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Abstract
Normalization Layers (NL) are widely used in modern deep-learning architectures. Despite their

apparent simplicity, their effect on optimization is not yet fully understood. We introduce a spherical
framework to study the optimization of neural networks with NL from a geometric perspective.
Concretely, we leverage the radial invariance of groups of parameters to translate the optimization
steps on the L2 unit hypersphere. This formulation and the associated geometric interpretation shed
new light on the training dynamics. We use it to derive the first effective learning rate expression of
Adam. We then show theoretically and empirically that, in the presence of NL, performing SGD
alone is actually equivalent to a variant of Adam constrained to the unit hypersphere.

1. Introduction

The optimization process of deep neural networks is still poorly understood. Their training involves
minimizing a high-dimensional non-convex function, which has been proved to be a NP-hard
problem [4]. Yet, elementary gradient-based methods show good results in practice. To improve the
quality of reached minima, numerous Normalization Layers (NL) have stemmed in the last years and
become common practices. One of the most prominent is Batch Normalization (BN) [11], which
improves significantly both the the training speed and the prediction performance; it has however a
notable shortcoming: BN relies heavily on the batch size. To avoid the dependency on the batch size,
normalization layers such as WeightNorm (WN) [18], LayerNorm (LN) [2], InstanceNorm (IN) [23],
or GroupNorm (GN) [25] were designed. Yet, the interaction of NLs with optimization remains an
open research topic. Previous studies highlighted some of the mechanisms of the interaction between
BN and SGD, both empirically [19] and theoretically [1, 3, 10]. But, none of them provided a
generic framework and studied the interaction between NL and the most common adaptive schemes
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for Neural Networks (NNs): Adam [12]. In this work, we provide an extensive analysis of the
relation between NL and any order 1 optimization scheme and we theoretically relate SGD with NLs
to a variant of Adam (AdaGradG).

Figure 1: Illustration of the spherical perspective
for SGD. The loss function L of a NN w.r.t. the param-
eters xk ∈ Rd of a neuron followed by a BN is radially
invariant. The neuron update xk → xk+1 in the origi-
nal space, with velocity ηk∇L(xk), corresponds to an
update uk → uk+1 of its projection through an expo-
nential map on the unit hypersphere Sd−1 with velocity
ηek‖∇L(uk)‖ at order 2 (see details in Section 2.3).

A shared effect of all mentioned NL is
to make NNs invariant to positive scalings of
groups of parameters which may differ from one
NL method to another. The core idea of this
paper is precisely to focus on these groups of
radially-invariant parameters and analyze their
optimization projected on the L2 unit hyper-
sphere (see Figure 1), which is topologically
equivalent to the quotient manifold of the pa-
rameter space by the scaling action. One could
directly optimize parameters on the hypersphere
as [6], yet, most optimization methods are still
performed successfully in the original parameter
space. Here we propose to study an optimization
scheme for a given group of radially-invariant
parameters through its image scheme on the unit
hypersphere. This geometric perspective sheds
light on the interaction between NL and Adam,
and also outlines an interesting theoretical link between standard SGD and a variant of Adam adapted
and constrained to the unit hypersphere: AdamG [6].

The paper is organized as follows. In Section 2, we introduce our spherical framework to study
the optimization of any radially-invariant model. We also define a generic optimization scheme
that encompasses methods such as SGD with momentum (SGD-M) and Adam. We then derive its
image step on the unit hypersphere, leading to definitions and expressions of effective learning rate
and effective learning direction. These new definitions are explicit and have a clear interpretation,
whereas the definition of [24] is asymptotic and the definitions of [1] and of [10] are variational. In
Section 3, we leverage the tools of our spherical framework to demonstrate that in presence of NLs,
SGD is equivalent to AdaGradG, a combination of AdaGrad [7] (a special case of Adam without
momentum) and AdamG [6] (a variant of Adam constrained to the unit hypersphere). In other words,
AdaGradG is a variant of Adam without momentum and constrained to the unit hypersphere. In
Appendix A, these results are put in perspective with related work.

Our main contributions are the following:
• A framework to analyze/compare order-1 optimization schemes of radially-invariant models;
• The first explicit expression of the effective learning rate for Adam;
• The demonstration that, in the presence of NL, standard SGD is equivalent to AdaGradG, a

variant of Adam without momentum constrained to the unit hypersphere;

2. Spherical framework and effective quantities

We provide here background on radial invariance and introduce a generic optimization scheme that
encompasses SGD, SGD with momentum (SGD-M) and Adam, with and without L2-regularization.
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Projecting the scheme update on the unit hypersphere leads to the formal definitions of effective
learning rate and direction for any order-1 optimization scheme (main notations in Figure 1). This
geometric perspective leads to the first explicit expression of the effective learning rate for Adam.

2.1. Radial invariance

We consider a family of functions φx : Rin → Rout parameterized by radially-invariant parameters
x ∈ Rd\ {0}, i.e., ∀ρ> 0, φρx=φx (possible other parameters of φx omitted for clarity), a dataset
D ⊂ Rin×Rout, a loss function ` : Rout×Rout→R and a training loss function L : Rd→R defined as:

L(x) def
=

1

|D|
∑

(s,t)∈D

`(φx(s), t). (1)

It verifies: ∀ρ > 0, L(ρx) = L(x). In the context of BN or WN equipped NNs, the group of
radially-invariant parameters x can be the parameters of a single neuron in a linear layer or the
parameters of a whole filter in a convolutional layer, followed by the NL (see Appendix B for details,
and Appendix C for the application to other NL such as IN, LN or GN).

The quotient of the parameter space by the equivalence relation associated to radial invariance is
topologically equivalent to a sphere. We consider here the L2 sphere Sd−1 = {u ∈ Rd/‖u‖2 = 1}
whose canonical metric corresponds to angles: dS(u1,u2) = arccos(〈u1,u2〉). This choice of
metric is relevant to study NNs since filters in CNNs or neurons in MLPs are applied through scalar
product to input data. Besides, normalization in NL is also performed using the L2 norm.

Our framework relies on the decomposition of vectors into radial and tangential components.
During optimization, we write the radially-invariant parameters at step k ≥ 0 as xk = rkuk where
rk = ‖xk‖ and uk = xk/‖xk‖. For any quantity qk ∈ Rd at step k, we write q⊥k = qk−〈qk,uk〉uk
its tangential component relatively to the current direction uk.

The following lemma states that the gradient of a radially-invariant loss function is tangential
and −1 homogeneous:

Lemma 1 (Gradient of a function with radial invariance) If L : Rd → R is radially invariant
and almost everywhere differentiable, then, for all ρ > 0 and all x ∈ Rd where L is differentiable:

〈∇L(x),x〉 = 0 and ∇L(x) = ρ∇L(ρx). (2)

2.2. Generic optimization scheme

There is a large body of literature on optimization schemes [7, 12, 17, 21, 22]. We focus here on two
of the most popular ones, namely SGD and Adam [12]. Yet, to establish general results that may
apply to a variety of other schemes, we introduce here a generic optimization update:

xk+1 = xk − ηkak � bk, (3)

ak = βak−1 +∇L(xk) + λxk, (4)

where xk ∈ Rd is the group of radially-invariant parameters at iteration k, L1 is the group’s loss
estimated on a batch of input data, ak ∈ Rd is a momentum, bk ∈ Rd is a division vector that
can depend on the trajectory (xi,∇L(xi))i∈J0,kK, ηk ∈ R is the scheduled trajectory-independent
learning rate, � is the Hadamard element-wise division, β is the momentum parameter, and λ is the
L2-regularization parameter. Appendix D.1 shows how it encompasses known optimization schemes.

1To simplify equations Lk estimated on the k-th batch is noted L.
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2.3. Image optimization on the hypersphere

The radial invariance implies that the radial part of the parameter update x does not change the
function φx encoded by the model, nor does it change the loss L(x). Due to radial invariance, the
parameter space projected on the unit hypersphere is topologically closer to the functional space of
the network than the full parameter space. Therefore, we wish to analyze the optimization behaviour
on the unit hypersphere. To that end, we separate the quantities that can (tangential part) and cannot
(radial part) change the model function. Theorem 2 formulates the spherical decomposition of our
generic optimization scheme (Eqs. 3-4) in simple terms. It relates the update of radially-invariant
parameters in the parameter space Rd and their update on Sd−1 through an exponential map.

Theorem 2 (Image step on Sd−1) Let’s consider the update of a group of radially-invariant pa-
rameters xk at step k following the generic optimization scheme (Eqs. 3-4) and the corresponding
update of its projection uk on Sd−1. Under the hypothesis (H1) and (H2) formalized in D.2.1, the
update of uk is given by an exponential map at uk with velocity ηekc

⊥
k :

uk+1 = Expuk

(
−
[
1 +O

(
‖ηekc⊥k ‖2

)]
ηekc
⊥
k

)
, (5)

where Expuk
is the exponential map on Sd−1, and with

ck
def
= rkak �

bk

d−1/2‖bk‖
, (6)

ηek
def
=

ηk

r2kd
−1/2‖bk‖

(
1− ηk〈ck,uk〉

r2kd
−1/2‖bk‖

)−1
. (7)

More precisely:

uk+1 =
uk − ηekc⊥k√
1 + (ηek‖c⊥k ‖)2

. (8)

The proof is given in D.2.1 and the theorem is illustrated in the case of SGD in Figure 1. Note that
for CNN training the hypothesis (H1) and (H2), empirically discussed in the appendix are typically
verified. In particular, with typical values 1− ηk〈ck,uk〉

r2kd
−1/2‖bk‖

> 0 (H1) is true. The other hypothesis

ηek‖c⊥k ‖ < π (H2) where steps are supposed shorter than π is also true (see D.2.2).

2.4. Effective quantities

Table 1: Effective learning rate and direction
for optimization schemes with ν = rd−1/2‖b‖
(we omit here the iteration index k).

Scheme ηe c⊥

SGD η
r2 ∇L(u)

SGD + L2
η

r2(1−ηλ) ∇L(u)

SGD-M η
r2 (1−

η〈c,u〉
r2 )−1 c⊥

Adam η
rν (1−

η〈c,u〉
rν )−1 c⊥

In Theorem 2, the normalized parameters update in Eq. 5
can be read uk+1 ≈ Expuk

(
−ηekc⊥k

)
, where ηek and c⊥k

can then be respectively interpreted as the learning rate
and the direction of an optimization step constrained
to Sd−1. Since ak is the momentum and, considering
Lemma 1, the quantity rkak in ck can be seen as a
momentum on the hypersphere. Due to radial invariance,
only the change of parameter on the unit hypersphere
corresponds to a change of model function. Hence we
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can interpret ηek and c⊥k as effective learning rate and
effective learning direction, i.e., the learning rate and
direction on the hypersphere that reproduce the function
update of the optimization step.

Using Theorem 2, we can derive actual effective learning rates for any optimization scheme
that fits our generic framework. These expressions, summarized in Table 1 are explicit and have a
clear interpretation, in contrast to learning rates in [24], which are approximate and asymptotic, and
in [1, 9], which are variational and restricted to SGD without momentum only.

In particular, we provide the first explicit expression of the effective learning rate for Adam:

ηek =
ηk
rkνk

(
1− ηk〈ck,uk〉

rkνk

)−1
(9)

where νk = rkd
−1/2‖bk‖ is homogeneous to the norm of a gradient on the hypersphere and can be

related to an second-order moment on the hypersphere (see D.2.3 for details).
The expression of the effective learning rate of Adam, i.e., the amplitude of the step taken on the

hypersphere, reveals a dependence on the dimension d (through ν) of the update of the considered
group of radially-invariant parameters. In the case of an MLP or CNN that stacks layers with neurons
or filters of different dimensions, the learning rate is thus tuned differently from one layer to another.

For all schemes, the learning rate is tuned by the dynamics of radiuses rk, which follow:

rk+1

rk
=

(
1− ηk〈ck,uk〉

r2kd
−1/2‖bk‖

)√
1 + (ηek‖c⊥k ‖)2. (10)

In contrast to [1, 24], this result demonstrates that for momentum methods, 〈ck,uk〉, which involves
accumulated gradients terms in the momentum as well as L2 regularization, tunes the learning rate.

3. SGD is equivalent to AdaGrad

We leverage the tools introduced in the spherical framework of Section 2 to find a scheme constrained
to the hypersphere that is equivalent to SGD. We show that, for radially-invariant models, SGD is
actually a second order moment adaptive optimization method. Formally, SGD is equivalent to a
special case of AdamG [6] without momentum, where AdamG is a variant of Adam adapted and
constrained to the unit hypersphere. Alternatively, we can also say that SGD is equivalent to a variant
of AdaGrad adapted and constrained to the hypersphere, where AdaGrad is a special case of Adam
without momentum. We illustrate this theoretical equivalence empirically.

3.1. Equivalence between two optimization schemes

Due to radial invariance, the functional space of the model is encoded in Sd−1. Two schemes with
the same sequence of groups of radially-invariant parameters on the hypersphere (uk)k≥0 encode the
same sequence of model functions. We say that two optimization schemes S and S̃ are equivalent if
and only if ∀k ≥ 0,uk = ũk; starting from the same parameters, they reach the same optimum. By
using Eq. 8, we obtain the following lemma for proving the equivalence of two optimization schemes:

Lemma 3 (Sufficient condition for the equivalence of optimization schemes){
u0 = ũ0

∀k ≥ 0, ηek = η̃ek, c
⊥
k = c̃⊥k

⇒ ∀k ≥ 0,uk = ũk. (11)
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3.2. A hypersphere-constrained scheme equivalent to SGD

We now study, within our spherical framework, SGD with L2 regularization, i.e., the update xk+1 =
xk − ηk(∇L(xk)− λkxk). From the effective learning rate expression, we know that SGD yields
an adaptive behaviour because it is scheduled by the radius dynamic, which depends on gradients.
In fact, the tools in our framework allow us to find that SGD is equivalent to a variant of Adam
constrained to the unit hypersphere, similar to AdamG [6], and without momentum, similar to
AdaGrad. AdamG [6] uses the same updates as Adam (eq. 21-23) but project the weight on the
hyper-sphere after each optimization step. More precisely, SGD is equivalent to AdamG with a null
momentum factor β1 = 0 (like AdaGrad), a non-null initial second-order moment v0, an offset of
the scalar second-order moment k + 1→ k and without the bias correction term 1− βk+1

2 . Dubbed
AdaGradG, this scheme reads:

(AdaGradG) :


x̂k+1 = xk − ηk∇L(xk)√

vk
,

xk+1 =
x̂k+1

‖x̂k+1‖ ,

vk+1 = βvk + ‖∇L(xk)‖2.

AdaGradG, like AdamG, is an adaptive method. Unlike Adam, which is adaptive with respect to
the second-order moment for each parameter, AdaGradG and AdamG are adaptive for each group of
radially-invariant parameters (e.g., filters for CNNs with BN or WN). In other words, each filter is
adapted individually and independently by the optimization algorithm; it is not a global scheduling.

Now if we call « equivalent at order 2 in the step » a scheme equivalence that holds when we use
for rk an expression that satisfies the radius dynamic with a Taylor expansion at order 2, then we
have the following theorem:

Theorem 4 (SGD equivalent scheme on the unit hypersphere) For any λ ≥ 0, η > 0, r0 > 0,
we have the following equivalence when using the radius dynamic at order 2 in (ηk‖∇L(uk)‖)2/r2k:


(SGD)
x0 = r0u0

λk = λ
ηk = η

is scheme-equivalent at order 2 in step with


(AdaGradG)
x0 = u0

β = (1− ηλ)4
ηk = (2β)−1/2

v0 = r40(2η
2β1/2)−1.

Sketch of proof. Starting from SGD, we first use Lemma 3 to find a strict equivalence scheme
with a simpler radius dynamic. We resolve this radius dynamic with a Taylor expansion at order 2 in
(ηk‖∇L(uk)‖)2/r2k. A second use of Lemma 3 finally leads to the scheme equivalence in Theorem 4.
The formal complete proof can be found in D.2.4. The fact that rk is well approximated at order 2 in
practice is illustrated in D.2.5 and Figure 5.

This Theorem is unexpected because SGD, which is not adaptive by itself, is equivalent to a
second-order moment adaptive method. The scheduling performed by the radius dynamics actually
replicates the effect of dividing the learning rate by the second-order moment of the gradient norm:
vk.

For standard values of hyperparameters λ < 1 (on the order of 1e-4) and η < 1 (at most 1e-1), the
higher-order terms of the radius in the Taylor expansion empirically become negligible in practice.
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Figure 2: Comparison of the trajectories of radially-invariant parameters using different optimization
schemes. For three randomly selected filters in each block of a ResNet20 architecture, with BN (left) or WN
(right), we compute the cosine similarity between the parameter values obtained with SGD and the parameters
values obtained respectively by AdaGradG and AdaGrad, at different iteration stages of a classification training
on CIFAR10.

Second, with standard values of hyperparameters, namely learning rate η < 1 and L2 regulariza-
tion λ < 1, we have β ≤ 1 which corresponds to a standard value for a moment factor. Interestingly,
the L2-regularization parameter λ controls the memory of the past gradients’ norm. If β = 1 (with
λ = 0), there is no attenuation; each gradient norm has the same contribution in the order-2 moment.
If λ 6= 0, there is a decay factor (β < 1) on past gradients’ norm in the order-2 moment. This gives a
new interpretation of the role of L2-regularization parameter λ in SGD with NL. We illustrate this
theoretical result with empirical evidences in Figure 2 with implementation detailed in Appendix D.3.
We observe that the trajectories on the L2 unit hypersphere remain aligned for SGD and AdaGradG
whereas, for SGD and AdaGrad, they quickly diverge.

4. Conclusion

The spherical framework introduced in this study provides a powerful tool to analyse order 1
optimization schemes through their projection on the L2 unit hypersphere. It allows us to give a
precise definition and expression of the effective learning rate for Adam and to relate SGD to a
variant of Adam. This theoretical finding is corroborated by empirical evidences.

Limitations. Our study only concerns the optimization of radially-invariant parameters. It does
not include the impact on other parameters, e.g., for CNNs with BN, scaling and bias in BN layers,
and last linear layer.
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Supplementary Material to
“Spherical Perspective on Learning with Normalization Layers”

Appendix A. Related work

Understanding Batch Normalization. Albeit conceptually simple, BN has been shown to have
complex implications over optimization. The argument of Internal Covariate Shift reduction [11] has
been challenged and shown to be secondary to smoothing of optimization landscape [8, 19] or its
modification by creating a different objective function [14], or enabling high learning rates through
improved conditioning [3]. [1] demonstrate that (S)GD with BN is robust to the choice of learning
rate, with guaranteed asymptotic convergence, while [5] makes a similar finding for GD with BN.

Invariances in neural networks. [6] proposes optimizing over the Grassmann manifold using
Riemannian GD. [15] projects weights and activations on the unit hypersphere and compute a
function of the angle between them instead of inner products, and subsequently generalizes these
operators by scaling the angle [16]. [13] leverages radial invariance to prove that weight decay (WD)
can be replaced by an exponential learning-rate scheduling for SGD with or without momentum. [1]
investigates radial invariance and shows that radius dynamics depends on past gradients, offering
an adaptive behavior to the learning rate. We go further and show that SGD projected on the unit
hypersphere corresponds to Adam constrained to the hypersphere, and we give an accurate definition
of this adaptive behavior.

Effective learning rate. Due to its scale invariance, BN can adaptively adjust the learning rate
[1, 6, 13, 24]. [24] shows that in BN-equipped networks, WD increases the effective learning rate
by reducing the norm of the weights. Conversely, without WD, the norm grows unbounded [20],
decreasing the effective learning rate. [26] brings additional evidence supporting [24], while [9] finds
an exact formulation of the effective learning rate for SGD in normalized networks. In contrast, we a
find generic definition of the effective learning rate with exact expressions for SGD and Adam.

Appendix B. Radial invariance of filters with BN

In this section, we show the radial invariance of a set of filters equipped with BN. Please note that
the following notations are specific and restricted to this section.

For the sake of simplicity, we only consider the case of a convolutional layer that preserves the
spatial extension of the input. We also focus on a single filter. Since all filters act independently on
input data, the following calculation holds for any filter.

Let x ∈ RC×K be the parameters of a single filter, where C is the number of input channels
and K is the kernel size. During training, this layer is followed by BN and applied to a batch
s ∈ RB×C×D of B inputs of spatial size D. The output of the convolution operator φ applied to a
filter x ∈ RC×K and to a given batch element sb ∈ RC×D, with b ∈ J1, BK, is thus:

tb
def
= φ(x, sb) ∈ RD. (12)
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The application (x, sb) 7→ φ(x, sb) is bilinear. BN then centers and normalizes the output t using
the mean and variance over the batch and the spatial dimension:

µ =
1

BD

∑
b,j

tb,j , (13)

σ2 =
1

BD

∑
b,j

(tb,j − µ)2 , (14)

t̂b
def
= (σ2 + ε)

−1/2 (tb − µ1D) , (15)

where 1D denotes the all-ones vector of dimension D and ε is a small constant.
Now if the coefficients of the filter are rescaled by ρ > 0, then, by bilinearity, the new output of

the layer for this filter verifies:

t̃b = φ(ρx, sb) = ρφ(x, sb). (16)

Since the variance of inputs is generally large in practice, for small ε, the mean and variance are:

µ̃ = ρµ, (17)

σ̃2 ≈ ρ2σ2. (18)

It can then be considered that the subsequent BN layer is invariant to this rescaling, i.e., ˆ̃tb ≈ t̂b.

Appendix C. Extension to other normalization layers

The radial invariance for BN described above in Appendix B applies as well to InstanceNorm (IN)
[23] as the normalization is also done with respect to channels but without the batch dimension.
Regarding LayerNorm [2] (LN), the normalization is performed over all channels and the entire
weight layer can thus be rescaled too, without impacting the output. As for GroupNorm [25] (GN),
it associates several channels for normalization; the radial invariance in this case concerns the
corresponding group of filters.

Thanks to this general property of radial invariance, the results in this paper not only concern
BN but also IN. In fact, they apply as well to LN and GN when considering the suitable group of
parameters. The optimization in this case concerns the proper slice of the parameter tensor of the
layer, i.e., the whole tensor for LN, and the selected group of filters for GN.

Appendix D. Results in Sections 2 and 3

In this section, we provide proofs and/or empirical results supporting the claims in Sections 2 and 3
of the paper.

In the following, the double parentheses around an equation number, e.g., ((5)), indicate that
we recall an equation that was previously stated in the main paper, rather than introduce a new one,
e.g., noted (26). Also, framed formulas actually refer to results stated in the main paper, thus with
double-bracket equation numbering.

11
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D.1. General optimization schemes

Stochastic gradient descent (SGD) has proven to be an effective optimization method in deep learning.
It can include L2 regularization (also called weight decay) and momentum. Its updates are:

xk+1 = xk − ηkmk, (19)

mk = βmk−1 +∇L(xk) + λxk, (20)

where mk is the momentum, β is the momentum parameter, and λ is the L2-regularization parameter.
It corresponds to our generic scheme (Eqs. 3-4) with ak = mk and bk = [1 · · · 1]>.

Adam is likely the most common adaptive scheme for NNs. Its updates are:

xk+1 = xk − ηk
mk

1− βk+1
1

�
√

vk

1− βk+1
2

+ ε, (21)

mk = β1mk−1+(1− β1)(∇L(xk) + λxk), (22)

vk = β2vk−1 + (1− β2)(∇L(xk) + λxk)
2, (23)

where mk is the momentum with parameter β1, vk is the second-order moment with parameter
β2, and ε prevents division by zero. (Here and in the following, the square and the square root of a
vector are to be understood as element-wise.) It corresponds to our generic scheme (Eqs. 3-4) with
β=β1 and:

ak =
mk

1− β1
, (24)

bk =
1− βk+1

1

1− β1

√
vk

1− βk+1
2

+ ε. (25)

D.2. Proof of theorems and validity of assumptions

D.2.1. PROOF OF THEOREM 2 (IMAGE STEP ON Sd−1) IN SECTION 2.3

We recall the main theorem in Section 2.3.

Theorem 2 (Image step on Sd−1) If the following hypothesis are verified:

• (H1): 1− ηk〈ck,uk〉
r2kd

−1/2‖bk‖
> 0.

• (H2): ηek‖c⊥k ‖ < π.

The update of a group of radially-invariant parameters xk at step k following the generic
optimization scheme (Eqs. 3-4) and the corresponding update of its projection uk on Sd−1 is
given by an exponential map at uk with velocity ηekc

⊥
k :

uk+1 = Expuk

(
−
[
1 +O

((
ηek‖c⊥k ‖

)2)]
ηekc
⊥
k

)
, ((5))

12
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where Expuk
is the exponential map on Sd−1, and with

ck
def
= rkak �

bk

d−1/2‖bk‖
, ηek

def
=

ηk

r2kd
−1/2‖bk‖

(
1− ηk〈ck,uk〉

r2kd
−1/2‖bk‖

)−1
. ((7))

More precisely:

uk+1 =
uk − ηekc⊥k√
1 + (ηek‖c⊥k ‖)2

. ((8))

Proof To simplify the calculation in the demonstration, we introduce the following notation:

Ak
def
=

ηk

r2kd
−1/2‖bk‖

. (26)

We first demonstrate the expression for the radius dynamics in Eq. (10) and the precise step for u in
Eq. (8). Then we use geometric arguments and a Taylor expansion to derive the update on the sphere
stated in Eq.(5).

Radius dynamics. We first show Eq. (10), which we recall here using the Ak notation:

rk+1

rk
= (1−Ak〈ck,uk〉)

√
1 + (ηek‖c⊥k ‖)2. ((10))

First, we rewrite the step of a generic scheme in Eqs. (3-4) along the radial and tangential
directions and separate the division vector bk into its deformation bk

d−1/2‖bk‖
and its scalar scheduling

effect d−1/2‖bk‖, as stated in the discussion:

rk+1uk+1 = rkuk −
ηk

d−1/2‖bk‖
ak �

bk

d−1/2‖bk‖

= rk

[
uk −

ηk

r2kd
−1/2‖bk‖

rkak �
bk

d−1/2‖bk‖

]

= rk

[
uk −Akrkak �

bk

d−1/2‖bk‖

]
. (27)

We can note the appearance of a new term rkak. The vector ak is a gradient momentum and therefore
homogeneous to a gradient. Using Lemma 1, rkak is homogeneous to a gradient on the hypersphere
and can be interpreted as the momentum on the hypersphere.

From Eq. (27), we introduce ck (the deformed momentum on hypersphere) as in Eq. (7) and
decompose it into the radial and tangential components. We have:

rk+1

rk
uk+1 = uk −Akck

= (1−Ak〈ck,uk〉)uk −Akc⊥k . (28)

By taking the squared norm of the equation, we obtain:

r2k+1

r2k
= (1−Ak〈ck,uk〉)2 +

(
Ak‖c⊥k ‖

)2
. (29)

13
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Making the assumption that 1−Ak〈ck,uk〉 > 0, which is true in practice and discussed in the next
subsection, we have:

rk+1

rk
= (1−Ak〈ck,uk〉)

√
1 +

(
Ak

1−Ak〈ck,uk〉
‖c⊥k ‖

)2

. (30)

After introducing ηek =
Ak

(1−Ak〈ck,uk〉) as in Eq. (7), we obtain the result of (10).
Update of normalized parameters. We then show Eq. (8):

uk+1 =
uk − ηekc⊥k√
1 + (ηek‖c⊥k ‖)2

. ((8))

Combining the radius dynamics previously calculated with Eq. (28), we have:

uk+1 =
(1−Ak〈ck,uk〉)uk −Akc⊥k

(1−Ak〈ck,uk〉)
√
1 + (ηek‖c⊥k ‖)2

(31)

=
uk − Ak

1−Ak〈ck,uk〉c
⊥
k√

1 + (ηek‖c⊥k ‖)2
. (32)

Hence the result (8) using the definition of ηek.
This result provides a unique decomposition of the generic step as a step in span(uk, c

⊥
k ) for the

normalized filter (Eq. (8)) and as a radius update (Eq. (10)).
We split the rest of the proof of the theorem in three parts.
Distance covered on the sphere. The distance covered on the hypersphere Sd−1 by an opti-

mization step is:
distSd−1

(uk+1,uk) = arccos(〈uk+1,uk〉). (33)

From Eq. (8) and with Lemma 1, we also have:

〈uk+1,uk〉 =
1√

1 + (ηek‖c⊥k ‖)2
. (34)

Therefore, distSd−1
(uk+1,uk) = ϕ(ηek‖c⊥k ‖) where ϕ : z 7→ arccos

(
1√
1+z2

)
, which is equal to

arctan on R+. Then a Taylor expansion at order 3 of arctan yields for ηek‖c⊥k ‖:

distSd−1
(uk+1,uk) = ηek‖c⊥k ‖+O

((
ηek‖c⊥k ‖

)3)
. (35)

The Taylor expansion validity is discussed in the next subsection.
Exponential map on the sphere. Given a Riemannian manifoldM, for a point u ∈M there

exists an open setO of the tangent space TuM containing 0, such that for any tangent vector w ∈ O
there is a unique geodesic (a path minimizing the local distance onM when conserving the tangent
velocity) γ : [−1, 1]→M that is differentiable and such that γ(0) = u and γ′(0) = w. Then, the
exponential map of w from u is defined as Expu(w) = γ(1).

14
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In the case of the manifold Sd−1, the geodesics are complete (they are well defined for any
point u ∈ Sd−1 and any velocity w ∈ TuSd−1) and are the great circles: for any u ∈ Sd−1 and any
w ∈ TuSd−1, the map ψ : t ∈ R 7→ Expu(tw)) verifies ψ(R) = Sd−1 ∩ span({u,w}) which is a
great circle passing through u with tangent w. Furthermore, since the circumference of the great
circle is 2π, we have that for any p ∈ Sd−1\{−u} there is a unique w verifying ‖w‖ < π such that
p = Expu(w) and we have:

distSd−1
(u,p) = ‖w‖ and 〈p,w〉 ≥ 0. (36)

Optimization step as an exponential map. We will use the previously stated differential
geometry properties to prove:

uk+1 = Expuk

(
−
[
1 +O

((
ηek‖c⊥k ‖

)2)]
ηekc
⊥
k

)
. ((5))

For an optimization step we have:
• by construction, c⊥k ∈ Tuk

Sd−1;
• from Eq. (8), uk+1 ∈ Sd−1 ∩ span({uk, c⊥k });
• from Eq. (8), 〈uk+1, c

⊥
k 〉 ≤ 0.

Then, there exists α that verifies ‖αc⊥k ‖ < π such that:

uk+1 = Expuk

(
αc⊥k

)
. (37)

From Eq. (36), because of the inequality 〈uk+1, c
⊥
k 〉 ≤ 0, we have α < 0. We also have that

‖αc⊥k ‖ = distSd−1
(uk+1,uk). Then, using the distance previously calculated in Eq. (35), we have:

|α|‖c⊥k ‖ = ηek‖c⊥k ‖+O

((
ηek‖c⊥k ‖

)3)
, (38)

|α| = ηek

[
1 +O

((
ηek‖c⊥k ‖

)2)]
. (39)

Combining the sign and absolute value of α, we get the final exponential map expression:

uk+1 = Expuk

(
−
[
1 +O

((
ηek‖c⊥k ‖

)2)]
ηekc
⊥
k

)
, ((5))

≈ Expuk

(
−ηekc⊥k

)
. (40)

Note that we implicitly assume here that |α|‖c⊥k ‖ ≈ ηek‖c⊥k ‖ < π, which is discussed in the next
subsection.

D.2.2. ASSUMPTIONS IN THEOREM 2 AND VALIDITY

Sign of 1−Ak〈ck,uk〉. We tracked the maximum of the quantity Ak〈ck,uk〉 for all the filters of
a ResNet20 CIFAR trained on CIFAR10 and optimized with SGD-M or Adam (see Appendix ??
for implementation details). As can be seen on Figure 3, this quantity is always small compared
to 1, making 1−Ak〈ck,uk〉 always positive in practice. The order of magnitude of this quantity is
roughly the same for different architectures and datasets.
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Figure 3: Tracking ofAk〈ck,uk〉 for SGD-M and Adam. The above graphs show the maximum of
the absolute value of Ak〈ck,uk〉 for all filters in all layers of a ResNet20 CIFAR trained on CIFAR10
and optimized with SGD-M (left) or Adam (right). The quantity is always small compared to 1.
Therefore we may assume that 1−Ak〈ck,uk〉 ≥ 0.

Figure 4: Tracking of ηek‖c⊥k ‖ for SGD-M and Adam. The above graphs show the maximum of
the absolute value of ηek‖c⊥k ‖ for all filters in all layers of a ResNet20 CIFAR trained on CIFAR10
and optimized with SGD-M (left) or Adam (right).

Taylor expansion. We tracked the maximum of the quantity ηek‖c⊥k ‖ for all the filters of a ResNet20
CIFAR trained on CIFAR10 and optimized with SGD-M or Adam. The observed values justify
the Taylor expansion and validate the assumption |α|‖c⊥k ‖ ≈ ηek‖c⊥k ‖ < π. (cf. Figure 4 and
Appendix ?? for implementation details). The order of magnitude of this quantity is roughly the
same for other different architectures and datasets.

D.2.3. νk , ORDER 2 MOMENT ON THE HYPERSPHERE FOR ADAM

Scheduling effect of Adam division vector. In the case of Adam, we recall that:

bk =
1− βk+1

1

1− β1

√
vk

1− βk+1
2

+ ε . ((25))
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Omitting ε for simplicity we have:

d−1/2‖bk‖ =
1− βk+1

1

1− β1

(
1

1− βk+1
2

) 1
2

d−1/2‖
√
vk‖. (41)

Let us calculate ‖√vk‖. Developing the recursion of vk, as defined in Eq. (23), leads to:

vk = (1− β2)
k∑
i=0

βk−i2 (∇L(xi) + λxi)
2 , (42)

√
vk =

√
1− β2

√√√√ k∑
i=0

βk−i2 (∇L(xi) + λxi)
2, (43)

where the square and the square-root are element-wise operations. Hence, if we take the square norm:

‖
√
vk‖2 = (1− β2)

d∑
j=1


√√√√ k∑

i=0

βk−i2 (∇L(xi) + λxi)
2

2

j

= (1− β2)
d∑
j=1

k∑
i=0

βk−i2 (∇L(xi) + λxi)
2
j

= (1− β2)
k∑
i=0

βk−i2

d∑
j=1

(∇L(xi) + λxi)
2
j

= (1− β2)
k∑
i=0

βk−i2 ‖∇L(xi) + λxi‖2, (44)

where the j subscript denotes the j-th element of the vector. It is exactly the order-2 moment of the
gradient norm.

With Eq. (44) and using Lemma 1, we can give the expression of the second-order moment on
the sphere, defined as νk = rkd

−1/2‖bk‖:

νk =d
−1/2 1− β

k+1
1

1− β1

( 1− β2
1− βk+1

2

)1/2( k∑
i=0

βk−i2

r2k
r2i
‖∇L(ui) + λr2i ui‖2

)1/2
. (45)

D.2.4. PROOF OF THEOREM 4 (SGD EQUIVALENT SCHEME ON THE UNIT HYPERSPHERE) IN

SECTION 3.2

We prove the following theorem:

17
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Theorem 4 (SGD equivalent scheme on the unit hypersphere.) For any λ > 0, η > 0, r0 > 0,
we have the following equivalence at order 2 in the radius dynamics:


(SGD)
x0 = r0u0

λk = λ
ηk = η

is scheme-equivalent at order 2 to


(AdamG*)
x0 = u0

β = (1− ηλ)4
ηk = (2β)−1/2

v0 = r40(2η
2β1/2)−1

Proof As summarized in Table 1, the expressions of the effective learning rates and directions for
SGD are c⊥k = rk∇L(xk) = ∇L(uk) and ηek =

ηk
r2k(1−ηkλk)

.
Equivalence with SGD and L2 regularization. We look for conditions leading to an equiva-

lence between SGD with L2 regularization and SGD without L2 regularization. Using Lemma 3, the
equality of effective directions is trivial and the equality of effective learning rates for any step k
yields the following equivalence:

(SGD)
x̃0 = r0u0

λ̃k = λ
η̃k = η

is scheme-equivalent to


(SGD)
x0 = r0u0

λk = 0
ηk = η(1− ηλ)−2k−1

(46)

L2 regularization is equivalent to an exponential scheduling of the learning rate, as found in [13].
Here, we provide a proof in a constructive manner. We are going to use Lemma 3 and find a sufficient
condition to have: {

(i) u0 = ũ0

(ii) ∀k ≥ 0, ηek = η̃ek, c
⊥
k = c̃⊥k .

Equation (i) is trivially satisfied by simply taking the same starting point: x̃0 = x0.
Regarding (ii), because effective directions are the same and only depend on uk, we only need a

sufficient condition on ηek. For effective learning rates, using Eq. ((10)) and expressions in Table 1,
we have:

ηek = η̃ek ⇔
ηk
r2k

=
η̃k

r̃2k(1− η̃kλ)
. (47)

Since η̃k = η, we obtain:

(47)⇔ ηk =

(
rk
r̃k

)2 η

(1− ηλ)
.

Therefore:
ηk+1

ηk
=

(
rk+1r̃k
r̃k+1rk

)2

=

(
rk+1/rk
r̃k+1/r̃k

)2

.

By using the radius dynamics in Eq. (10) for the two schemes, SGD and SGD with L2 regularization,
and by the equality of effective learning rates and directions, we have:

ηk+1

ηk
=


√
1 + (ηek‖c⊥k ‖)2

(1− ηλ)
√
1 + (η̃ek‖c̃⊥k ‖)2

2

= (1− ηλ)−2.

18



SPHERICAL PERSPECTIVE ON LEARNING WITH NL

By taking Eq. (47) for k = 0, because r0 = r̃0 we have: η0 = η(1 − ηλ)−1. Combining the
previous relation and the initialization case, we derive by induction that ηk = η(1− ηλ)−2k−1 is a
sufficient condition. We can conclude, using Lemma 3, the equivalence stated in Eq. (46).

Resolution of the radius dynamics. Without L2 regularization, the absence of radial component
in ck makes the radius dynamics simple:

r2k+1 = r2k +
(ηk‖∇L(uk)‖)2

r2k
. (48)

With a Taylor expansion at order 2, we can show that for k ≥ 1 the solution

r2k =

√√√√2
k−1∑
i=0

(ηi‖∇L(ui)|)2 + r40

satisfies the previous equation. Indeed using the expression at step k + 1 gives:

r2k+1 =

√√√√2

k−1∑
i=0

(ηi‖∇L(ui)|)2 + r40 + 2(ηk‖∇L(uk)‖)2

= r2k

√
1 + 2

(ηk‖∇L(uk)‖)2
r4k

= r2k

(
1 + (1/2)2

(ηk‖∇L(uk)‖)2

r4k
+ o

(
(ηk‖∇L(uk)‖)2

r4k

))
= r2k +

(ηk‖∇L(uk)‖)2

r2k
+ o

(
(ηk‖∇L(uk)‖)2

r2k

)
.

Using ηk = η(1− ηλ)−2k−1, introducing β = (1− ηλ)4, omitting the o
(
(ηk‖∇L(uk)‖)2

r2k

)
and

injecting the previous solution in the effective learning rate, we obtain the closed form:

ηek =
η(1− ηλ)−2k−1√

2
∑k−1

i=0 η
2(1− ηλ)−4i−2‖∇L(ui)‖2 + r40

=
(2β)−

1
2√∑k−1

i=0 β
(k−1)−i‖∇L(ui)‖2 + βk

r40

2η2β
1
2

. (49)

AdamG*. The AdamG* scheme is constrained on the hypersphere thanks to the normalization;
the radius is therefore constant and equal to 1. The absence of radial component in the update gives:
c⊥k = ∇L(uk) and ηek = ηk√

vk
. Thus, the resolution of the induction on vk leads to the the closed

form:
ηek =

ηk√∑k−1
i=0 β

(k−1)−i‖∇L(ui)‖2 + βkv0

. (50)

Hence the final theorem, when identifying the closed-form expressions of effective learning rates and
using Lemma 3.
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Figure 5: Validity of Taylor expansion. We tracked the maximum value of (ηk‖∇L(uk)‖)2/r2k for
all filters in all layers of a ResNet20 CIFAR trained on CIFAR10 with SGD. The order of magnitude
of the gradient is roughly the same for other architectures or datasets. It empirically validates the
approximation by the Taylor expansion.

D.2.5. VALIDITY OF THE ASSUMPTIONS IN THEOREM 4

Validity of the Taylor expansion. For a CNN trained with SGD optimization, we tracked the
quantity (ηk‖∇L(uk)‖)2/r2k, which is the variable of the Taylor expansion. As can be seen in
Figure 5, the typical order of magnitude is 10−2, justifying the Taylor expansion (see Appendix ??
for implementation details).

A quick formal analysis also suggests the validity of this hypothesis. Thanks to the expression
of ηk = (1− ηλ)−2i−kη shown in the previous section, if we replace ‖∇L(uk)‖ by a constant for
asymptotic analysis, the comparison becomes:

(1− ηλ)−4k−2 � (1− ηλ)−2 1− (1− ηλ)−4k

1− (1− ηλ)−4
(51)

1� 1− (1− ηλ)4k

(1− ηλ)−4 − 1
. (52)

It is asymptotically true.

D.3. Empirical validation of Theorem 4

D.4. Details on Figure 2

In order to illustrate the equivalence in Theorem 4, we experiment with learning an image classifier
on CIFAR10 using different optimization schemes. We consider two architectures: ResNet20 with
BN and ResNet20 with WN.
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The set of parameters θ of the above architectures can be split into two disjoint subsets: θ = F ∪R,
where F is the set of groups of radially-invariant parameters andR is the set of remaining parameters.
Note that the set of remaining parameters inR differs from one architecture to another: for ResNet20
BN, it includes the last linear layer as well as the scaling and bias of BN layers; for ResNet20 WN, it
includes the magnitude parameters in each convolutional layer as well as the last linear layer.
For each architecture, we experiment with tracking the trajectory of parameters under different
optimization schemes: SGD, AdaGradG and AdaGrad. As our analysis is restricted to radially-
invariant parameters, we only track the trajectory of parameters belonging to F , while the remaining
parameters, belonging to R, are always optimized in the same way, i.e., with SGD. For stability
purposes, we finetune a previously trained architecture with SGD. The order of batches as well as the
random seed for data augmentation are fixed to obtain comparable trajectories. The hyperparameters
are chosen for SGD and AdaGrad so that gradient steps have the same order of magnitude (see D.5
for details); the hyperparameters for AdaGradG are provided by the equivalence in Theorem 4.

In Figure 2, we show the angle between the training trajectories using SGD and AdaGradG
(resp. SGD and AdaGrad), for three different filters in each block of the ResNet20 architectures.
We observe that the trajectories on the L2 unit hypersphere remain aligned for SGD and AdaGradG
whereas, for SGD and AdaGrad, they quickly diverge. It empirically validates the equivalence
mentioned in Theorem 4.

D.5. Implementation details

Due to the high non-convexity of the optimization landscape, we choose to start from a relatively
stable point in the parameter space. The finetuning of each architecture (ResNet20 BN, ResNet20
BN w/o affine and ResNet WN) starts from previously trained architectures on CIFAR10 via a simple
SGD with an initial learning rate of 10−1, a L2-regularization parameter of 10−4 and a momentum
parameter of 0.9. The training is performed during 200 epochs, and the learning rate is multiplied by
0.1 at epochs 80, 120 and 160.

Then we track the trajectory obtained with SGD, AdaGrad and AdaGradG. The effective learning
rate for SGD is fixed to 10−2 and the L2-regularization parameter is set to 10−3 during finetuning. It
gives us the following equivalent parameters for AdaGradG: order-2 moment parameter β ≈ 0.99996
and learning rate η ≈ 0.71. Since the effective direction is the same for both SGD and AdaGrad
(Adam without momentum), in order to have the same order of magnitude for the gradient steps
we need to have effective learning rates of same order of magnitude. From Table 1, in the case of
SGD we have ηekSGD = ηk

r2k
, and in the case of AdaGrad we have ηekAdaGrad = ηk

rkνk
= ηk

r2kd
−1/2‖bk‖

=

ηekSGD
1

d−1/2‖bk‖
. We track the quantity 1

d−1/2‖bk‖
during training, which is roughly in the order of

magnitude of 10−1. Therefore, to have gradient steps of equivalent order of magnitude between SGD
and AdaGrad, we have to choose a learning rate of 10−3 for AdaGrad.
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