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Abstract
Federated Learning (FL) is a powerful technique to train a model on a server with data from sev-
eral clients in a privacy-preserving manner. FL incurs significant communication costs because
it repeatedly transmits the model between the server and clients. Recently proposed algorithms
quantize the model parameters to efficiently compress FL communication. We find that dynamic
adaptations of the quantization level can boost compression without sacrificing model quality. We
introduce DAdaQuant as a doubly-adaptive quantization algorithm that dynamically changes the
quantization level across time and different clients. Our experiments show that DAdaQuant con-
sistently improves client→server compression, outperforming the strongest non-adaptive baselines
by up to 2.8×.

1. Introduction

Federated Learning (FL) has emerged as a privacy-preserving technique to train models on data from
many devices [9, 11]. It assumes a client-server topology with a set C = {ci|i ∈ {1, 2...N}} of N
clients that are connected to a single server. Each client ck has a local datasetDk from the local data
distribution Dk. Given a modelM with parameters p, a loss function fp(d ∈ Dk) and the local loss
Fk(p) =

1
|Dk|

∑
d∈Dk

fp(d), FL seeks to minimize the global loss G(p) =
∑N

k=1
|Dk|∑
l |Dl|Fk(p).

To this end, the server initializes the model with parameters p0. In round t, the server sends pt
to a random subset St of K clients to optimize their local objectives Fk(pt) and send the updated
model parameters pkt+1 back to the server. The server accumulates all parameters into the new
global model pt+1 =

∑
k∈St

|Dk|∑
j |Dj |p

k
t+1 and starts the next round. This procedure enables the

server to train a model without accessing any local datasets [11]. FL communication is expensive
and can account for over 70% of its energy consumption [14]. Reducing FL communication is an
attractive optimisation because it lowers bandwidth usage, energy consumption and training time.

Communication in FL happens in two phases: Sending parameters from the server to clients
(downlink) and sending updated parameters from clients to the server (uplink). Uplink bandwidth
usually imposes a tighter bottleneck than downlink bandwidth because of connection asymmetry
[19] and cheap downlink broadcasting [2, 15]. Therefore, we compress uplink communication.

FL research has explored several approaches to reduce communication. Algorithms like Fe-
dAvg [11] and FOLB [12] try to converge in fewer rounds. PruneFL [8] and AFD [4] prune the
model or only train on part of the whole model to reduce the number of parameters that have to be
communicated. Finally, it is possible to directly compress FL training communication. To this end,
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techniques such as top-k sparsification [10, 16] and quantization [15, 18] are commonly applied to
parameter updates, optionally followed by lossless compression.

Our work applies to quantization-based compression algorithms for FL that apply some lossy
quantizer Q to the model parameters. Q usually provides a “quantization level” hyperparameter q to
control the coarseness of quantization. When q is kept constant during training, we speak of static
quantization. When q changes, we speak of adaptive quantization.

Adaptive quantization can exploit asymmetries in the FL framework to minimize communica-
tion. One such asymmetry lies in FL’s training time, where we observe that with time-adaptive
quantization, early training rounds can use a lower q without affecting convergence (see Figure 4).
Another asymmetry lies in FL’s client space, because most FL algorithms weight client contribu-
tions to the global model proportional to their local dataset sizes. Intuitively, FL clients with greater
weighting should have a greater communication budget and our proposed client-adaptive quantiza-
tion achieves this in a principled way (see Figure 3).

Adaptive quantization has been explored by Shen et al. [17] who adapt the quantization level
for different model parameters. FracTrain [6] combines this approach with time-adaptive quan-
tization. However, both algorithms are for non-distributed training. AdaQuantFL [7] introduces
time-adaptive quantization to FL, but is impractical for realistic FL settings because its communica-
tion costs grow linearly with the number of clients (see Appendix C.6 for an empirical validation).
In contrast, DAdaQuant scales to arbitrarily many clients.

In this paper, we first create Federated QSGD as an adaption of the gradient compression algo-
rithm QSGD [1] that works with FL. We then introduce the concept of client-adaptive quantization
and develop algorithms for client- and time-adaptive quantization that are computationally efficient,
empirically Pareto optimal and compatible with arbitrary FL quantizers. Finally, we combine time-
and client-adaptive quantization into DAdaQuant and show that it significantly boosts the compres-
sion of Federated QSGD, outperforming competing FL compression algorithms.

2. The DAdaQuant method

Federated QSGD While DAdaQuant can be applied to any quantizer with a configurable quanti-
zation level, it is optimized for fixed-point quantization. Fixed-point quantization uses a quantizer
Qq with quantization level q that splits R≥0 and R≤0 into q intervals each. Qq(p) then returns the
sign of p and |p| rounded to one of the endpoints of its encompassing interval. Qq(p) quantizes the
vector p elementwise.

QSGD combines fixed-point quantization with 0 run-length encoding and Elias ω coding into
a competitive fixed-point quantizer. QSGD has been designed specifically for quantizing gradients.
This makes it not directly applicable to parameter compression. To overcome this limitation, we
apply difference coding to uplink compression, first introduced to FL in [15]. Each client ck applies
Qq to the parameter updates pkt+1 − pt. The server accumulates the quantized parameter updates
into the new parameters as pt+1 = pt +

∑
k∈St

|Dk|∑
l |Dl|Qq(p

k
t+1 − pt). We find that QSGD works

well with parameter updates, which can be regarded as an accumulation of gradients over several
training steps. We call this adaptation of QSGD Federated QSGD and use it with DAdaQuant in
our experiments.

Time-adaptive quantization Time-adaptive quantization uses a different quantization level qt
for each round t of FL training. DAdaQuant chooses qt to minimize communication costs without
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Round 1 2 3 4 5
Client Samples Quantization level
A 1 8
B 2 8 8 8 8
C 3 8 8 8
D 4 8 8

(a) Static quantization.

Round 1 2 3 4 5
Client Samples Quantization level
A 1 4
B 2 1 2 2 4
C 3 1 2 8
D 4 2 8

(b) Time-adaptive quantization.
Round 1 2 3 4 5

Client Samples Quantization level
A 1 6
B 2 7 6 7 9
C 3 9 9 7
D 4 9 9

(c) Client-adaptive quantization.

Round 1 2 3 4 5
Client Samples Quantization level
A 1 3
B 2 1 1 2 5
C 3 1 2 7
D 4 1 9

(d) Time-adaptive and client-adaptive quantization.

Figure 1: Examples of static and adaptive quantization level assignments for four FL clients (A, B,
C, D) that train over five rounds. Each round, two clients are selected for training.

sacrificing accuracy. To this end, we find that lower quantization levels suffice to initially reduce the
loss, while partly trained models require higher quantization levels to further improve (as illustrated
in Figure 4). FracTrain is built on similar observations for non-distributed training. Therefore, we
design DAdaQuant to mimic FracTrain in monotonically increasing qt as a function of t and using
the training loss to inform increases in qt.

When q is too low, FL converges prematurely. Like FracTrain, DAdaQuant monitors the FL loss
and increases q when it converges. Unlike FracTrain, there is no single centralized loss function to
evaluate and accumulating the global loss G(pt) like AdaQuantFL would dramatically increase
communication (see Appendix C.6). Instead, we estimate G(pt) as the average local loss Ĝt =∑

k∈St
|Dk|∑
l |Dl|Fk(pt) where St is the set of clients sampled at round t. Since St typically consists of

only a small fraction of all clients, Ĝt is a very noisy estimate ofG(pt). This makes it unsuitable for
convergence detection. Instead, DAdaQuant tracks a running average loss ˆ̂Gt = ψ ˆ̂Gt−1+(1−ψ)Ĝt.

We initialize q1 = qmin for some qmin ∈ N. DAdaQuant determines training to converge when-
ever ˆ̂Gt ≥ ˆ̂Gt+1−φ for some φ ∈ N that specifies the number of rounds across which we compare
ˆ̂G. On convergence, DAdaQuant sets qt = 2qt−1 and keeps the quantization level fixed for φ rounds
to enable reductions in G to manifest in ˆ̂G. Eventually, the training loss converges regardless of the
quantization level. To avoid unconstrained quantization level increases, we limit the quantization
level to qmax. The following equation summarizes DAdaQuant’s time-adaptive quantization:

qt ←−


qmin t = 0

2qt−1 t > 0 and ˆ̂Gt−1 ≥ ˆ̂Gt−φ and t > φ and 2qt−1 ≤ qmax and qt−1 = qt−φ

qt−1 else

Client-adaptive quantization FL algorithms typically accumulate each parameter pi over all
clients into a weighted average p =

∑K
i=1wipi (see Algorithm 1). Quantized FL communicates and

accumulates quantized parameters Qq(p) =
∑K

i=1wiQq(pi) where q is the quantization level. We
define the quantization error eqp as eqp = |p − Qq(p)|. We find that Ep1...pK [Var(Qq(p))] is a useful
statistic of the quantization error because it strongly correlates with the loss added by quantiza-
tion. For a stochastic, unbiased fixed-point compressor like Federated QSGD, Ep1...pK [Var(Qq(p))]
equals Ep1...pK [Var(e

q
p)] and can be evaluated analytically.
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We observe in our experiments that communication per client is roughly a linear function of
Federated QSGD’s quantization level q. This means that communication per round is proportional
to Q = Kq. We call Q the communication budget and use it as a proxy measure of communication.

Client-adaptive quantization dynamically adjusts the quantization level of each client. This
means that even within a single round, each client ck can be assigned a different quantization level
qk. The communication budget of client-adaptive quantization is then Q =

∑K
k=1 qk and Qq(p)

generalizes to Qq1...qK (p) =
∑K

i=1wiQqi(pi). We devise an algorithm that chooses qk to minimize
Q subject to Ep1...pK [Var(e

q1...qK
p )] = Ep1...pK [Var(e

q
p)] for a given q. Thus, our algorithm ef-

fectively minimizes communication costs while maintaining a quantization error similar to static
quantization. Theorem 1 provides us with an analytical formula for quantization levels q1 . . . qK .

Theorem 1 Given parameters p1 . . . pk ∼ U[−t, t] and quantization level q, minq1...qK
∑K

i=1 qi

subject to Ep1...pK [Var(e
q1...qK
p )] = Ep1...pK [Var(e

q
p)] is minimized by qi =

√
a
b × w

2/3
i where

a =
∑K

j=1w
2/3
j and b =

∑K
j=1

w2
j

q2
.

DAdaQuant applies Theorem 1 to lower communication costs while maintaining the same loss
as static quantization does with a fixed q. To ensure that quantization levels are natural numbers,
DAdaQuant approximates the optimal real-valued solution as qi = max(1, round(

√
a
b × w

2/3
i )).

Appendix D gives a detailed proof of Theorem 1. To the best of our knowledge, DAdaQuant is the
first algorithm to use client-adaptive quantization.

Doubly-adaptive quantization (DAdaQuant) DAdaQuant combines the time-adaptive and client-
adaptive quantization algorithms described above. At each round t, time-adaptive quantization
determines a preliminary quantization level qt. Client-adaptive quantization then finds the client
quantization levels qkt , k ∈ {1, . . . ,K} that minimize

∑K
k=1 q

k
t subject to Ep1...pK [Var(e

q1t ...q
K
t

p )] =
Ep1...pK [Var(e

qt
p )]. Algorithm 1 lists DAdaQuant in detail. Figure 1 gives an example of how our

time-adaptive, client-adaptive and doubly-adaptive quantization algorithms set quantization levels.
Reisizadeh et al. [15] prove the convergence of FL with quantization for convex and non-convex

cases as long as the quantizer Q is (1) unbiased and (2) has a bounded variance. While this conver-
gence result has been derived for a static quantization level, it readily extends to DAdaQuant’s
dynamic quantization with Federated QSGD: It suffices to show that (1) and (2) are satisfied for
DAdaQuant’s minimum quantization level q = 1 and conclude that (1) and (2) are still satisfied for
q > 1 because the quantizer remains unbiased and decreases in variance.

The computational overhead of DAdaQuant is dominated by an additional evaluation epoch per
round per client to compute ˆ̂Gt, which is negligible when training for many epochs each round.

3. Experiments

3.1. Experimental details

Evaluation We use DAdaQuant with Federated QSGD to train different models with FL on dif-
ferent datasets for a fixed number of rounds. We monitor the test loss and accuracy at fixed intervals
and measure uplink communication at every round across all devices. Appendix C.1 gives a full
description of all hyperparameters, including the parameterization of DAdaQuant.

Models & datasets We select a broad and diverse set of five models and datasets to demonstrate
the general applicability of DAdaQuant. To this end, we use DAdaQuant to train a linear model,
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Synthetic FEMNIST Sent140
Uncompressed 78.3± 0.3 12.2MB 77.7± 0.4 132.1GB 69.7± 0.5 43.9GB
Federated QSGD −0.1± 0.1 17× +0.7± 0.5 2809× −0.0± 0.5 90×
FP8 +0.1± 0.4 4.0× (0.23××) −0.1± 0.4 4.0× (0.00××) −0.2± 0.5 4.0× (0.04××)
FedPAQ (FxPQ) −0.1± 0.1 6.4× (0.37××) +0.7± 0.5 11× (0.00××) −0.0± 0.5 4.0× (0.04××)
FxPQ + GZip −0.1± 0.1 14× (0.82××) +0.6± 0.2 1557× (0.55××) −0.0± 0.6 71× (0.79××)
UVeQFed −0.5± 0.2 0.6× (0.03××) −2.8± 0.5 12× (0.00××) +0.0± 0.2 15× (0.16××)
DAdaQuant −0.2± 0.4 48× (2.81××) +0.7± 0.1 4772× (1.70××) −0.1± 0.4 108× (1.19××)
DAdaQuanttime −0.1± 0.5 37× (2.16××) +0.8± 0.2 4518× (1.61××) −0.1± 0.6 93× (1.03××)
DAdaQuantclients +0.0± 0.3 26× (1.51××) +0.7± 0.4 3017× (1.07××) +0.1± 0.6 105× (1.16××)

Table 1: Top-1 test accuracies and total communication of all baselines, DAdaQuant,
DAdaQuanttime and DAdaQuantclients. Entry x ± y p× (q××) denotes an accuracy difference of
x% w.r.t. the uncompressed accuracy with a standard deviation of y%, a compression factor of
p w.r.t. the uncompressed communication and a compression factor of q w.r.t. Federated QSGD.
Appendix C.3 shows the full results, including the datasets Celeba and Shakespeare.

CNNs and LSTMs of varying complexity on a federated synthetic dataset (Synthetic), as well as
two federated image datasets (FEMNIST and CelebA) and two federated natural language datasets
(Sent140 and Shakespeare) from the LEAF [5] project for standardized FL research. We refer to
Appendix C.2 for more information on the models, datasets, training objectives and implementation.

System heterogeneity In practice, FL has to cope with clients that have different compute capa-
bilities. We follow Li et al. [9] and simulate this system heterogeneity by randomly reducing the
number of epochs to E′ for a random subset S′t ⊂ St of clients at each round t, where E′ is sampled
from [1, . . . , E] and |S′t| = 0.9K. Like Li et al., we also add the proximal term µ

2‖p
k
t+1 − pt‖2 to

the local objective Fk(pkt+1) to improve FL convergence under system heterogeneity.

Baselines We compare DAdaQuant against competing quantization-based algorithms, namely
Federated QSGD, FedPAQ, GZip with fixed-point quantization (FxPQ + GZip), UVeQFed and FP8.
Federated QSGD (see Section 2) is our most important baseline because it outperforms the other
algorithms. FedPAQ only applies fixed-point quantization, which is equivalent to Federated QSGD
without lossless compression. Similarly, FxPQ + GZip is equivalent to Federated QSGD with gzip
for its lossless compression stages. UVeQFed [18] generalizes scalar quantization to vector quan-
tization, followed by arithmetic coding. FP8 [20] is a floating-point quantizer that uses an 8-bit
floating-point format designed for storing neural network gradients. We also evaluate all experi-
ments without compression to establish an accuracy benchmark.

3.2. Results

We repeat the main experiments three times and report average results and their standard deviation.
Table 1 shows the highest accuracy and total communication for each experiment. Figure 2 plots
the maximum accuracy achieved for any given amount of communication.

Baselines Table 1 shows that the accuracy of most experiments lies within the margin of error
of the uncompressed experiments. This reiterates the viability of quantization-based compression
algorithms for communication reduction in FL. For all experiments, Federated QSGD achieves a
significantly higher compression factor than the other baselines. The authors of FedPAQ and UVe-
QFed also compare their methods against QSGD and report them as superior. However, FedPAQ is
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compared against “unfederated” QSGD that communicates gradients after each local training step
and UVeQFed is compared against QSGD without its lossless compression stages.

Time- and client-adaptive quantization The purely time-adaptive and client-adaptive versions
of DAdaQuant, DAdaQuanttime and DAdaQuantclients, outperform Federated QSGD and the other
baselines in Table 1, achieving comparable accuracies while lowering communication costs.
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Figure 2: Communication-
accuracy trade-off curves for
training on FEMNIST with Feder-
ated QSGD and DAdaQuant. We
plot the average highest accuracies
for any given amount of commu-
nication. Appendix C.4 shows
similar results for all datasets.

Unsurprisingly, the performance of DAdaQuantclients is corre-
lated with the coefficient of variation cv = σ

µ of the numbers
of samples in the local datasets with mean µ and standard de-
viation σ: Synthetic (cv = 3.3) has a significantly higher
compression factor than Sent140 (cv = 0.3) and FEMNIST
(cv = 0.4). Appendix C.3 shows similar results for Celeba
(cv = 0.3) and Shakespeare (cv = 1.7)

DAdaQuant DAdaQuant outperforms DAdaQuanttime and
DAdaQuantclients in communication while achieving simi-
lar accuracies. The compression factors of DAdaQuant
are roughly multiplicative in those of DAdaQuantclients and
DAdaQuanttime. This demonstrates that we can effectively
combine time- and client-adaptive quantization for maximal
communication savings.

Pareto optimality Figure 2 shows that DAdaQuant achieves
a higher accuracy than the strongest baseline, Federated QSGD, for any fixed amount of communi-
cation. This means that DAdaQuant is Pareto optimal for the datasets we have explored.

4. Conclusion

We introduced DAdaQuant as a computationally efficient and robust algorithm to boost the per-
formance of quantization-based FL compression algorithms. We showed intuitively and mathe-
matically how DAdaQuant’s dynamic adjustments of the quantization level across time and clients
minimize client→server communication while maintaining convergence speed. Our experiments
establish DAdaQuant as nearly universally superior over static quantizers, achieving state-of-the-art
compression factors when applied to Federated QSGD. The communication savings of DAdaQuant
effectively lower FL bandwidth usage, energy consumption and training time.
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Appendix A. Supplementary illustrations
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pA ∝ [0, 1] pB ∝ [0, 1]

Q(pB)

Q(p)
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[Var (Q(p))] = 0.0018

Q(pA)

qA = 8 qB = 8

×1
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× 4
5

(a) Static quantization.

Client A Client B

Server
pA ∝ [0, 1] pB ∝ [0, 1]

Q(pB)

Q(p)
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[Var (Q(p))] = 0.0017
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qA = 4 qB = 9

×1
5

× 4
5

(b) Client-adaptive quantization.

Figure 3: Static quantization vs. client-adaptive quantization when accumulating parameters pA
and pB . (a): Static quantization uses the same quantization level for pA and pB . (b) Client-adaptive
quantization uses a slightly higher quantization level for pB because pB is weighted more heavily.
This allows qA to use a significantly lower quantization level while keeping the quantization error
measure EpA,pB [Var (Q(p))] roughly constant. Since communication is approximately proportional
to qA + qB , client-adaptive quantization communicates less data.

Loss q=1
q=2

q=4
adaptive q

0
1
2

4

Communication

q

Figure 4: Time-adaptive quantization. A small quantization level (q) decreases the loss with less
communication than a large q, but converges to a higher loss. This motivates an adaptive quantiza-
tion strategy that uses a small q as long as it is beneficial and then switches over to a large q. We
generalize this idea into an algorithm that monotonically increases q based on the training loss.
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Appendix B. Pseudocode of DAdaQuant

Algorithm 1: The DAdaQuant algorithm. The uncolored lines list the standard FL training
routine described in Section 1. Adding the colored lines creates DAdaQuant. — quantiza-
tion, — client-adaptive quantization, — time-adaptive quantization.

1 Function RunServer()
2 Initialize wi =

|Di|∑
j |Dj | for all i ∈ [1, . . . , N ];

3 for t = 0, . . . , T − 1 do
4 Choose St ⊂ C with |St| = K, including each ck ∈ C with uniform probability;

5 qt ←−


qmin t = 0

2qt−1 t > 0 and ˆ̂Gt−1 ≥ ˆ̂Gt−φ and t > φ and qt ≤ qmax and qt−1 = qt−φ

qt−1 else

;

6 for ck ∈ St do in parallel

7 qkt ←−
√∑K

j=1w
2/3
j /

∑K
j=1

w2
j

q2
;

8 Send(ck,pt,q
k
t );

9 Receive(ck,p
k
t+1,Ĝ

k
t );

10 end
11 pt+1 ←−

∑
k∈St wkp

k
t+1;

12 Ĝt ←−
∑

k∈St wkĜ
k
t ;

13 ˆ̂Gt ←−

{
Ĝ0 t = 0

ψ ˆ̂Gt−1 + (1− ψ)Ĝt else
;

14 end
15 end
16 Function RunClient(ck)
17 Receive(Server,pt, qkt );

18 Ĝkt ←− Fk(pt) ;
19 pkt+1 ←− Fk(pkt+1) trained with SGD for E epochs with learning rate η;
20 Send(Server, Qqkt (p

k
t+1) ,Ĝ

k
t );

21 end

Appendix C. Additional simulation details and experiments

C.1. Hyperparameters

With the exception of CelebA, all our datasets and models are also used by Li et al.. We therefore
adopt most of the hyperparameters from Li et al. and use LEAF’s hyperparameters for CelebA [5].
For all experiments, we sample 10 clients each round. We train Synthetic, FEMNIST and CelebA
for 500 rounds each. We train Sent140 for 1000 rounds due to slow convergence and Shakespeare
for 50 rounds due to rapid convergence. We use batch size 10, learning rates 0.01, 0.003, 0.3, 0.8,
0.1 and µs (proximal term coefficients, see Section 3.1) 1, 1, 1, 0.001, 0 for Synthetic, FEMNIST,

10
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Sent140, Shakespeare, CelebA respectively. We randomly split the local datasets into 80% training
set and 20% test set.

To select the quantization level q for static quantization with Federated QSGD, FedPAQ and
FxPQ + GZip, we run a gridsearch over q = 1, 2, 4, 8, . . . and choose for each dataset the lowest q
for which Federated QSGD exceeds uncompressed training in accuracy. We set UVeQFed’s “coding
rate” hyperparameter R = 4, which is the lowest value for which UVeQFed achieves negligible
accuracy differences compared to uncompressed training. We set the remaining hyperparameters of
UVeQFed to the optimal values reported by its authors. Appendix C.5 shows further experiments
that compare against UVeQFed with R chosen to maximize its compression factor.

For DAdaQuant’s time-adaptive quantization, we set ψ to 0.9, φ to 1/10th of the number of
rounds and qmax to the quantization level q for each experiment. For Synthetic and FEMNIST,
we set qmin to 1. We find that Sent140, Shakespeare and CelebA require a high quantization level
to achieve top accuracies and/or converge in few rounds. This prevents time-adaptive quantization
from increasing the quantization level quickly enough, resulting in prolonged low-precision training
that hurts model performance. To counter this effect, we set qmin to qmax/2. This effectively results
in binary time-adaptive quantization with an initial low-precision phase with q = qmax/2, followed
by a high-precision phase with q = qmax.

For our experiments in Appendix C.6, AdaQuantFL requires a hyperparameter s that deter-
mines the initial quantization level. We set s to 2, the optimal value reported by the authors of
AdaQuantFL. The remaining hyperparameters are identical to those used for the Synthetic dataset
experiments in Table 1.

C.2. Models, datasets, trainining objectives and implementation details

Here, we give detailed information on the models, datasets, training objectives and implementation
that we use for our experiments. We set the five following FL tasks:

• Multinomial logistic regression (MLR) on a synthetic dataset called Synthetic that contains vec-
tors in R60 with a label of one out of 10 classes. We use the synthetic dataset generator in Li et al.
[9] to generate synthetic datasets. The generator samples Synthetic’s local datasets and labels
from MLR models with randomly initialized parameters. For this purpose, parameters α and β
control different kinds of data heterogeneity. α controls the variation in the local models from
which the local dataset labels are generated. β controls the variation in the local dataset samples.
We set α = 1 and β = 1 to simulate an FL setting with both kinds of data heterogeneity. This
makes Synthetic a useful testbed for FL.

• Character classification into 62 classes of handwritten characters from the FEMNIST dataset us-
ing a CNN. FEMNIST groups samples from the same author into the same local dataset.

• Smile detection in facial images from the CelebA dataset using a CNN. CelebA groups samples
of the same person into the same local dataset. We note that LEAF’s CNN for CelebA uses
BatchNorm layers. We replace them with LayerNorm layers because they are more amenable to
quantization. This change does not affect the final accuracy.

• Binary sentiment analysis of tweets from the Sent140 dataset using an LSTM. Sent140 groups
tweets from the same user into the same local dataset. The majority of local datasets in the raw
Sent140 dataset only have a single sample. This impedes FL convergence. Therefore, we filter
Sent140 to clients with at least 10 samples (i.e. one complete batch). Caldas et al. [5], Li et al.
[9] similarly filter Sent140 for their FL experiments.

11



DOUBLY-ADAPTIVE QUANTIZATION WITH DADAQUANT

• Next character prediction on text snippets from the Shakespeare dataset of Shakespeare’s col-
lected plays using an LSTM. Shakespeare groups lines from the same character into the same
local dataset.

Table 2 provides statistics of our models and datasets.
We implement the models with PyTorch [13] and use Flower [3] to simulate the FL server and

clients.

Dataset Model Weights Clients Samples Samples per client
mean min max stddev

Synthetic MLR 610 30 9,600 320.0 45 5,953 1051.6
FEMNIST 2-layer CNN 6.6× 106 3,500 785,582 224.1 19 584 87.8
CelebA 4-layer CNN 6.3× 105 9,343 200,288 21.4 5 35 7.6
Sent140 2-layer LSTM 1.1× 106 21,876 430,707 51.1 10 549 17.1
Shakespeare 2-layer LSTM 1.3× 105 1,129 4,226,158 3743 3 66,903 6212

Table 2: Statistics of the models and datasets used for evaluation. MLR stands for “Multinomial
Logistic Regression”.

C.3. Complete table of test accuracies and total training communication

Synthetic FEMNIST Sent140
Uncompressed 78.3± 0.3 12.2MB 77.7± 0.4 132.1GB 69.7± 0.5 43.9GB
Federated QSGD −0.1± 0.1 17× +0.7± 0.5 2809× −0.0± 0.5 90×
FP8 +0.1± 0.4 4.0× (0.23××) −0.1± 0.4 4.0× (0.00××) −0.2± 0.5 4.0× (0.04××)
FedPAQ (FxPQ) −0.1± 0.1 6.4× (0.37××) +0.7± 0.5 11× (0.00××) −0.0± 0.5 4.0× (0.04××)
FxPQ + GZip −0.1± 0.1 14× (0.82××) +0.6± 0.2 1557× (0.55××) −0.0± 0.6 71× (0.79××)
UVeQFed −0.5± 0.2 0.6× (0.03××) −2.8± 0.5 12× (0.00××) +0.0± 0.2 15× (0.16××)
DAdaQuant −0.2± 0.4 48× (2.81××) +0.7± 0.1 4772× (1.70××) −0.1± 0.4 108× (1.19××)
DAdaQuanttime −0.1± 0.5 37× (2.16××) +0.8± 0.2 4518× (1.61××) −0.1± 0.6 93× (1.03××)
DAdaQuantclients +0.0± 0.3 26× (1.51××) +0.7± 0.4 3017× (1.07××) +0.1± 0.6 105× (1.16××)

Shakespeare Celeba
Uncompressed 49.9± 0.3 267.0MB 90.4± 0.0 12.6GB
Federated QSGD −0.5± 0.6 9.5× −0.1± 0.1 648×
FP8 −0.2± 0.4 4.0× (0.42××) +0.0± 0.1 4.0× (0.01××)
FedPAQ (FxPQ) −0.5± 0.6 3.2× (0.34××) −0.1± 0.1 6.4× (0.01××)
FxPQ + GZip −0.5± 0.6 9.3× (0.97××) −0.1± 0.2 494× (0.76××)
UVeQFed −0.0± 0.4 7.9× (0.83××) −0.4± 0.3 31× (0.05××)
DAdaQuant −0.6± 0.5 21× (2.21××) −0.1± 0.1 775× (1.20××)
DAdaQuanttime −0.5± 0.5 12× (1.29××) −0.1± 0.2 716× (1.10××)
DAdaQuantclients −0.4± 0.5 16× (1.67××) −0.1± 0.0 700× (1.08××)

Table 3: Top-1 test accuracies and total communication of all baselines, DAdaQuant,
DAdaQuanttime and DAdaQuantclients. Entry x± y p× (q××) denotes an accuracy difference of x%
w.r.t. the uncompressed accuracy with a standard deviation of y%, a compression factor of p w.r.t.
the uncompressed communication and a compression factor of q w.r.t. Federated QSGD.
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C.4. Complete communication-accuracy trade-off curves
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Figure 5: Communication-accuracy trade-off curves for QSGD and DAdaQuant. We plot the aver-
age highest accuracies achieved up to any given amount of communication.

C.5. Additional UVeQFed experiments

To demonstrate that the choice of UVeQFed’s “coding rate” hyperparameter R does not affect our
findings on the superior compression factors of DAdaQuant, we re-evaluate UVeQFed with R =
1, which maximizes UVeQFed’s compression factor. Our results in Table 4 show that with the
exception of Shakespeare, DAdaQuant still achieves considerably higher compression factors than
UVeQFed.

Synthetic FEMNIST Sent140 Shakespeare Celeba
Uncompressed 12.2MB 132.1GB 43.9GB 267.0MB 12.6GB
QSGD 17× 2809× 90× 9.5× 648×
UVeQFed (R=4) 0.6× (0.03××) 12× (0.00××) 15× (0.16××) 7.9× (0.83××) 31× (0.05××)
UVeQFed (R=1) 13× (0.77××) 34× (0.01××) 41× (0.45××) 21× (2.22××) 93× (0.14××)
DAdaQuant 48× (2.81××) 4772× (1.70××) 108× (1.19××) 21× (2.21××) 775× (1.20××)

Table 4: Comparison of the compression factors of DAdaQuant, UVeQFed with R = 4 (default
value used for our experiments in Table 1) and UVeQFed with R = 1 (maximizes UVeQFed’s
compression factor). Entry p× (q××) denotes a compression factor of p w.r.t. the uncompressed
communication and a compression factor of q w.r.t. Federated QSGD.
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C.6. AdaQuantFL vs. DAdaQuant
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Figure 6: Comparison of AdaQuantFL and DAdaQuant. We plot the total communication required
to train an MLR model on synthetic datasets with 10, 100, 200 and 400 clients. AdaQuantFL’s com-
munication increases linearly with the number of clients because it trains the model on all clients
at each round to compute the global training loss. This makes AdaQuantFL prohibitively expen-
sive for datasets with thousands of clients such as Celeba and Sent140. In contrast, DAdaQuant’s
communication does not change with the number of clients.

Appendix D. Proofs

Lemma 2 For arbitrary t > 0 and parameter pi ∈ [−t, t], let si = t
qi

, bi = rem (pi, si) and
ui = si − bi. Then, Var

(
Qqi(pi)

)
= uibi.

Proof

Var
(
Qqi(pi)

)
= E

[(
Qqi(pi)− E

[
Qqi(pi)

])2]
= E

[(
Qqi(pi)− pi

)2]
Qqi(pi) is an unbiased estimator of pi

=
bi
si
u2i +

ui
si
b2i cf. fig. 7

=
uibi
si

(ui + bi)

= uibi

Lemma 3 Let Q be a fixed-point quantizer. Assume that parameters p1 . . . pK are sampled from
U[−t, t] for arbitrary t > 0. Then, Ep1...pK [Var(e

q1...qK
p )] = t2

6

∑K
i=1

w2
i

q2i
.

Proof

Ep1...pK [Var(ep)]
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picsi (c+ 1)si

P (csi) =
ui
si

P ((c+ 1)si) =
bi
si

Figure 7: Illustration of the Bernoulli random variable Qqi(pi) in Lemma 2. si is the length of the
quantization interval. pi is rounded up to (c + 1)si with a probability proportional to its distance
from csi.

=
1

2t

∫ t

−t

1

2t

∫ t

−t
. . .

1

2t

∫ t

−t
Var

(
K∑
i=1

wiQqi(pi)− p

)
dp1dp2 . . . dpK

=
1

t

∫ t

0

1

t

∫ t

0
. . .

1

t

∫ t

0
Var

(
K∑
i=1

wiQqi(pi)− p

)
dp1dp2 . . . dpK symmetry of Qqi(pi)

w.r.t. negation

=
1

tn

∫ t

0

∫ t

0
. . .

∫ t

0

K∑
i=1

w2
iVar

(
Qqi(pi)

)
dp1dp2 . . . dpK mutual independence

of Qqi(pi) ∀i

=
1

tn

K∑
i=1

∫ t

0

∫ t

0
. . .

∫ t

0
w2
iVar

(
Qqi(pi)

)
dp1dp2 . . . dpK exchangeability of fi-

nite sums and integrals

=
1

tn

K∑
i=1

tn−1
∫ t

0
w2
iVar

(
Qqi(pi)

)
dpi

=
1

t

K∑
i=1

w2
i

∫ t

0
Var

(
Qqi(pi)

)
dpi

=
1

t

K∑
i=1

w2
i

∫ t

0
uibi dpi Lemma 2

=
1

t

K∑
i=1

w2
i qi

∫ si

0
uibi dpi si-periodicity of ui and bi

=
1

t

K∑
i=1

w2
i qi

∫ si

0
(si − pi) pi dpi

=
1

6t

K∑
i=1

w2
i qis

3
i

=
t2

6

K∑
i=1

w2
i

q2i
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Lemma 4 Let Q be a fixed-point quantizer. Assume that parameters p1 . . . pK are sampled from
U[−t, t] for arbitrary t > 0. Then, minq1...qK Ep1...pK [Var(e

q1...qK
p )] subject to Q =

∑K
i=1 qi is

minimized by qi = Q
w

2/3
i∑K

k=1 w
2/3
k

.

Proof Define

f(q) = Ep1...pK [Var(e
q1...qK
p )]

g(q) =

(
n∑
i=1

qi

)
L(q) = f(q)− λg(q) (Lagrangian)

Any (local) minimum q̂ satisfies

∇L(q̂) = 0

⇐⇒ ∇ t
2

6

K∑
i=1

w2
i

q2i
− λ∇

K∑
i=1

qi = 0 ∧
K∑
i=1

qi = Q Lemma 3

⇐⇒ ∀i = 1 . . . n.
t2

−3
w2
i

q3i
= λ ∧

K∑
i=1

qi = Q

⇐⇒ ∀i = 1 . . . n. qi =
3

√
t2

−3λ
w2
i ∧

K∑
i=1

qi = Q

=⇒ ∀i = 1 . . . n. qi = Q
w

2/3
i∑K

j=1w
2/3
j

D.1. Proof of Theorem 1

Proof Using Lemma 4, it is straightforward to show that for any V , minq1...qK
∑K

i=1 qi subject to
Ep1...pK [Var(e

q1...qK
p )] = V is minimized by qi = Cw

2/3
i for the unique C ∈ R>0 that satisfies

Ep1...pK [Var(e
q1...qK
p )] = V .

Then, taking V = Ep1...pK [Var(e
q
p)] and C =

√
a
b (see Theorem 1), we do indeed get

Ep1...pK [Var(e
q1...qK
p )]

=
t2

6

K∑
i=1

w2
i

(Cw
2/3
i )

2 Lemma 3

=
1

C2

t2

6

K∑
i=1

wi
2/3
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=

∑K
j=1

w2
j

q2∑K
j=1w

2/3
j

t2

6

K∑
i=1

wi
2/3

=
t2

6

K∑
j=1

w2
j

q2

= Ep1...pK [Var(e
q
p)] Lemma 3
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