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Abstract
Deep over-parameterized neural networks exhibit the interpolation property on many data sets. That
is, these models are able to achieve approximately zero loss on all training samples simultaneously.
Recently, this property has been exploited to develop novel optimisation algorithms for this setting.
These algorithms use the fact that the optimal loss value is known to employ a variation of a Polyak
Step-size calculated on a stochastic batch of data. In this work, we introduce an algorithm that
extends this idea to tasks where the interpolation property does not hold. As we no longer have
access to the optimal loss values a priori, we instead estimate them for each sample online. To
realise this, we introduce a simple but highly effective heuristic for approximating the optimal value
based on previous loss evaluations. Through rigorous experimentation we show the effectiveness of
our approach, which outperforms state of the art adaptive gradient and line search methods.

1. Introduction

Deep over-parameterized neural networks exhibit the interpolation property on many data sets [1, 18].
That is, these models are able to achieve close to zero loss on all samples simultaneously. Recently,
the interpolation property has been exploited to prove new convergence rates [9, 12, 17, 18] and to
develop novel optimisation algorithms for this setting. Examples include Adaptive learning rates for
Interpolation with Gradients (ALI-G) [1], and Stochastic Polyak Step (SPS) [10]. Both ALI-G and
SPS use the interpolation property to ensure that the optimal loss value for each data point will be
zero. With this knowledge it is possible to employ a stochastic variation of the Polyak step-size [15].
This automatically scales a maximal step-size hyperparameter down to an appropriate value for each
update, which removes the need for a painstakingly hand-designed learning rate schedule [1, 10].
ALI-G and SPS have been shown to produce highly competitive results, matching the generalisation
performance of SGD with a manually tuned learning rate in many settings, and outperforming
adaptive gradient methods by a large margin. While such techniques work well, the interpolation
property does not hold on many interesting large-scale learning tasks, or in situations where the
model size is limited.

In this work, we propose a novel optimisation method for non-interpolating problems inspired by
algorithms for interpolation. Our approach is based on the observation that any non-interpolating
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problem can be made to satisfy the interpolation property once a point that minimises the training
objective is known. One simply modifies each loss to be the point-wise maximum of the loss function
and its value at the optimal point. Moreover, one only requires the knowledge of this optimal loss
value for every function and not the location in parameter space of the minimiser. Hence, if one
is able to approximate the loss values at an optimal point with reasonable accuracy, one should be
able to replicate the desirable characteristics of algorithms such as ALI-G and SPS. Specifically,
we will be able to obtain an algorithm with a single fixed hyperparameter that is easy to tune, and
a strong generalisation performance. We present an optimisation method that approximates the
optimal function values online using a heuristic in combination with a Polyak step-size. We name our
algorithm Adaptive ALI-G (ALIG+), as it makes use of ALI-G iteratively to update the parameters.

Related Works. Existing optimisation methods for supervised learning tasks that do not satisfy the
interpolation property can be broadly classified into three categories: SGD with a manually tuned
step size schedule, line search methods, and adaptive gradient methods. While SGD [16] has been
used to produce state of the art performance for supervised learning tasks, the best performing models
are trained with highly refined learning rate schedules. However, for settings where good learning
rate schedules are not known in advance, finding such a schedule can be prohibitively expensive, in
compute or practitioner time or both. Line search methods [5, 13, 18] seem appealing alternatives as
they remove the need to find a learning rate schedule and instead run extra forward passes to select
a step-size. However, these methods invariably introduce extra computation and hyperparameters
governing how the line search is performed and whether a target point is accepted. Lastly, adaptive
gradient methods such as Adagrad [4], Adam [7] and [11] use heuristics based on previous gradient
evaluations to scale a learning rate for each parameter independently. While these methods are easy
to use, their generalisation performance is typically poor for supervised learning tasks [19].

2. Problem Formulation

Loss Function. As is standard for supervised learning, we consider tasks where the model is
parameterized by w ∈ Rp. We assume the objective function can be expressed as an expectation
over z ∈ Z , where z is a random variable indexing the samples of the training set Z:

f(w) ≜ Ez∈Z [ℓz(w)]. (1)

Here ℓz is the loss function associated with the sample z. We assume that each ℓz admits a known
lower bound B. For the large majority of loss functions used in machine learning, such as cross-
entropy or hinge losses, the lower bound is B = 0. However, we do not assume this lower bound is
reached during training. In other words, the interpolation property does not hold.

Learning Task. We consider the task of finding a vector w⋆ that minimises f :

w⋆ ∈ argmin
w∈Rp

f(w) +
λ

2
||w||2, (P)

where λ controls the regularisation amount. We used weight decay for convenience as it allows for
simple comparison with other algorithms. However, ALIG+ can easily be used with other forms of
regularisation.
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3. Algorithm

Our algorithm is motivated by trying to approximate ℓz(w⋆) online, and as a result recover inter-
polation. Thus, we introduce a scalar ℓ̃kz to store our estimate for each example in the training set.
We refer to these scalars as approximate optimal values (AOVs) and the superscript k indicates how
many times the approximation has been updated. Our algorithm alternates between two “steps” i)
using the current approximation of the optimal loss ℓ̃kz to inform the step-size, (see Algorithm 1); and
ii) improving the approximations based on the best previous iterates, (see Algorithm 2).

Updating the Parameters. ALIG+ uses the same stochastic version of the Polyak step-size as
ALI-G [1], However, we replace the optimal loss value which is set to zero ℓz(w⋆) = 0 with its
current approximation ℓz(w⋆) = ℓ̃kz . Hence, at time t the ALIG+ algorithm uses the following weight
update:

wt+1 = wt − γtg
′
t, γt ≜ max

{
min

{
η,

ℓzt(wt)− ℓ̃kz
∥∇wℓzt∥2

}
, 0

}
. (2)

We define g′
t ≜ (∇wℓzt(wt) + λwt). Additionally η and λ are the hyperparameters controlling the

maximum step-size and weight decay amount, respectively. As we do not require the interpolation
assumption to hold, we do not need to use the constraint based regularisation of ALIG+ . It is worth
noting that the max with 0 is important as there is no guarantee that (ℓzt(wt)− ℓ̃kz) will be positive.
Without this positivity constraint a negative step size could be used resulting in a gradient ascent step.

Algorithm 1: ALI-G with AOVs

Input: time horizon T , initial point w0, maximum step size η, AOVs ℓ̃k and λ.
1 for t = 0, ..., T − 1 do
2 Sample zt ∈ Z , ℓzt(wt),∇ℓzt(wt)

3 Set γt ≜ max
{
min

{
η,

ℓzt (wt)−ℓ̃kz
∥∇wℓzt∥2

}
, 0
}

4 wt+1 = wt − γt(∇ℓzt(wt) + λwt)

5 end
6 Return w̄ ≈ argmint∈{1,...,T} {f(wt)}

Updating the AOVs. To replicate the performance of algorithms for interpolation we want the
approximation ℓ̃kz to tend towards ℓz(w⋆) throughout training. Due to the stochastic and non-convex
nature of training neural networks it is impossible to guarantee this behaviour. However, we present
a simple scheme for updating the AOVs that demonstrates strong empirical performance as shown
in section 4. The AOV update scheme is designed to be both reactive and optimistic. By reactive
we mean that if a specific sample returns a constant loss its AOV will tend toward this value. By
optimistic we mean that the AOVs are updated to a lower value than the current best loss value
for this sample, in the hope that a further decrease in loss is possible. In practice the loss values
of specific samples can fluctuate throughout training especially when data augmentation is used.
However, the step-size is calculated on a batch of data, and hence is relatively robust to this noise.
The AOV update scheme is as follows: we store the vectors ℓ̃k, ℓ̃k−1, ℓ(w̄) that contain (ℓ̃kz , ℓ̃k−1

z ,
ℓz(w̄)) ∀z ∈ Z , where w̄ = argmint∈{0,...,T} {f(wt)} in memory at all time. The AOVs ℓ̃kz , ℓ̃k−1

z

are initialised to our known lower bound on the loss B. The training duration is split into K equal
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sections each with length T . During each of these sections we keep the AOVs fixed and try to
get a good estimate of ℓz(w̄) for each example. After each of the K sections we update all AOVs
simultaneously. Each AOV is updated depending on whether it has been “reached", that is, if
(ℓz(w̄) ≤ ℓ̃kz) is true. In both cases we are optimistic that the loss can be decreased further from
its current value. If an AOV hasn’t been reached it is updated by simply averaging ℓz(w̄) and ℓ̃kz .
This increases this AOV to halfway between the loss at the best point visited and its current value.
However, if (ℓz(w̄) ≤ ℓ̃kz) is true, we instead try decreasing ℓ̃kz halfway to the last AOV that was
reached ℓ̃k−1

z . If the zth AOV is reached again in successive sections we reduce ℓ̃kz each time by the
same magnitude. Thus, even if an AOV is incorrectly updated to a value far higher than ℓz(w⋆) it can
easily be corrected by consecutive reductions. Lastly, we ensure AOVs are never decreased below
the lower bound B. Therefore when using a non-negative loss the AOVs are always positive.

Algorithm 2: ALIG+ Algorithm

Input: Input: time horizon Tmax, K = 5, initial point w̄0, η ℓ̃1, ℓ̃0 = B, and λ.
1 for k = 1, ...,K do
2 Run Algorithm 1 with w̄k−1, Tmax

K , ℓ̃k, η and λ to obtain w̄k

3 for z ∈ Z do
4 if ℓz(w̄) ≤ ℓ̃kz then
5 ℓ̃k+1

z ← max{ ℓ̃
k
z+ℓ̃k−1

z

2 , 0}, ℓ̃kz ← ℓ̃k+1
z − ℓ̃k−1

z

6 else
7 ℓ̃k+1

z ← ℓ̃kz+ℓz(w̄)
2 , ℓ̃kz ← ℓ̃k−1

z

8 end
9 end

10 end
11 Return w̄K

Implementation Details. For the above scheme to work well, it is important that the AOVs are
not updated too frequently as this can lead to them trending towards ℓz(w̄) too fast. However, it
is also important that the AOVs are updated a sufficient number of times so they can approximate
ℓz(w⋆), if ℓz(w⋆) is large. We find K = 5 provides a good balance between these considerations
and fix K to this value. Furthermore, to save computation we i) avoid calculating f(wt) exactly
and instead approximate this online after each epoch and ii) we use wk−1

T in the place of w̄k in line
2 of Algorithm 2. This results in ALIG+ having a similar run time to SGD, where the only extra
computation is the updating of the vectors ℓ̃k, ℓ̃k−1, ℓ(w̄) and evaluating the norm of the gradients.

Data Augmentation. Data augmentation can be thought of in two ways. First, it increases the
size of the data-set by adding new examples that are simply transformed versions of others. Second,
it makes online alterations to the original number of examples. As ALIG+ is designed for the
optimisation of non-interpolating problems, which often have large data sets, we choose to view data
augmentation in the second way and save only a single AOV for all possible augmentations. When
viewing data augmentation in the first way, training regimes where the number of epochs is less than
the number of possible transformations would only visit each example less than once on average.
Hence, approximating the optimal value would be challenging. Moreover, for many common data

4



FAKING INTERPOLATION UNTIL YOU MAKE IT

0 20 40
Epochs

10−1Tr
ai

n
L

os
s

(l
og

)
Rank 1 Factorization

0 20 40
Epochs

10−2

10−1

Tr
ai

n
L

os
s

(l
og

)

Rank 4 Factorization

0 20 40
Epochs

10−11

10−6

10−1

Tr
ai

n
L

os
s

(l
og

)

Rank 10 Factorization

0 20 40
Epochs

10−11

10−6

10−1

Tr
ai

n
L

os
s

(l
og

)

True Model

sls
pal
adam
coin
alig+

Figure 1: Training performance on the matrix factorisation problem of [18].
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Figure 2: Training and validation performance on mushrooms and ijcnn data sets [2].

augmentation transforms, such as random crops of images, we would expect the optimal loss value
to be highly correlated between the same example under different versions of the transform.

4. Experiments

4.1. Simple Optimisation Benchmarks

Setting and Method. We first demonstrate the performance of ALIG+ on the matrix factorisa-
tion and RBF Binary Classification tasks detailed in [18]. We compare ALIG+ against Parabolic
Approximation Line Search (PAL) [13] and a selection of the optimisation methods used in [18].

Results. The results of these experiments are shown in Figures 1 and 2. On the non-interpolating
tasks rank 1 and rank 4 matrix factorisation and ijcnn, ALIG+ performs comparably to the best
algorithms, PAL [13] and SLS [18]. On the interpolating tasks ALIG+ attains the same validation
performance as these methods, however it fails to minimise the training loss to machine precision.

4.2. Deep Learning Experiments

Setting. For deep learning experiments we train a small 8 layer ResNet [6] on SVHN [14],
CIFAR10, CIFAR100 [8] and Tiny ImageNet. The small ResNet contains 90K parameters with
16 channels in the first layer. We also train a ResNet 18 [6] on ImageNet [3] containing 11.7M
parameters. The SVHN and CIFAR data sets are comprised of 32x32 pixel RBG images. For the
SVHN data set we use the split proposed in [1]. SVHN and CIFAR10 both have 10 classes and
CIFAR100 has 100. The Tiny ImageNet data set is more challenging and contains 100K training
examples of 64x64 pixels split over 200 classes. The ImageNet data set [3] contains 1.2M large
RGB images of various sizes split over 1000 classes. For our experiments we use the following
data augmentation. All images are normalised per channel, randomly cropped to 224x224 pixels.
For the Tiny ImageNet and ImageNet data set the ground truth labels are not freely available so
we report validation scores instead. All images are centred and normalised per channel and when
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data augmentation is used we apply standard random flips and crops. For the majority of data sets
we present results with and without data augmentation. The exceptions being SVHN, which is not
designed for data augmentation and ImageNet where we only report results with augmentation. These
tasks were chosen to give examples of i) interpolation (SVHN); ii) near interpolation (CIFAR10);
iii) non-interpolation resulting from limited model size (CIFAR100 and Tiny ImageNet) and non-
interpolation resulting from data set size (ImageNet).

Method. We compare ALIG+ against PAL [13], ALI-G [1], SPS [10], the optimisation methods
used in [18] and SGD with a step learning rate schedule. For these problems the step-size or maximum
step-size hyperparameter is cross validated as powers of ten and the regularisation hyperparameter
is selected from λ ∈ {1−3, 1−4, 1−5, 0}. ALI-G uses a constraint based regularisation [1], and r
was selected from r ∈ {50, 100, 200,∞}. All other hyperparameters are left at their default values.
For PAL we keep the maximum step-size hyperparameter within the suggested interval [1, 10]. For
SGD we use the learning rate schedules detailed in [6]. We reuse the schedule for the CIFAR data
sets for SVHN and Tiny ImageNet, reducing the learning rate by a factor of 10 both half way and
three quarters through training. A fixed batch size of 128 and a epoch budget of 200 are used for all
experiments. We accelerate SGD, ALIG and ALIG+ with a Nesterov momentum of 0.9. SLSPolyak,
Adam and Adabound also include momentum like terms which we leave at their default settings. Due
to computational constraints we use the best hyperparameters from Tiny ImageNet for ImageNet.
However, the batch size is increased to 256 and the epoch budget is reduced to 90.

Results. The accuracy of the best performing model for each optimisation method is shown in
Table 1. On the tasks considered, ALIG+ outperforms all line search and adaptive gradient methods
by a significant margin. The exception being on CIFAR10 with data augmentation where PAL
produced similar test accuracy. The dominant performance of ALIG+ shows the lack of strong
algorithms for non-interpolating settings. The performance benefit of ALIG+ is most notable when
the interpolation property is far from satisfied or when data augmentation is not used. For example
on the challenging Tiny Imagenet data set ALIG+ produces validation accuracy 4% higher that the
next best. Empirically we observe that ALIG+ is almost twice as fast as the line search methods,
significantly faster than Adam and has a run time within a couple of percent of SGD.

4.3. Worse Case Bound

In this section we provide a worst case bound on the performance of ALIG+ for smooth and convex
functions. As ALIG+ and ALI-G are equivalent before the first AOV update, we provide a result
based on the work of Berrada et al.[1]. Due to space constraints, we refer the reader to [1] for a proof.

Theorem 1 We assume that for every z ∈ Z , ℓz is convex and β-smooth. Let w⋆ be a minimum of
f such that ∀z ∈ Z, ℓz(w⋆) ≤ ε. Further assume that η ≤ 1

2β and λ = 0. Then if we apply ALIG+
with a maximal learning-rate of η to f , we have:[

f

(
1

T + 1

T∑
t=0

wt

)]
− f⋆ ≤

∥w0 −w⋆∥2

η(T + 1)
+ ε.

Note here T = Tmax
K and does not have the same meaning as in [1].
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SVHN Cifar10 Cifar100 Tiny ImageNet ImageNet
Test Acc (%) Test Acc (%) Test Acc (%) Val Acc (%) Val Acc (%)

Model Small ResNet ResNet18

Data Aug No No Yes No Yes No Yes Yes

SGDStep 95.5 84.2 88.1 51.0 59.6 39.8 43.2 71.1

ALIG 93.7 80.8 86.2 47.5 57.9 35.6 41.8 63.7
SPS 93.9 81.1 86.8 43.7 53.1 20.5 23.8 63.9
Adabound 93.1 75.6 85.2 44.0 55.4 34.3 40.1 62.9
Adam 94.3 79.7 85.8 48.1 56.2 35.5 41.2 62.6
Coin 92.4 76.2 84.1 42.4 54.0 30.8 36.3 61.5
SLSArmijo 92.9 81.2 85.8 31.6 42.0 9.4 10.0 63.2
SLSGoldstein 92.1 78.2 86.4 45.5 57.2 32.9 40.4 62.6
SLSPolyak 93.6 79.9 85.9 43.6 54.0 31.4 38.0 62.7
PAL 93.0 81.5 86.7 39.8 57.0 35.3 40.8 63.6
ALIG+ 95.3 86.0 87.3 56.3 59.6 39.8 42.8 67.7

Table 1: Accuracies of optimisation methods on a selection of standard image classification data sets.
The model and dataset combinations have been chosen to include both interpolating and
non-interpolating tasks. SGDstep is the only method to benefit from a manually designed
step size schedule. All other methods have at most one fixed step size hyperparameter. On
these tasks ALIG+ out performs all other single hyperparameter methods, often by a large
margin.

5. Discussion

We have introduced ALIG+ , an optimisation algorithm designed for the non-interpolating setting
and demonstrated its superiority over linear search and adaptive gradient methods on standard
benchmarks. However, due to stochasticity it is theoretically possible to design simple convex and
Lipshitz continuous problems where the AOVs will not converge to ℓz(w⋆) in the worst case. An
interesting direction for future work would be to characterise the conditions where ALIG+ offers
provable convergence to the global optimum.
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