SAGA [6] O
((
n+ L

µ

)
log 1

ε

)
O
(
n+L
ε

)
Yes

SVRG++ [4] — O
(
n log 1

ε
+ L

ε

)
No

RPDG [15] O
((
n+

√
nL
µ

)
log 1

ε

)
O

((
n+

√
nL
ε

)
log 1

ε

)
1 Yes

Catalyst [30] O
((
n+

√
nL
µ

)
log 1

ε

)
1 O

((
n+

√
nL
ε

)
log2 1

ε

)
1 No

Katyusha [1] O
((
n+

√
nL
µ

)
log 1

ε

)
O

(
n log 1

ε
+
√
nL
ε

)
1 No

Katyushans [1] — O

(
n√
ε

+
√
nL
ε

)
No

Varag [17] O
((
n+

√
nL
µ

)
log 1

ε

)
O
(
nmin

{
log 1

ε
, logn

}
+
√
nL
ε

)
No

ANITA (this paper)
O
((
n+

√
nL
µ

)
log 1

ε

)
O
(
nmin

{
1 + log 1

ε
√
n
, log

√
n
}

+
√
nL
ε

)
Yes

O
((
n+

√
nL
µ

)
log 1

ε

)
O

(
n+

√
nL
ε

)
2 Yes

Lower bound
Ω
((
n+

√
nL
µ

)
log 1

ε

)
[15]

Ω

(
n+

√
nL
ε

)
[46]

—

1 These gradient complexity bounds are obtained via indirect approaches, i.e., by adding strongly convex perturbation.
2 ANITA can achieve this optimal result for a very wide range of ε, i.e., ε ∈ (0, L

n log2
√
n

]∪ [ 1√
n
,+∞) or the number

of data samples n ∈ (0, L
ε log2

√
n

]∪ [ 1
ε2
,+∞) (see Table 2 for more details). Note that the term min{log 1

ε
, logn}

in Varag [17] cannot be removed regardless of the value of ε or n. Thus ANITA is the first accelerated algorithm that
can exactly achieve the optimal convergence result.

Table 2: Direct accelerated stochastic algorithms for general convex setting wrt. ε

Algorithms

The target error (E[f(x̂)− f(x∗)] ≤ ε): large ε −→ small ε

(or the number of data samples: large n −→ small n)

ε ≥ 1√
n

(or n ≥ 1
ε2

)

1√
n
> ε ≥ 1

n

(or 1
ε2
> n ≥ 1

ε
)

1
n
> ε ≥ L

n log2
√
n

(or 1
ε
> n ≥ L

ε log2
√
n

)

L
n log2

√
n
> ε

(or L
ε log2

√
n
> n)

Katyushans [1] O
(
n√
ε

)
O
(
n√
ε

)
O
(
n√
ε

)
O
(
n√
ε

+
√
nL
ε

)
Varag [17] O

(
n log 1

ε

)
O
(
n log 1

ε

)
O (n logn) O

(
n logn+

√
nL
ε

)
ANITA (this paper) O (n) O

(
n
(
1 + log 1

ε
√
n

))
O
(
n log

√
n
)

O

(√
nL
ε

)
Lower bound [46] Ω (n) Ω (n) Ω

(
n
√

L
εn

)
Ω

(√
nL
ε

)
Remark: ANITA achieves the optimal result O(n) for large-scale problems (large n) or moderate target error (not too small ε).
It should be pointed out that all parameter settings of ANITA (i.e., {pt}, {θt}, {ηt}, and {αt} in Algorithm 1) do not require

the value of ε in advance. The convergence rate of ANITA will automatically switch to different results listed in Table 2.
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samples n ∈ (0, L
ε log2√n ] ∪ [ 1

ε2
,+∞), ANITA can exactly achieve the optimal convergence result

O
(
n +

√
nL
ε

)
matching the lower bound Ω

(
n +

√
nL
ε

)
provided by Woodworth and Srebro [46]

(see Table 1 and its Footnote 2).
• In particular, we would like to point out that none of previous algorithms with/without accel-

eration can obtain the optimal result O(n) for finite-sum problems (1) where the number of data
samples is very large or the target error is not very small, ANITA is the first algorithm that achieves
the optimal result O(n) for these typical machine learning problems (see the second column of
Table 2 and its Remark).
•We also note that ANITA is the first loopless direct accelerated stochastic algorithm for solving

general convex finite-sum problems, while previous accelerated stochastic algorithms use indirect
approaches (RPDG, Catalyst, Katyusha) and/or use inconvenient double-loop algorithmic structures
(Katyushans, Varag) (see Table 1). Moreover, by exploiting the loopless structure of ANITA, we pro-
vide a new dynamic multi-stage convergence analysis which is the key technical part for improving
previous results to the optimal rates.
• For strongly convex finite-sum problems (i.e., under strong convexity Assumption 2), we also

prove that ANITA achieves the optimal convergence rate O
(
(n+

√
nL
µ ) log 1

ε

)
matching the lower

bound Ω
(
(n+

√
nL
µ ) log 1

ε

)
provided by Lan and Zhou [15] (see Table 1).

• Finally, the experiments show that ANITA converges faster than the previous state-of-the-art
Varag [17], validating our theoretical results and confirming the practical superiority of ANITA.

2.1. ANITA algorithm

In this section, we describe the simple novel ANITA method in Algorithm 1. Note that µ is the
strongly convex parameter (see Assumption 2). We point out that Algorithm 1 can deal with both
general convex (µ = 0) and strongly convex (µ > 0) problems.

In each iteration t, the stochastic gradient estimator ∇̃t of ANITA (Line 5 of Algorithm 1)
uses the gradient information of only one randomly sampled function fi. Note that for the last term
∇f(wt), it reuses previous∇f(wt−1) with probability 1−pt−1 or needs to compute the full gradient

Algorithm 1 ANITA
Input: initial point x0, parameters {pt}, {θt}, {ηt}, {αt}
1: w0 = x̄0 = x0 = x0

2: for t = 0, 1, 2, . . . , T − 1 do
3: xt = θtxt + (1− θt)wt
4: Randomly pick i ∈ {1, 2, . . . , n}
5: ∇̃t = ∇fi(xt)−∇fi(wt) +∇f(wt)
6: xt+1 = 1

1+µηt
(xt + µηtxt)−

ηt
αt
∇̃t

7: x̄t+1 = θtxt+1 + (1− θt)wt

8: wt+1 =

{
x̄t+1 with probability pt
wt with probability 1− pt

9: end for
Output: wT
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∇f(x̄t) with probability pt−1 (see Line 8). Thus we know that ANITA uses (n+2)pt−1+2(1−pt−1)
stochastic gradients in expectation for iteration t. In particular, if pt ≡ 1

n , then ANITA only uses
constant stochastic gradients for each iteration which maintains the same computational cost as
SGD. The snapshot point wt is updated in the last Line 8, it is a probabilistic step which is the key
part for removing double-loop structures to obtain a simple loopless algorithm, similar to [13, 29].

However, beyond the two interpolation steps (momentum) (see Line 3 and 7), we propose a new
dynamic multi-stage convergence analysis which uses a dynamic control of the probability {pt} in
Line 8, unlike directly fixing it to a constant pt ≡ p as in [13, 29]. This is also the first time that a
loopless algorithm uses a dynamic control of {pt}. More importantly, our new convergence analysis
exploiting this dynamic multiple stages can lead to better convergence rates.

3. Convergence Results for ANITA

Here we state two Corollaries 1 and 2 (from Theorems 3 and 4) for solving finite-sum problems (1)
in the general convex and strongly convex settings, respectively. The main Theorems 3 and 4 and
all detailed proofs are deferred to the appendix.

Corollary 1 (General convex case) Suppose that Assumption 1 holds. Choose the parameters
{pt}, {θt}, {ηt}, {αt} as stated in Theorem 3. Then ANITA (Algorithm 1) can find an ε-approximate
solution for problem (1) such that

E[f(wT )− f(x∗)] ≤ ε

within T iterations, where

T ≤

{
2n if ε ≥ O( 1

n)

n+

√
24(n+3)L‖x0−x∗‖2

ε if ε < O( 1
n)
,

and the number of stochastic gradient computations can be bounded by

#grad = O

(
nmin

{
1 + log

1

ε
√
n
, log

√
n
}

+

√
nL

ε

)
.

Remark: Note that all parameter settings {pt}, {θt}, {ηt}, {αt} of ANITA in Corollary 1 (Theo-
rem 3) do not require the value of ε in advance. The convergence rate of ANITA will automatically
switch to different results as stated in Table 2.

Corollary 2 (Strongly convex case) Suppose that Assumptions 1 and 2 hold. Choose the param-
eters {pt}, {θt}, {ηt}, {αt} as stated in Theorem 4. Then ANITA (Algorithm 1) can find an ε-
approximate solution for problem (1) such that E[f(wT )− f(x∗)] ≤ ε within T iterations, where

T ≤ 5

4pθ
log

Φ0

ε
.

Moreover, by choosing p = 1
n , the number of stochastic gradient computations can be bounded by

#grad = O

(
max

{
n,

√
nL

µ

}
log

1

ε

)
.
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4. Experiments

In the experiments, we consider the following logistic regression problem:

min
x∈Rd

f(x) :=
1

n

n∑
i=1

log
(
1 + exp(−biaTi x)

)
, (3)

where {ai, bi}ni=1 ∈ Rd × {±1} are data samples. All datasets used in our experiments are down-
loaded from LIBSVM [5].

We present the numerical experiments of ANITA (Algorithm 1) compared with previous state-
of-the-art Varag [17]. We also present the standard gradient descent (GD) as a benchmark. We
directly use the parameter settings according to the theoretical convergence theorems or corollaries
of these algorithms, i.e., we do not tune any hyperparameters. Note that for the logistic function in
(3), one can precompute the smoothness parameter L satisfying Assumption 1, i.e., L ≤ 1/4 if the
data samples are normalized. Given the parameter L, we are ready to set all other hyperparameters
for GD (Corollary 2.1.2 in [36]), for Varag (Theorem 1 in [17]) and for ANITA (our Theorem 3).

In the following Figure 1, the x-axis and y-axis represent the number of data passes (i.e., we
compute n stochastic gradients for each data pass) and the training loss, respectively. The numerical
results presented in Figure 1 are conducted on different datasets. Each plot corresponds to one
dataset (six datasets in total). The experimental results show that ANITA indeed converges faster
than Varag [17] in the earlier stage (moderate target error), validating our theoretical results (see
the second column of Table 2 and its Remark). More importantly, ANITA is the first accelerated
algorithm which can obtain the optimal convergence result O(n) in this range. Besides, ANITA
also enjoys a simpler loopless algorithmic structure while Varag uses an inconvenient double-loop
structure.
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Figure 1: The convergence performance of GD, Varag and ANITA under different datasets.
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[27] Zhize Li and Peter Richtárik. ZeroSARAH: Efficient nonconvex finite-sum optimization with
zero full gradient computation. arXiv preprint arXiv:2103.01447, 2021.

[28] Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtárik. Acceleration for compressed gradi-
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Appendix A. Main Convergence Theorems for ANITA

In this appendix, we present two main convergence theorems of ANITA (Algorithm 1) for solving
finite-sum problems (1), i.e., Theorem 3 under Assumption 1 (general convex setting in Appendix
A.1) and Theorem 4 under Assumptions 1–2 (strongly convex setting in Appendix A.2). We will
provide the proof sketches for Theorems 3 and 4 in the next Appendix B. The detailed proofs for
Theorems 3–4 and Corollaries 1–2 are deferred to Appendix C.

Assumption 1 (L-smoothness) Functions fi : Rd → R are convex and L-smooth such that

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖ (4)

for some L ≥ 0 and all i ∈ [n].

Assumption 2 (µ-strong convexity) A function f : Rd → R is µ-strongly convex such that

f(x)− f(y)− 〈∇f(y), x− y〉 ≥ µ

2
‖x− y‖2, (5)

for some µ ≥ 0.

Note that the case µ = 0 reduces to the standard convexity. We will denote µ = 0 as the general
convex setting and µ > 0 as the strongly convex setting in this paper. Also note that the strong
convexity is only corresponding to the average function f in (1), is not needed for the component
functions fis.

A.1. General convex setting

Now, we provide the main convergence theorem of ANITA for general convex problems and then
obtain a corollary for providing the detailed convergence result. Before presenting the theorem, we
first recall some basics for the geometric distribution. For a geometric distribution with parameter
p > 0, denoted as N ∼ Geom(p), i.e., N = k with probability (1 − p)kp for k = 0, 1, 2, . . .
(after k failures until the first success). We know that E[N ] = 1−p

p . It is not hard to see that if
we fix the probability pt in Line 8 of Algorithm 1 to a constant p, then the update of wt follows
from a geometric distribution Geom(p). For instance, if we choose pt ≡ p = 1

n+1 in Algorithm 1,
then we know that E[N ] = 1−p

p = n and wt+1 will maintain the same as previous values and only
change to x̄t+1 after n iterations in expectation. In the first stage of ANITA, we indeed uses constant
probability pt ≡ p = 1

n+1 . Let t1 be the first time such that w changes to x̄, i.e., wt1+1 = x̄t1+1

and wt1 = wt1−1 = · · · = w0. Thus t1 ∼ Geom(p) and E[t1] = n, where p = 1
n+1 . Note that this

first stage where we fix pt ≡ p is similar to loopless SVRG [13], SCSG [19] and PAGE [29]. One
can also derandomize the special case of constant probability p in this first stage to a deterministic
double-loop with loop length 1−p

p algorithms like the original SVRG [12] and SARAH [37]. The
difference is that our ANITA will use a dynamic change of pt after this first stage, while previous
algorithms always keep fixing the probability pt ≡ p.

Theorem 3 (General convex case) Suppose that Assumption 1 holds. For 0 ≤ t ≤ t1, let pt ≡
1

n+1 , θt ≡ 1 − 1
2
√
n

, ηt ≤ 1
L(1+1/(1−θt)) and αt = θt. For t > t1, let pt = max{ 4

t−t1+3
√
n
, 4
n+3},
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θt = 2
pt(t−t1+3

√
n)

, ηt ≤ 1
3L and αt = θt. Then the following equation holds for ANITA (Algo-

rithm 1) for any iteration t > t1 + 1:

E[f(wt)− f(x∗)] ≤ 32‖x0 − x∗‖2

ηt−1pt−1(t− t1 + 3
√
n)2

.

Remark: From the choice of probability {pt} in Theorem 3, we know that there are three stages
of ANITA: i) the first stage pt ≡ 1

n+1 for 0 ≤ t ≤ t1; ii) the second stage pt = 4
t−t1+3

√
n

for

t1 < t ≤ t1 + n + 3 − 3
√
n; iii) the third stage pt ≡ 4

n+3 for t > t1 + n + 3 − 3
√
n. This

multi-stage convergence analysis is key part for the improvement of ANITA. Roughly speaking, the
number of stochastic gradient computations in the first stage is #grad = O(n), in the second stage

is #grad = O
(
nmin

{
log 1

ε
√
n
, log
√
n
})

, and in the third stage is #grad = O
(√

nL
ε

)
. We will

provide a proof sketch of Theorem 3 in the next Appendix B.1. The detailed proofs of Theorem 3
and its Corollary 1 (in Section 3) are deferred to Appendix C.1. Also note that all parameter settings
{pt}, {θt}, {ηt}, {αt} of ANITA in Theorem 3 do not require the value of ε in advance. The
convergence rate of ANITA will automatically switch to different results as stated in Table 2.

A.2. Strongly convex setting

In this section, we provide the main convergence theorem of ANITA for strongly convex problems
(µ > 0 in Assumption 2) and then obtain a corollary for providing the detailed convergence result.

Theorem 4 (Strongly convex case) Suppose that Assumptions 1 and 2 hold. For any t ≥ 0, let
pt ≡ p, θt ≡ θ = 1

2 min{1,
√

µ
pL}, ηt ≤

1
Lθt(1+1/(1−θt)) and αt = 1 + µηt. Then the following

equation holds for ANITA (Algorithm 1) for any iteration t ≥ 0:

E[Φt] ≤
(

1− 4pθ

5

)t
Φ0, (6)

where Φt := f(wt)− f(x∗) + (1+µη)pθ
2η ‖xt − x∗‖2.

Remark: In this strongly convex case, the parameter setting of ANITA in Theorem 4 is simpler
than the general convex case in Theorem 3. Here, the choice of probability {pt} can be fixed to a
constant p and {θt} also can be chosen as a constant θ. Then according to Theorem 4, we know
that {ηt} and {αt} also reduce to constant values. Thus there is only one stage in this strongly
convex case rather than three stages in previous general convex case. Also here the function value
decreases in an exponential rate, i.e., E[Φt] ≤

(
1 − 4pθ

5

)t
Φ0 (see (6) in Theorem 4). It is easy

to see that the number of iterations T can be bounded by O(· log 1
ε ) for finding an ε-approximate

solution E[f(wT ) − f(x∗)] ≤ ε. Then, by choosing p = 1
n (thus each iteration only computes

constant stochastic gradients in expectation), the number of total stochastic gradient computations
can be bounded by #grad = O

(
max

{
n,
√

nL
µ

}
log 1

ε

)
. This convergence result of ANITA is

optimal which matches the lower bound Ω
((
n +

√
nL
µ

)
log 1

ε

)
given by Lan and Zhou [15] (see

Table 1). Similarly, we will provide a proof sketch of Theorem 4 in the next Appendix B. The
detailed proofs of Theorem 4 and its Corollary 2 (in Section 3) are deferred to Appendix C.2. Note
that all parameter settings {pt}, {θt}, {ηt}, {αt} of ANITA in Theorem 4 also do not require the
value of ε in advance.
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Appendix B. Proof Sketches for Main Theorems of ANITA

In this appendix, we provide the proof sketches for the two main convergence theorems of ANITA
for general convex and strongly convex cases, i.e., for Theorem 3 (in Section B.1) and Theorem 4
(in Section B.2).

B.1. Proof sketch for general convex case (Theorem 3)

Now, we provide the proof sketch of Theorem 3. As we discussed at the end Remark of Section
A.1, we know that there are three stages of ANITA. First, we provide a key lemma for the first stage.

Lemma 5 Suppose Assumption 1 holds. For 0 ≤ t ≤ t1, let pt ≡ p, θt ≡ θ, ηt ≤ 1
L(1+1/(1−θt))

and αt = θt. Then the following equation holds for ANITA (Algorithm 1):

E[f(wt1+1)− f(x∗)] ≤ E
[
(1− θ)

(
f(x0)− f(x∗)

)
+
(θ2p

2η
+ (1− p)L(1− θ)θ2

)
‖x0 − x∗‖2

−
(θ2p

2η
− (1− p)L(1− θ)θ2

)
‖xt1+1 − x∗‖2

]
. (7)

Particularly, we choose pt ≡ p = 1
n+1 in the first stage of ANITA in Theorem 3. As we discussed

before Theorem 3, we know that E[t1] = 1−p
p = n. One can also derandomize this first stage by

running Line 3–7 of Algorithm 1 for n iterations and then letting wn+1 = x̄n+1.
After the first stage, for iterations t > t1, we will use a dynamic change of pt. We first provide

the following technical lemma which describes the change of function value between two adjacent
iterations.

Lemma 6 Suppose Assumption 1 holds. Choose stepsize ηt ≤ 1
L(1+1/(1−θt)) and αt = θt for any

t ≥ 0. Then the following equation holds for ANITA (Algorithm 1) for any iteration t ≥ 0:

E
[
ηt
ptθ2

t

(
f(wt+1)− f(x∗)

)]
≤ E

[
(1− ptθt)ηt

ptθ2
t

(
f(wt)− f(x∗)

)
+

1

2

(
‖xt − x∗‖2 − ‖xt+1 − x∗‖2

)]
.

(8)

According to (8), in order to get a recursion formula, we need to show that

(1− ptθt)ηt
ptθ2

t

≤ ηt−1

pt−1θ2
t−1

(9)

by further choosing appropriate parameters {pt}, {θt} and {ηt}. In particular, choosing pt =
max{ 4

t−t1+3
√
n
, 4
n+3}, θt = 2

pt(t−t1+3
√
n)

and ηt ≡ η ≤ 1
3L for t > t1 (as chosen in Theorem 3)

can satisfy (9) for any t > t1 + 1. Combining this choice of {pt}, {θt} and {ηt} with Lemma 6 and
summing up from iteration t1 + 1 to t, we obtain the following Lemma 7.

Lemma 7 Suppose Assumption 1 holds. For t > t1, let pt = max{ 4
t−t1+3

√
n
, 4
n+3}, θt =

2
pt(t−t1+3

√
n)

, ηt ≤ 1
3L and αt = θt. Then the following equation holds for ANITA (Algorithm 1)

for any iteration t > t1 + 1:

E
[

ηt−1

pt−1θ2
t−1

(
f(wt)− f(x∗)

)]
≤ E

[
(1− pt1+1θt1+1)ηt1+1

pt1+1θ2
t1+1

(
f(wt1+1)− f(x∗)

)
+

1

2

(
‖xt1+1 − x∗‖2 − ‖xt − x∗‖2

)]
. (10)
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Also note that we can bound the term f(x0) − f(x∗) in (7) as f(x0) − f(x∗) ≤ L
2 ‖x0 − x∗‖2

according to the L-smoothness of f (Assumption 1). Now, we combine Lemma 5 and Lemma 7 to
prove the main Theorem 3, i.e., by plugging (7) into (10) and plugging in the value of parameters,
we can obtain, for any iteration t > t1 + 1,

E[f(wt)− f(x∗)] ≤ 32‖x0 − x∗‖2

ηt−1pt−1(t− t1 + 3
√
n)2

.

The proof sketch of Theorem 3 is finished.

B.2. Proof sketch for strongly convex case (Theorem 4)

Now, we provide the proof sketch of Theorem 4. As we discussed at the end Remark of Section A.2,
the parameter setting of ANITA in this strongly convex case is simpler than the general convex case
in Theorem 3. As a result, we only need one technical Lemma 8 in this proof sketch of Theorem 4
rather than three Lemmas 5–7 in previous general convex case.

Lemma 8 Suppose that Assumptions 1 and 2 hold. Choose stepsize ηt ≤ 1
Lθt(1+1/(1−θt)) and

αt = 1 + µηt for any t ≥ 0. Then the following equation holds for ANITA (Algorithm 1) for any
iteration t ≥ 0:

E
[
f(wt+1)− f(x∗) +

(1 + µηt)ptθt
2ηt

‖xt+1 − x∗‖2
]
≤ E

[
(1− ptθt)

(
f(wt)− f(x∗)

)
+
ptθt
2ηt
‖xt − x∗‖2

]
.

Then, if we further choosing the probability {pt} as a constant p and {θt} as a constant θ, we
know that the parameters ηt and αt will also be fixed to the constant η and α (see Lemma 8). Now,
if we further define

Φt := f(wt)− f(x∗) +
(1 + µη)pθ

2η
‖xt − x∗‖2,

then Lemma 8 can be changed to, for any iteration t ≥ 0,

E[Φt+1] ≤ E
[

max
{

1− pθ, 1

1 + µη

}
Φt

]
. (11)

Now if we further let θt ≡ θ = 1
2 min{1,

√
µ
pL}, we have

1

1 + µη
≤ 1− 4pθ

5
. (12)

By plugging (12) into (11), we finish the proof sketch of Theorem 4:

E[Φt+1] ≤ E
[(

1− 4pθ

5

)
Φt

]
≤
(

1− 4pθ

5

)t+1
Φ0.
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Appendix C. Missing Detailed Proofs

Now, we provide the detailed proofs of main convergence theorems and corollaries of ANITA for
both general convex case (Theorem 3 and Corollary 1) and strongly convex case (Theorem 4 and
Corollary 2).

Before proving these theorems and corollaries, we first recall some basic properties for smooth
convex functions and some basic facts for the geometric distribution, then we provide some impor-
tant technical lemmas.

Lemma 9 (Lemma 1 in [17]) If f : X → R has L-Lipschitz continuous gradients (L-smooth),
then we have

1

2L
‖∇f(x)−∇f(z)‖2 ≤ f(x)− f(z)− 〈∇f(z), x− z〉, ∀x, z ∈ X. (13)

We also recall the proof in Lan et al. [17] for completeness.
Proof of Lemma 9. Denote φ(x) = f(x)− f(z)−〈∇f(z), x− z〉. Clearly φ also has L-Lipschitz
continuous gradients. It is easy to check that ∇φ(z) = 0, and hence that minx φ(x) = φ(z) = 0,
which implies

φ(z) ≤ φ
(
x− 1

L
∇φ(x)

)
= φ(x) +

∫ 1

0

〈
∇φ

(
x− τ

L
∇φ(x)

)
,− 1

L
∇φ(x)

〉
dτ

= φ(x) +
〈
∇φ(x),− 1

L
∇φ(x)

〉
+

∫ 1

0

〈
∇φ

(
x− τ

L
∇φ(x)

)
−∇φ(x),− 1

L
∇φ(x)

〉
dτ

≤ φ(x)− 1

L
‖∇φ(x)‖2 +

∫ 1

0
L
∥∥∥ τ
L
∇φ(x)

∥∥∥ ∥∥∥ 1

L
∇φ(x)

∥∥∥dτ
= φ(x)− 1

2L
‖∇φ(x)‖2.

Therefore, we have 1
2L‖∇φ(x)‖2 ≤ φ(x)− φ(z) = φ(x), and the result follows immediately from

this relation. �
For a geometric distribution with parameter p > 0, denoted as N ∼ Geom(p), i.e., N = k

with probability (1− p)kp for k = 0, 1, 2, . . . (after k failures until the first success). We know the
following facts hold (see, e.g., [20]).

Fact 1 Let N ∼ Geom(p). Then for any sequence D0, D1, . . . with E|DN | <∞, we have

E[N ] =
1− p
p

, (14)

E[DN −DN+1] =
p

1− p
(
D0 − E[DN ]

)
, (15)

E[DN ] = pD0 + (1− p)E[DN+1]. (16)

Now, we provide some important technical lemmas which are useful for proving the main con-
vergence theorems of ANITA. Concretely, Lemma 10 provides some ways to upper bound the vari-
ance of the gradient estimator in ANITA. Lemma 11 describes the change of function value after a
gradient update step in ANITA.
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Lemma 10 Suppose that Assumption 1 holds. The gradient estimator

∇̃t = ∇fi(xt)−∇fi(wt) +∇f(wt) (17)

is defined in Line 5 of Algorithm 1, then conditional on the past, we have

E[∇̃t] = ∇f(xt), (18)

E[‖∇̃t −∇f(xt)‖2] ≤ L2‖xt − wt‖2, (19)

E[‖∇̃t −∇f(xt)‖2] ≤ 2L
(
f(wt)− f(xt)− 〈∇f(xt), wt − xt〉

)
. (20)

Proof of Lemma 10. For (18), it is easy to see that (note that the expectation is taken over the
random choice of i in iteration t (see Line 4 of Algorithm 1))

E[∇̃t]
(17)
= E[∇fi(xt)−∇fi(wt) +∇f(wt)]

= ∇f(xt)−∇f(wt) +∇f(wt) = ∇f(xt).

Then, for (19), we obtain it from Assumption 1 as follows:

E[‖∇̃t −∇f(xt)‖2]
(17)
= E[‖∇fi(xt)−∇fi(wt) +∇f(wt)−∇f(xt)‖2]

≤ E[‖∇fi(xt)−∇fi(wt)‖2] (21)

≤ L2‖xt − wt‖2, (22)

where (21) follows from the fact that E[‖x − Ex‖2] ≤ E[‖x‖2] for any random variable x, and
(22) follows from Assumption 1, i.e., the L-Lipschitz continuous gradients ‖∇fi(x) −∇fi(y)‖ ≤
L‖x− y‖.

Now, for the last one (20), we obtain it from (21) and Assumption 1 as follows:

E[‖∇̃t −∇f(xt)‖2]
(21)
≤ E[‖∇fi(xt)−∇fi(wt)‖2]

≤ E
[
2L
(
fi(wt)− fi(xt)− 〈∇fi(xt), wt − xt〉

)]
(23)

= 2L
(
f(wt)− f(xt)− 〈∇f(xt), wt − xt〉

)
,

where (23) uses Lemma 9 with x and z replaced by wt and xt, and f replaced by fi since fi has
L-Lipschitz continuous gradients according to Assumption 1. �

Lemma 11 Suppose that Assumptions 1 and 2 hold. Let stepsize ηt ≤ αt
L(1+µηt)θt(1+1/(1−θt)) , then

the following equation holds for ANITA (Algorithm 1) for any iteration t ≥ 0:

E[f(wt+1)− f(x∗)] ≤ E
[
(1− ptθt)

(
f(wt)− f(x∗)

)
+

ptαtθt
(1 + µηt)ηt

(1

2
‖xt − x∗‖2 −

1 + µηt
2
‖xt+1 − x∗‖2

)
− µ(1 + µηt − αt)ptθt

2(1 + µηt)
‖xt − x∗‖2

]
. (24)

Note that for the case of µ = 0 (general (non-strongly) convex setting), only the smoothness As-
sumption 1 is required, i.e., the strong convexity Assumption 2 is not needed for obtaining (24) with
µ = 0.
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Proof of Lemma 11. First, in view of L-smoothness of f (Assumption 1), we have

E[f(x̄t+1)]

≤ E
[
f(xt) + 〈∇f(xt), x̄t+1 − xt〉+

L

2
‖x̄t+1 − xt‖2

]
= E

[
f(xt) + 〈∇f(xt), θt(xt+1 − xt)〉+

Lθ2
t

2
‖xt+1 − xt‖2

]
(25)

= E
[
f(xt) + 〈∇f(xt)− ∇̃t, θt(xt+1 − xt)〉+ 〈∇̃t, θt(xt+1 − xt)〉+

Lθ2
t

2
‖xt+1 − xt‖2

]
≤ E

[
f(xt) +

βt
2L
‖∇f(xt)− ∇̃t‖2 +

Lθ2
t

2βt
‖xt+1 − xt‖2 + 〈∇̃t, θt(xt+1 − xt)〉+

Lθ2
t

2
‖xt+1 − xt‖2

]
(26)

= E
[
f(xt) +

βt
2L
‖∇f(xt)− ∇̃t‖2 +

L(1 + 1/βt)θ
2
t

2
‖xt+1 − xt‖2 + 〈∇̃t, θt(x∗ − xt)〉

+ 〈∇̃t, θt(xt+1 − x∗)〉
]

(18)
= E

[
f(xt) +

βt
2L
‖∇f(xt)− ∇̃t‖2 +

L(1 + 1/βt)θ
2
t

2
‖xt+1 − xt‖2 + 〈∇f(xt), θt(x

∗ − xt)〉

+ 〈∇̃t, θt(xt+1 − x∗)〉
]

(27)

(20)
≤ E

[
f(xt) + βt

(
f(wt)− f(xt)− 〈∇f(xt), wt − xt〉

)
+
L(1 + 1/βt)θ

2
t

2
‖xt+1 − xt‖2

+ 〈∇f(xt), θt(x
∗ − xt)〉+ 〈∇̃t, θt(xt+1 − x∗)〉

]
= E

[
(1− θt)f(wt) + θtf(xt)− 〈∇f(xt), (1− θt)(wt − xt)〉+ 〈∇f(xt), θt(x

∗ − xt)〉

+
L(1 + 1/(1− θt))θ2

t

2
‖xt+1 − xt‖2 + 〈∇̃t, θt(xt+1 − x∗)〉

]
(28)

= E
[
(1− θt)f(wt) + θt

(
f(xt) + 〈∇f(xt), x

∗ − xt〉
)

+
L(1 + 1/(1− θt))θ2

t

2
‖xt+1 − xt‖2 + 〈∇̃t, θt(xt+1 − x∗)〉

]
, (29)

where (25) holds since x̄t+1−xt = θt(xt+1−xt) according to the two interpolation steps of ANITA
(see Line 3 and Line 7 of Algorithm 1), (26) uses Young’s inequality with βt > 0, (28) holds by
further choosing βt = 1−θt, (29) removeswt and xt via the interpolation step xt = θtxt+(1−θt)wt
(see Line 3 of Algorithm 1).

Now, we use the (strong) convexity of f (see Assumption 2) in (29) to obtain

E[f(x̄t+1)] ≤ E
[
(1− θt)f(wt) + θt

(
f(x∗)− µ

2
‖xt − x∗‖2

)
+
L(1 + 1/(1− θt))θ2

t

2
‖xt+1 − xt‖2 + 〈∇̃t, θt(xt+1 − x∗)〉

]
. (30)
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Then, we deduce the last inner product term in (30) as follows:

E
[
〈∇̃t, θt(xt+1 − x∗)〉

]
= E

[
αtθt

(1 + µηt)ηt

〈
xt + µηt − (1 + µηt)xt+1, xt+1 − x∗

〉]
(31)

= E
[

αtθt
(1 + µηt)ηt

(〈
xt − xt+1, xt+1 − x∗

〉
+ µηt

〈
xt − xt+1, xt+1 − x∗

〉)]
= E

[
αtθt

(1 + µηt)ηt

(1

2

(
‖xt − x∗‖2 − ‖xt − xt+1‖2 − ‖xt+1 − x∗‖2

)
+
µηt
2

(
‖xt − x∗‖2 − ‖xt − xt+1‖2 − ‖xt+1 − x∗‖2

))]
≤ E

[
αtθt

(1 + µηt)ηt

(1

2
‖xt − x∗‖2 −

1 + µηt
2
‖xt+1 − x∗‖2 +

µηt
2
‖xt − x∗‖2 −

1

2
‖xt − xt+1‖2

)]
,

(32)

where (31) follows from the gradient update step of ANITA (see Line 6 of Algorithm 1).
Now we plug (32) into (30) to get

E[f(x̄t+1)]

≤ E
[
(1− θt)f(wt) + θtf(x∗)− µ(1 + µηt − αt)θt

2(1 + µηt)
‖xt − x∗‖2 +

L(1 + 1/(1− θt))θ2
t

2
‖xt+1 − xt‖2

+
αtθt

(1 + µηt)ηt

(1

2
‖xt − x∗‖2 −

1 + µηt
2
‖xt+1 − x∗‖2

)
− αtθt

2(1 + µηt)ηt
‖xt+1 − xt‖2

]
≤ E

[
(1− θt)f(wt) + θtf(x∗)− µ(1 + µηt − αt)θt

2(1 + µηt)
‖xt − x∗‖2

+
αtθt

(1 + µηt)ηt

(1

2
‖xt − x∗‖2 −

1 + µηt
2
‖xt+1 − x∗‖2

)]
, (33)

where the last inequality (33) holds by letting ηt ≤ αt
L(1+µηt)θt(1+1/(1−θt)) .

Finally, according to the probabilistic update of wt+1 in Line 8 of Algorithm 1, we have

E[f(wt+1)] = E
[
ptf(x̄t+1) + (1− pt)f(wt)

]
(34)

The proof is finished by combining (33) with (34), i.e., (24) is obtained by adding pt × (33) and
(34). �

C.1. Proofs for general convex case

In Appendix C.1.1, we provide the proof for the main convergence Theorem 3 in the general convex
case (i.e., µ = 0). Note that the strong convexity Assumption 2 is not needed in this case. Then we
provide the proof for a following Corollary 1 with detailed convergence result in Appendix C.1.2.

C.1.1. PROOF OF THEOREM 3

First, according to the probabilistic update of wt+1 in Line 8 of Algorithm 1, i.e.,

wt+1 =

{
x̄t+1 with probability pt
wt with probability 1− pt

(35)
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Let pt ≡ p for 0 ≤ t ≤ t1, where t1 denotes the first time such that wt1+1 = x̄t1+1, i.e., wt1 =
wt1−1 = · · · = w0. It is easy to see that t1 ∼ Geom(p), i.e., t1 = k with probability (1− p)kp for
k = 0, 1, 2, . . . t1 (after k failures until the first success). Also we know that E[t1] = 1−p

p according
to Fact 1 (see (14)). Now, we restate the technical Lemma 5 which shows the decrease of function
value in iterations 0 ≤ t ≤ t1, and then provide its proof.
Lemma 5 Suppose Assumption 1 holds. For 0 ≤ t ≤ t1, let pt ≡ p, θt ≡ θ, ηt ≤ 1

L(1+1/(1−θt)) and
αt = θt. Then the following equation holds for ANITA (Algorithm 1):

E[f(wt1+1)− f(x∗)] ≤ E
[
(1− θ)

(
f(x0)− f(x∗)

)
+
(θ2p

2η
+ (1− p)L(1− θ)θ2

)
‖x0 − x∗‖2

−
(θ2p

2η
− (1− p)L(1− θ)θ2

)
‖xt1+1 − x∗‖2

]
. (36)

Proof of Lemma 5. First, in view of L-smoothness of f (Assumption 1), we recall (27) (where
∀βt > 0):

E[f(x̄t+1)]

≤ E
[
f(xt) +

βt
2L
‖∇f(xt)− ∇̃t‖2 +

L(1 + 1/βt)θ
2
t

2
‖xt+1 − xt‖2 + 〈∇f(xt), θt(x

∗ − xt)〉

+ 〈∇̃t, θt(xt+1 − x∗)〉
]

= E
[
f(xt) +

βt
2L
‖∇f(xt)− ∇̃t‖2 +

L(1 + 1/βt)θ
2
t

2
‖xt+1 − xt‖2

+
〈
∇f(xt), θt(x

∗ − xt) + (1− θt)(wt − xt)
〉

+ 〈∇̃t, θt(xt+1 − x∗)〉
]

(37)

≤ E
[
(1− θt)f(wt) + θtf(x∗) +

βt
2L
‖∇f(xt)− ∇̃t‖2 +

L(1 + 1/βt)θ
2
t

2
‖xt+1 − xt‖2

+ 〈∇̃t, θt(xt+1 − x∗)〉
]

(38)

(19)
≤ E

[
(1− θt)f(wt) + θtf(x∗) +

Lβt
2
‖xt − wt‖2 +

L(1 + 1/βt)θ
2
t

2
‖xt+1 − xt‖2

+ 〈∇̃t, θt(xt+1 − x∗)〉
]

= E
[
(1− θt)f(wt) + θtf(x∗) +

Lβtθ
2
t

2
‖xt − wt‖2 +

L(1 + 1/βt)θ
2
t

2
‖xt+1 − xt‖2

+ 〈∇̃t, θt(xt+1 − x∗)〉
]

(39)

= E
[
(1− θt)f(wt) + θtf(x∗) +

L(1− θt)θ2
t

2
‖xt − wt‖2 +

L(1 + 1/(1− θt))θ2
t

2
‖xt+1 − xt‖2

+ 〈∇̃t, θt(xt+1 − x∗)〉
]
, (40)
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where (37) and (39) use the interpolation step xt = θtxt + (1− θt)wt (see Line 3 of Algorithm 1),
(38) uses the convexity of f , and (40) holds by choosing βt = 1− θt.

For the last inner product term in (40), we recall (32) here:

E
[
〈∇̃t, θt(xt+1 − x∗)〉

]
≤ E

[
αtθt

(1 + µηt)ηt

(1

2
‖xt − x∗‖2 −

1 + µηt
2
‖xt+1 − x∗‖2 +

µηt
2
‖xt − x∗‖2 −

1

2
‖xt − xt+1‖2

)]
= E

[
αtθt
ηt

(1

2
‖xt − x∗‖2 −

1

2
‖xt+1 − x∗‖2 −

1

2
‖xt − xt+1‖2

)]
, (41)

where the last equality (41) holds due to µ = 0 in this general non-strongly convex case.
Now, we plug (41) into (40) to get

E[f(x̄t+1)] ≤ E
[
(1− θt)f(wt) + θtf(x∗) +

αtθt
ηt

(1

2
‖xt − x∗‖2 −

1

2
‖xt+1 − x∗‖2

)
+
L(1− θt)θ2

t

2
‖xt − wt‖2 −

αtθt − L(1 + 1/(1− θt))θ2
t ηt

2ηt
‖xt − xt+1‖2

]
.

(42)

According to the parameter setting in Lemma 5, we know that pt ≡ p, θt ≡ θ, ηt ≤ 1
L(1+1/(1−θt)) ≡

1
L(1+1/(1−θ)) and αt = θt ≡ θ for iterations 0 ≤ t ≤ t1 in the first stage. By plugging these param-
eters into (42), we obtain

E[f(wt1+1)]

= E[f(x̄t1+1)]

≤ E
[
(1− θ)f(w0) + θf(x∗) +

θ2

2η

(
‖xt1 − x∗‖2 − ‖xt1+1 − x∗‖2

)
+
L(1− θ)θ2

2
‖xt1 − w0‖2

]
(15)
= E

[
(1− θ)f(w0) + θf(x∗) +

θ2p

2η(1− p)

(
‖x0 − x∗‖2 − ‖xt1 − x∗‖2

)
+
L(1− θ)θ2

2
‖xt1 − w0‖2

]
(16)
= E

[
(1− θ)f(w0) + θf(x∗) +

θ2p

2η(1− p)

(
‖x0 − x∗‖2 − (1− p)‖xt1+1 − x∗‖2 − p‖x0 − x∗‖2

)
+ (1− p)L(1− θ)θ2

2
‖xt1+1 − w0‖2 + p

L(1− θ)θ2

2
‖x0 − w0‖2

]
≤ E

[
(1− θ)f(x0) + θf(x∗) +

θ2p

2η(1− p)

(
‖x0 − x∗‖2 − (1− p)‖xt1+1 − x∗‖2 − p‖x0 − x∗‖2

)
+ (1− p)L(1− θ)θ2

(
‖xt1+1 − x∗‖2 + ‖x0 − x∗‖2

)]
, (43)

where (43) uses Cauchy-Schwarz inequality and w0 = x0. Now, the proof of Lemma 5 is finished
since (36) directly follows from (43). �

Now, for iterations t > t1. We restate the key Lemma 7 which shows the decrease of function
value in iterations t > t1, and then provide its proof.
Lemma 7 Suppose Assumption 1 holds. For t > t1, let pt = max{ 4

t−t1+3
√
n
, 4
n+3}, θt =

2
pt(t−t1+3

√
n)

, ηt ≤ 1
3L and αt = θt. Then the following equation holds for ANITA (Algorithm 1)
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for any iteration t > t1 + 1:

E
[

ηt−1

pt−1θ2
t−1

(
f(wt)− f(x∗)

)]
≤ E

[
(1− pt1+1θt1+1)ηt1+1

pt1+1θ2
t1+1

(
f(wt1+1)− f(x∗)

)
+

1

2

(
‖xt1+1 − x∗‖2 − ‖xt − x∗‖2

)]
. (44)

Proof of Lemma 7. For proving this lemma, we will use our technical Lemma 11 with µ = 0
(general convex case). In particular, by choosing αt = θt and multiplying ηt

ptθ2t
for both sides in (24)

with µ = 0, we obtain the Lemma 6 and here we restate it:
Lemma 6 Suppose Assumption 1 holds. Choose stepsize ηt ≤ 1

L(1+1/(1−θt)) and αt = θt for any
t ≥ 0. Then the following equation holds for ANITA (Algorithm 1) for any iteration t ≥ 0:

E
[
ηt
ptθ2

t

(
f(wt+1)− f(x∗)

)]
≤ E

[
(1− ptθt)ηt

ptθ2
t

(
f(wt)− f(x∗)

)
+

1

2

(
‖xt − x∗‖2 − ‖xt+1 − x∗‖2

)]
.

(45)

Then, we are going to sum up (45) from iteration t1 + 1 to t for obtaining (44). In order to get a
recursion formula for (45), we further choose appropriate parameters {pt}, {θt} and {ηt} to obtain

(1− ptθt)ηt
ptθ2

t

≤ ηt−1

pt−1θ2
t−1

. (46)

It is not hard to verify that (46) can be satisfied for any t > t1 + 1 by choosing

pt = max
{ 4

t− t1 + 3
√
n
,

4

n+ 3

}
, (47)

θt =
2

pt(t− t1 + 3
√
n)
, (48)

ηt ≡ η ≤
1

3L
, (49)

for any t > t1. The proof of Lemma 7 is finished by summing up (45) from iteration t1 + 1 to t and
noting that (46) holds for any t > t1 + 1. �

Now, we are ready to prove Theorem 3 by combining Lemma 5 (iterations 0 ≤ t ≤ t1) and
Lemma 7 (iterations t > t1).

Proof of Theorem 3. First, we note that pt1+1 = 4
1+3
√
n

, θt1+1 = 1
2 and ηt1+1 ≤ 1

L(1+1/(1−θt1+1)) =
1

3L . Then, by plugging (36) into (44) and noting that

(1− pt1+1θt1+1)ηt1+1

pt1+1θ2
t1+1

=
(1− 2

1+3
√
n

) 1
3L

1
1+3
√
n

=
3
√
n− 1

3L
≤ 4
√
n

L
, (50)

we have

E
[

ηt−1

pt−1θ2
t−1

(
f(wt)− f(x∗)

)]
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≤ E
[

4
√
n

L

(
(1− θ)

(
f(x0)− f(x∗)

)
+
(θ2p

2η
+ (1− p)L(1− θ)θ2

)
‖x0 − x∗‖2

−
(θ2p

2η
− (1− p)L(1− θ)θ2

)
‖xt1+1 − x∗‖2

)
+

1

2

(
‖xt1+1 − x∗‖2 − ‖xt − x∗‖2

)]
≤ E

[
4
√
n

L

(
(1− θ)

(
f(x0)− f(x∗)

)
+
(θ2p

2η
+ (1− p)L(1− θ)θ2

)
‖x0 − x∗‖2

)
−
((θ2p

2η
− (1− p)L(1− θ)θ2

)4
√
n

L
− 1

2

)
‖xt1+1 − x∗‖2

]
≤ E

[
4
√
n

L

(
(1− θ)L

2
+
θ2p

2η
+ (1− p)L(1− θ)θ2

)
‖x0 − x∗‖2

−
((θ2p

2η
− (1− p)L(1− θ)θ2

)4
√
n

L
− 1

2

)
‖xt1+1 − x∗‖2

]
(51)

≤ 8‖x0 − x∗‖2, (52)

where (51) holds due to the L-smoothness of f , (52) follows from the constant parameters i.e.,
pt ≡ p = 1

n+1 , θt ≡ θ = 1− 1
2
√
n

and ηt ≤ 1
L(1+1/(1−θt)) ≡

1
(1+2

√
n)L

for t ≤ t1.

Finally, the proof of Theorem 3 is finished by multiplying
pt−1θ2t−1

ηt−1
for both sides of (52), i.e.,

we have for any iteration t > t1 + 1

E[(f(wt)− f(x∗)] ≤
8pt−1θ

2
t−1‖x0 − x∗‖2

ηt−1

(48)
=

32‖x0 − x∗‖2

ηt−1pt−1(t− t1 + 3
√
n)2

. (53)

�

C.1.2. PROOF OF COROLLARY 1

Now, we provide the proof for Corollary 1 with detailed convergence result of ANITA in the general
convex case (i.e., µ = 0).
Proof of Corollary 1. Note that the output of ANITA (Algorithm 1) is wT after T iterations. To
show that wT is an ε-approximate solution, we recall (53) with iteration t = T > t1 + 1 here:

E[(f(wT )− f(x∗)] ≤ 32‖x0 − x∗‖2

ηT−1pT−1(T − t1 + 3
√
n)2

. (54)

According to (47), we know pt = max
{

4
t−t1+3

√
n
, 4
n+3

}
for any t > t1. Thus we divide (54) into

two cases, i) pt = 4
t−t1+3

√
n

for t1 < t ≤ t1 +n+3−3
√
n; ii) pt = 4

n+3 for t > t1 +n+3−3
√
n.

Now, we know that for Case i) t ≤ t1 +n+3−3
√
n, then pt = 4

t−t1+3
√
n

, θt = 2
pt(t−t1+3

√
n)

=
1
2 , ηt ≤ 1

3L , and (54) turns to

E[(f(wT )− f(x∗)] ≤ 24L‖x0 − x∗‖2

T − t1 + 3
√
n
≤ ε. (55)

The last inequality of (55) holds by choosing T = t1 − 3
√
n + 24L‖x0−x∗‖2

ε . In particular, if
ε ≥ O( 1

n), then (recall that E[t1] = n and also it can be derandomized to n iterations)

T = t1 − 3
√
n+

96L‖x0 − x∗‖2

ε
≤ 2n. (56)
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For the other case ε < O( 1
n) (small target error), it corresponds to Case ii) t > t1 +n+3−3

√
n

(i.e., more iterations are needed), then pt = 4
n+3 , θt = 2

pt(t−t1+3
√
n)

= n+3
2(t−t1+3

√
n)
≤ 1

2 , ηt ≤ 1
3L

and (54) turns to

E[(f(wT )− f(x∗)] ≤ 24(n+ 3)L‖x0 − x∗‖2

(T − t1 + 3
√
n)2

≤ ε. (57)

The last inequality of (57) holds by choosing

T = t1 − 3
√
n+

√
24(n+ 3)L‖x0 − x∗‖2

ε
≤ n+

√
24(n+ 3)L‖x0 − x∗‖2

ε
. (58)

Now, the remaining thing is to bound the number of stochastic gradient computations of ANITA
for achieving the ε-approximate solution wT . As we discussed in Section 2.1, we know that ANITA
(Algorithm 1) uses (n+ 2)pt + 2(1− pt) = npt + 2 stochastic gradients in expectation for iteration
t. According to the choice of probability {pt} in Corollary 1 (Theorem 3), we know that there are
three stages. 1) The first stage pt ≡ 1

n+1 for 0 ≤ t ≤ t1; 2) the second stage pt = 4
t−t1+3

√
n

for

t1 < t ≤ t1 + n+ 3− 3
√
n; 3) the third stage pt ≡ 4

n+3 for t > t1 + n+ 3− 3
√
n.

First, let us consider the case of large ε (i.e., ε ≥ O( 1
n)). Then we know that only the first two

stages of ANITA is enough for finding an ε-approximate solution in this case. According to (55),
the total number of stochastic gradient computations is

#grad =

T−1∑
t=0

(npt + 2) = n
( t1∑
t=0

pt +

T−1∑
t=t1+1

pt

)
+ 2T

= n
( t1∑
t=0

1

n+ 1
+

T−1∑
t=t1+1

4

t− t1 + 3
√
n

)
+ 2T

≤ O
(
n
(

1 + log
1

ε
√
n

))
, (59)

where the last inequality (59) follows from (56).
Then, for the other case ε < O( 1

n) (small target error), we know that more iterations are needed
for finding an ε-approximate solution. According to (57), the total number of stochastic gradient
computations is

#grad =
T−1∑
t=0

(npt + 2)

= n
( t1∑
t=0

1

n+ 1
+

t1+n+3−3
√
n∑

t=t1+1

4

t− t1 + 3
√
n

+
T−1∑

t=t1+n+4−3
√
n

4

n+ 3

)
+ 2T

≤ O

(
n log

√
n+

√
nL

ε

)
, (60)

where the last inequality (60) follows from (58). �
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C.2. Proofs for strongly convex case

Similar to Appendix C.1, we first provide the proof of the main convergence Theorem 4 for the
strongly convex case (i.e., µ > 0) in Appendix C.2.1. Then we provide the proof for its Corollary 2
with detailed convergence result in Appendix C.2.2.

C.2.1. PROOF OF THEOREM 4

In this strongly convex case, the parameter setting of ANITA in Theorem 4 is simpler than the
general convex case in Theorem 3. Here, the choice of probability {pt} can be fixed to a constant
p and {θt} also can be chosen as a constant θ. Then according to Theorem 4, we know that {ηt}
and {αt} also reduce to constant values. Thus there is only one stage in this strongly convex case
rather than three stages in previous general convex case. Also here the function value decreases in
an exponential rate, i.e., ANITA obtains a linear convergence rate.

Proof of Theorem 4. First, we restate the key Lemma 8 for this strong convex setting, which
describes the change of function value after a gradient update step in ANITA. Note that Lemma 8
directly follows from our technical Lemma 11 with αt = 1 + µηt.
Lemma 8 Suppose that Assumptions 1 and 2 hold. Choose stepsize ηt ≤ 1

Lθt(1+1/(1−θt)) and
αt = 1 + µηt for any t ≥ 0. Then the following equation holds for ANITA (Algorithm 1) for any
iteration t ≥ 0:

E
[
f(wt+1)− f(x∗) +

(1 + µηt)ptθt
2ηt

‖xt+1 − x∗‖2
]
≤ E

[
(1− ptθt)

(
f(wt)− f(x∗)

)
+
ptθt
2ηt
‖xt − x∗‖2

]
.

(61)

Then, according to the parameter settings chosen in Theorem 4, we know that pt ≡ p and θt ≡
θ = 1

2 min{1,
√

µ
pL} for any t ≥ 0, and the stepsize ηt ≤ 1

Lθt(1+1/(1−θt)) ≡ η = 1
Lθ(1+1/(1−θ)) .

Now, we further define

Φt := f(wt)− f(x∗) +
(1 + µη)pθ

2η
‖xt − x∗‖2, (62)

then (61) in Lemma 8 can be changed to, for any iteration t ≥ 0,

E[Φt+1] ≤ E
[

max
{

1− pθ, 1

1 + µη

}
Φt

]
≤ E

[(
1− 4pθ

5

)
Φt

]
(63)

≤
(

1− 4pθ

5

)t+1
Φ0. (64)

where (63) uses 1
1+µη ≤ 1 − 4pθ

5 since the choice of parameters θ = 1
2 min{1,

√
µ
pL} and η =

1
Lθ(1+1/(1−θ)) , and the last inequality (64) holds by telescoping (63) from iteration t to 0. �
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C.2.2. PROOF OF COROLLARY 2

Now, we provide the proof for Corollary 2 with detailed convergence result of ANITA in the strongly
convex case (i.e., µ > 0).

Proof of Corollary 2. Note that the output of ANITA (Algorithm 1) is wT after T iterations. To
show that wT is an ε-approximate solution, we recall (64) with iteration t = T − 1:

E[(f(wT )− f(x∗)] ≤ E[ΦT ] ≤
(

1− 4pθ

5

)T
Φ0 ≤ ε, (65)

where the first inequality is due to the definition of ΦT (see (62)), and the last inequality holds by
letting the number of iterations

T =
5

4pθ
log

Φ0

ε
.

Moreover, by choosing p = 1
n and recalling that θ = 1

2 min{1,
√

µ
pL}, then the total number of

stochastic gradient computations of ANITA for achieving the ε-approximate solution wT is

#grad =
T−1∑
t=0

(npt + 2) =
(
n

1

n
+ 2
)
T =

15

4pθ
log

Φ0

ε
= O

(
max

{
n,

√
nL

µ

}
log

1

ε

)
.

�
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