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Abstract
We investigate how adaptive step size methods from numerical analysis can be used to speed up
optimization routines. In contrast to line search strategies, the proposed methods recycle available
gradient evaluations. Thus, neither evaluations of the objective function nor additional gradient
evaluations are required, and the computational complexity per iteration remains at O(d), where d
is the problem dimension. On strongly convex functions, our results show a consistent improvement
in the number of iterations by up to a factor of 2 with the gradient method and of 1.4 with the heavy
ball method across a range of condition numbers.

1. Introduction

Choosing step sizes is an important and unavoidable task in optimization. The choice of step size can
determine whether or not an algorithm converges as well as its iteration complexity. By exploiting
analogies between first-order optimization algorithms and dynamical systems, we analyze the use of
adaptive step size methods from numerical analysis in optimization. These methods can be applied
to any algorithm with a continuous-time representation, and we find that they can often significantly
reduce the number of iterations needed for convergence while leaving the computational complexity
per iteration at O(d) where d refers to the problem dimension.

In mathematical optimization, there is a very long tradition of using steps of variable length. The
methods typically fall into two categories: line search and trust region strategies. The former aims
to choose a step size that sufficiently reduces the objective function at each iteration. The difficulty
lies in balancing the amount of decrease with the resulting computational effort [13]. Well-known
strategies with convergence guarantees are the Wolfe [17] or the Armijo-Goldstein conditions [1].
In contrast to line search, where the search direction is fixed and only the step size is varied, trust
region strategies optimize over both the step size and the step direction. This is typically done by
constructing a local approximation of the objective function about the current iterate. Furthermore,
the step size is often restricted, ensuring that the approximation remains valid. Excellent texts on
this subject include Fletcher [5] and Nocedal and Wright [13], for example.

In contrast to these techniques, our approach has its origins in the numerical analysis of differ-
ential equations. We draw on recent results that view optimization algorithms as continuous-time
dynamical systems [see, e.g., 4, 8, 10, 15, 16] and apply adaptive step size techniques as a means
to efficiently discretize the continuous-time equations. This provides an efficient alternative to line
search and trust region methods.
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The computational complexity of optimization algorithms is typically measured by how the
number of iterations grows as a function of accuracy (in terms of function value or distance to the
optimizer) over a given class of functions and over a set of initial conditions. While this notion
of complexity often neglects constants, it has been successful at characterizing fundamental per-
formance limits [see, e.g., 3, 11, 12] and deriving optimal algorithms. However, when facing a
practical problem instance, the constants do matter and determine the actual number of iterations
needed. On the class of strongly convex functions, gradient descent and the heavy ball method with
specific constant step size schemes achieve their respective complexity lower bounds. We find that
the adaptive step size method we develop in this work also achieves these complexity lower bounds,
and improves on the constant compared to the constant step size methods.

2. Adaptive Step Size Routine

We introduce an adaptive step size routine using the specific example of gradient descent. Ex-
tensions to momentum-based optimizers are illustrated with the heavy ball algorithm. Lastly,
we provide a meta-algorithm to generalize the adaptive step size method to any algorithm with
a continuous-time representation as an ordinary differential equation.

We consider an objective function f : Rd → R with a Lipschitz-continuous gradient. For
simplicity, we further assume that f has a single, isolated minimum x∗ at the origin with f(0) = 0,
and that the Lipschitz constant of the gradient is unity. We write the smallest and largest eigenvalues
of the Hessian of f at x∗ as µ and L, respectively, and introduce the condition number as κ = L/µ.

2.1. Gradient Descent

Gradient descent has a well-defined continuous-time representation in the form of gradient flow,

ẋ(t) = −f ′(x(t)). (1)

Dots denote time derivatives and primes derivatives with respect to x. Gradient descent is the
Euler discretization of (1). Using xn and hn to write the nth discrete-time update and step size,
respectively, this is

xn+1 = xn − hnf ′(xn). (2)

There are many other discretization schemes for (1) that differ, for example, in the accuracy with
which they track the underlying continuous dynamics. More accurate discretization schemes afford
the ability to pick larger step sizes [6]. The central idea of our work is that we can use this fact to
guide adaptation of the step size during optimization. Two ingredients are required to implement
this idea: a way to measure the accuracy of the Euler step (2), and a mechanism for adapting the
step size accordingly. These two ingredients are described next.

Measuring accuracy. The error of a discretization scheme is the difference between the discrete
and continuous-time trajectories. Starting from x(t) = xn and applying Taylor’s theorem, we have

x(t+ hn)− xn+1 =
1

2
f ′′(x(ξ))f ′(x(ξ))h2n = C(xn, hn)h

2
n, (3)

for some ξ ∈ (t, t+hn), provided that f ′(x) is continuously differentiable. The function C(xn, hn)
is roughly constant for small hn. The local error of gradient descent is therefore quadratic in hn.
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We compare this to Heun’s method (also called the midpoint rule), which is a more accurate dis-
cretization of (2). Using the notation xH

n for the nth Heun update, this is

xH
n+1 = xn −

1

2
hn

(
f ′(xn) + f ′(xn+1)

)
, (4)

where xn+1 is given by (2). Again, by applying Taylor’s theorem we find

x(t+ hn)− xH
n+1 = CH(xn, hn)h

3
n, (5)

where the function CH(xn, hn) is roughly constant for small hn. The local error of Heun’s method
is cubic in hn, and so it is more accurate than (2).

For small hn, we can therefore estimate the accuracy of gradient descent at each iteration by
comparing it to the Heun update. Using || · || to denote the Euclidean norm, we have

||x(t+ hn)− xn+1|| = ||xH
n+1 − xn+1||+O(h3n) ≡ δn(xn, hn) +O(h3n). (6)

Although the error analysis just presented is strictly valid only for small hn, we observe in
experiments that the resulting adaptive step size routine is still effective at step sizes of order one.

A note on complexity. The Heun discretization has the advantage of being computationally ef-
ficient. Each evaluation of f ′ is a single oracle query for a gradient. The gradient evaluation of
f ′(xn+1) in (4) can be reused in (2) for the next iteration, and so δn can be computed without
additional evaluation of the gradient. The step size control mechanism we propose in the follow-
ing therefore comes with almost no additional computational cost; in fact, it requires precisely one
additional gradient computation in total, over all the iterations.

Adapting step size: proportional control. We use a proportional controller (‘P control’) to set
step sizes based on the value of δn. P control is the simplest version of a family of control mecha-
nisms called PID (proportional integral derivative) control. These find use as automated mechanisms
for controlling a user-specified quantity in a dynamical system. The quantity we wish to control is
δn. While the idea of using PID control to set step sizes for a discretization scheme for differential
equations is not new [6, 7], our innovation here is to apply this idea to optimization.

The P control mechanism introduces two hyperparameters: r, the desired error between the
Heun and gradient descent updates on any given iteration, and θ, which can be interpreted as a gain.
The control mechanism gives the following prescription for modulating the step size:

hn+1 =

(
r

δn

)θ/2
hn. (7)

The form of (7) is motivated by the fact that, after taking logarithms, neglecting O(h3n) terms, and
using (6) and (3), we have

log hn+1 = log hn +
θ

2
(log r − log δn) = (1− θ) log hn +

θ

2
(log r − logC) .

This means that log hn evolves roughly as a linear system, and is expected to converge to its steady
state, given by δn = r, with a rate of 1 − θ. The feedback law (7) is called ‘proportional’ control
because the quantity log hn+1 − log hn is proportional to the error signal log r − log δn.
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At each iteration during optimization, we compute the gradient descent and Heun updates, com-
pute δn, and calculate the step size hn+1 for the next iteration using (7). We then apply the gradient
descent update with the step size hn recommended by the controller on the previous iteration.

We emphasize that the sole purpose of (4) is to compute δn and that it is never actually applied
to an iterate during optimization. In addition, the use of (4) in the computation of δn is a specific
choice; any other more accurate discretization of (1) than (2) can be chosen instead.

Setting θ and r. Formally, we have θ ∈ [0, 2] [7]. Note that θ = 0 results in a constant step size
routine. Increasing θ turns up the gain on the step size control, allowing larger changes between
iterations, and potentially lowering the number of iterations required to converge. We use small
values of θ, i.e., θ ≤ 0.01, which work for functions with condition numbers spanning three orders
of magnitude. At larger values of θ we sometimes observe oscillatory behavior. See Fig. A.1 for
example trajectories of gradient descent with adaptive P control on a strongly convex function at a
range of values of θ.

We set r = 0.5 in experiments on strongly convex functions, requiring the P controller to
maintain δn ≤ 0.5. The controller is less sensitive to changes in r; smaller values also work well.

In practice we find it necessary to place a few additional constraints on the P control mechanism
(7). These are detailed in Appendix C.

2.2. Second and higher-order algorithms: the heavy ball method

Higher-order differential equations can be written as systems of coupled first-order equations. Using
this trick, the method of the previous section can be applied with almost no modification. We
illustrate this here with the example of the heavy ball method.

We work with the following continuous-time limit of the heavy ball algorithm:

ẋ(t) = p(t), ṗ(t) = − 2√
κ
p(t)− f ′(x(t)), (8)

where we have introduced the (momentum) variable p = ẋ. In order to retain the stability of (8) at
large κ, we use the semi-implicit instead of the standard Euler discretization. Unlike the latter, the
former is stable at all values of κ up to a large step size [9]. The update rule is given by

xn+1 = xn + hnpn+1, pn+1 = pn + hn

(
− 2√

κ
pn − f ′(xn)

)
. (9)

In contrast with the Euler method, the semi-implicit Euler method uses pn+1 (instead of pn) in xn+1.
In analogy with Section 2.1, we use the following Heun discretization of (8) to calculate δn:

xH
n+1 = xn +

1

2
hn (pn+1 + pn+2) (10a)

pH
n+1 = pn +

1

2
hn

(
− 2√

κ
(pn + pn+1)− (f ′(xn) + f ′(xn+1))

)
, (10b)

where xn+1 and pn+1 are given by (9) and pn+2 is the semi-implicit Euler update to pn+1. Then
δn = ||(xn+1, pn+1)− (xH

n+1, p
H
n+1)|| where (xn, pn) is the vector formed by concatenating xn and

pn, and step sizes are simply given by the P control mechanism (7).
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2.3. Meta algorithm

Here we generalize the ideas in the previous two sections to any algorithm that has a well-defined
continuous-time representation.

Given a discrete-time algorithm (call it algorithm A), the construction of a P-control-like mech-
anism for step size selection requires the following four steps: (1) Find the continuous-time coun-
terpart of algorithm A. If this is a second or higher-order differential equation with respect to time,
rewrite it as a system of coupled first-order equations. (2) Identify a higher-order discretization (call
this algorithm B) of the continuous-time system. Typically, computational efficiency will guide this
choice. (3) At each iteration during optimization, compute the difference between the updates of
algorithms A and B. Feed this difference to a proportional controller with appropriately set hyper-
parameters. (4) Apply the update of algorithm A with the step size recommended by the controller.

3. Experiments
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Figure 1: (a) A strongly convex function f with condition number 10 generated from a randomly sampled
set of second derivatives. Note that f(0) = 0 and f ′(0) = 0. (b), (c) (Top panels) Gradient
descent and the heavy ball method with P control produce the same convergence behavior as the
same algorithms with constant step size routines of 1 and 0.5, respectively. The dashed lines
are linear fits of log ρ against log κ for large values of κ. (b), (c) (Bottom panels) For large
condition numbers κ, gradient descent (heavy ball) with P control converges in a smaller number
of iterations, up to a factor of 2 (1.4) less than the constant step size routine. r and θ are fixed at
0.5 and 0.01, respectively, for all κ.

We compare the performances of gradient descent and the heavy ball method with P control
and with constant step sizes that achieve the relevant complexity lower bounds on random strongly
convex functions. We find that P control is also able to achieve these bounds and can even improve
the constant in many cases - see Fig. 1. In the following, we briefly describe these experiments
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and their analysis. In Appendix B we present experiments on the nonconvex problem of principal
components analysis.

We choose a range of condition numbers evenly tiling the log scale between 1.1 and 1100.
For each value of κ, we generate fifty strongly convex functions f : R500 → R. Details of
how these functions are generated are given in Appendix C. Each function is optimized once us-
ing gradient descent with constant step size, and once with P control with the same initial step
size as the constant step size method. The two methods begin from different random initializa-
tions x0 ∼ 5 ∗ Unif[0, 1)500. Momentum is initialized to the zero vector. Optimization halts when
the norm of the difference between successive updates drops below 10−8. We run P control with
θ = 0.01 and r = 0.5. Additional constraints on the controller are described in Appendix C.

We characterize the convergence of our algorithms using ||xn|| ∼ B||x0||eρn, where B is a
positive constant and ρ is the convergence rate, which depends on the condition number κ. To probe
this dependency, for each trajectory, we perform a linear fit of the log norm of the iterate (scaled by
the norm of the initial iterate) to the iteration number. The slope ρ produced by this fit is recorded,
along with the number of iterations required to reach the stopping criterion. This data is graphed in
the top panel of Fig. 1(b,c) as a function of condition number. We see that log ρ exhibits roughly
linear behavior with log κ. It is therefore natural to estimate the asymptotic dependence of ρ on κ
for each algorithm with a linear fit to the data in Fig. (1)(b,c) (top panel) for large κ.

For gradient descent, the complexity lower bound for the convergence rate ρ (see Appendix C) is
κ−1, i.e., ρ ∼ O(κ−1) [12]. A constant step size of 1 (1/L with L = 1) achieves this bound. Linear
fits estimating the asymptotic convergence rates of gradient descent with this constant step size and
with P control return (slope, constant) tuples (−0.999(1), 0.013(3)) and (−1.000(1), 0.317(3)),
respectively.1 Both step size schemes achieve the lower bound. The larger constant produced by P
control indicates convergence within a smaller number of iterations. See Fig. 1(b).

Similarly, continuous-time analysis of the heavy ball equation (8) establishes a complexity lower
bound of κ−0.5 for ρ [11]. The same holds true in discrete time for large κ [12]. Experiments
indicate that both P control and a constant step size routine with step size 1/2 perform close to this
lower bound, with asymptotic convergence rates of −0.450(2) and −0.459(3), respectively. Once
again, as with gradient descent, P control has a better constant (−0.290(6) versus −0.453(8)),
which manifests as a smaller number of iterations to convergence. See Fig. 1(c). The choice of 0.5
as the step size for the constant step size routine is motivated by the fact that the algorithm achieves
a rate ρ ∼ 1/(2

√
κ) on quadratic functions, and step sizes larger than 2(

√
2 − 1) ≈ 0.828 lead to

instability on quadratics.

4. Conclusion

We have shown how to construct an adaptive step size control mechanism for optimization rooted
in ideas from the numerical analysis of differential equations. Our method applies to any algorithm
with a well-defined continuous-time representation and has the advantage of being computationally
cheap and easy to tune. Experiments on strongly convex functions indicate that for ill-conditioned
problems our approach is able to reduce the number of iterations compared to the state of the art, and
is competitive across all problem instances. Experiments on principal components analysis further
highlight the potential of the approach even for nonconvex optimization problems.

1. Standard deviations are reported in brackets; for example, writing 0.013(3) indicates a parameter of 0.013 with a
standard deviation of 0.003.
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Appendix A. P Control Hyperparameters

In Fig. A.1 we illustrate how the choice of θ at fixed r changes the behavior of the proportional
controller (7).
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Figure A.1: Gradient descent with adaptive P control. Example trajectories of the function value (left
panel), the step size (middle panel), and the error δn (right panel) for gradient descent with
step sizes set using proportional control are shown for three different values of θ. Here, f :
R500 → R is a randomly generated strongly convex function with a condition number of 100.
See Appendix C for a description of how the function f is generated. Each value of θ produces
a different trajectory. After a few tens of iterations, the control mechanism is able to force
δn below the specified value of r. Large values of θ produce the largest differences between
successive step sizes and vice versa.

Appendix B. A Nonconvex Problem: PCA

We demonstrate the use of P control to set step sizes for a simple instance of the PCA problem:
given a positive semidefinite symmetric matrix A ∈ Rd×d with distinct eigenvalues, the goal is to
learn its first principal component (eigenvector) . The corresponding optimization problem

argmin
||x||=1

−x>Ax, (11)

where x ∈ Rd, is nonconvex but still admits a unique computable solution.
A well-established algorithm that solves (11) is Oja’s rule [14], given by the update

xn+1 =
(I + hnA)xn
||(I + hnA)xn||

, (12)

where I is the identity matrix in d dimensions and hn is the nth step size.
Let the eigengap of A, gap(A), be defined as the difference between the largest and second-

largest eigenvalues of A. Define a positive constant c. A recent convergence proof guarantees that
the error of (12), measured by the quantity 1 − (x>n x

∗)2 where x∗ is the principal eigenvector of
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A, is O(1/n) for a step size routine of c/n if c ≥ 1/(2 ∗ gap(A)) [2]. However, in most real-
world problems, gap(A) would not normally be known ahead of time, complicating the choice of c.
Indeed, in [2], this is posed as a problem for practitioners. We are able to offer a solution in the form
of P control, which avoids the problem entirely because it requires no knowledge of the gap. We
compare Oja’s rule with a c/n step size scheme with different values of c to P control (with fixed r
and θ) across a range of eigengaps and find that the latter performs competitively.

We note that the convergence result of Balsubramani et al. [2] is proved in the streaming setting,
where instead of a fixed matrixAwe have a collection of vectors yi, sampled i.i.d. from a mean-zero
distribution with covariance A, that we access one at a time. In such a scenario, A is replaced by
the rank one matrices yny>n in (12). Since our goal here is simply to evaluate the adaptive step size
routine on a nonconvex optimization problem, we confine ourselves to the simplest possible, and
hence deterministic, setting even though P control could also be applied in the streaming setting.

P control for Oja’s rule. The continuous-time system corresponding to Oja’s rule has a particu-
larly simple form. It is gradient flow on the unit sphere in d− 1 dimensions, which we can write as
the differential equation

ẋ(t) =

(
A− x(t)>Ax(t)

x(t)>x(t)
I

)
x(t). (13)

We note that the original convergence proof of (12) was done in continuous time by analyzing the
behavior of (13) [14].

It is not difficult to see that the local error of (12) is quadratic in hn (see the discussion around
(3)). In order to compute δn for (7), we need a more accurate discretization of (13) than (12). We
use a Heun update xH

n+1 = xn + 0.5hn(g(xn) + g(xn+1)), where g is given by the right-hand side
of (13) and xn+1 is given by (12). Then δn = ||xn+1 − xH

n+1||, as before. To calculate the step size
for Oja’s rule, we use this value of δn in the P controller (7) at each iteration.

As before, the Heun method allows us to reuse the computation of xn+1 at the next iteration.
Hence the adaptive step size routine does not alter the computational cost per iteration.

We interrogate a range of eigengaps between 10−5 and 10−1. At each value of the eigengap we
generate twenty diagonal matrices A ∈ R100×100, and apply random orthogonal transformations to
introduce off-diagonal elements. On each matrix, we run Oja’s rule (12) four times: once with P
control, and thrice with a c/n step size routine with c = 0.5/gap(A), 5/gap(A), and 50/gap(A). We
parametrize the P controller with (r, θ) = (10−4, 10−4). Iterates are initialized from the standard
uniform distribution. The stop criterion is either ||xn+1−xn|| ≤ 10−8 or n = 2.5×105, whichever
occurs first.

Results. The P control mechanism produces an algorithm that is competitive with a c/n step size
routine for moderate and large values of c, and that outperforms the smallest allowed value of c, as
measured by the number of iterations required to converge (see Fig. B.2). As mentioned previously,
the utility of this result derives from the fact that the eigengap is not normally known ahead of time,
making it difficult in practice to set a good value of c for the c/n step size routine such that the
algorithm achieves its O(1/n) rate of convergence.

Thus we see that P control can readily be adapted to problems that are not strongly convex, and
can produce algorithms that perform well compared to the state of the art.

10



ADAPTIVE STEP SIZE SELECTION FROM A DYNAMICAL SYSTEMS PERSPECTIVE

10 5 10 4 10 3 10 2 10 1

gap(A)

101

102

103

104

105

nu
m

be
r o

f i
te

ra
tio

ns

c/n, c=0.5/gap(A)
c/n, c=5/gap(A)
c/n, c=50/gap(A)
p control

PCA

Figure B.2: Oja’s rule with P control performs competitively with a 1/n step size routine. Setting step
sizes in Oja’s rule using P control with r and θ both set to 10−4 produces an algorithm that
converges, on average, in about as many iterations as a 1/n step size routine with a moderate
to large premultiplier c. On the y-axis we have the mean number of iterations to convergence
over twenty repeats, and on the x-axis we have gap(A), the difference between the two largest
eigenvalues of the matrix A. Error bars indicate one standard deviation. The error bars for P
control are too small for visibility. See text for experimental details.

Appendix C. Methods

These are some additional details of the methods for the experiments presented in Fig. 1.

C.1. Random generation of strongly convex functions

We divide the real line into a finite number N of discrete intervals. For a given value of the con-
dition number κ, we sample a set of N numbers κ−1 + z(1 − κ−1), where z ∼ Unif[0, 1), that
serve as the piecewise-constant second derivatives of a strongly convex function. The function is
then constructed numerically from the second derivative and the conditions f(0) = 0, f ′(0) = 0.
Multidimensional functions f : Rd → R are obtained by summing d one-dimensional functions.
We ensure that at x∗ = (0, ..., 0), the smallest eigenvalue of the Hessian of f is 1/κ, and the largest
eigenvalue is 1 (recall that we fix L = 1). An example of such a function is given in Fig. 1(a) with
N = 7 and κ = 10. We fix N = 7 in all our experiments.

C.2. P control details

P control is run with θ = 0.01 and r = 0.5. We impose the following two additional constraints
that are slightly different for gradient descent and the heavy ball method.

Gradient descent. If the factor (r/δn)θ/2 in (7) is ≥ 10 or ≤ 0.1, we set it equal to 10 or 0.1,
respectively. If, furthermore, hn ≥ 2 or ≤ 0.01, we set it equal to 2 or 0.01, respectively. The upper
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bound of 2 on the step size is motivated by the fact that this is the stability boundary for gradient
descent on a 1-Lipschitz convex function. We note that it is possible to remove these constraints by
fine-tuning r and θ to specific ranges of condition numbers, but too much tuning defeats the purpose
of the adaptive algorithm, so we feel it is reasonable to introduce the constraints. We are then able
to fix r and θ for all κ in the range 1.1 to 1100.

Heavy ball method. If the factor (r/δn)θ/2 is ≥ 5 or ≤ 0.05, we set it equal to 5 or 0.05, respec-
tively. And if hn ≥ 0.8 or ≤ 0.01, we set it equal to 0.8 or 0.01, respectively. The upper bound of
0.8 on the step size is motivated by the fact that this is roughly the stability boundary for the heavy
ball algorithm on quadratic functions.
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