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Abstract
Boosting is a standard framework for learning a large-margin sparse ensemble of base hypothe-
ses, where the algorithm assumes an oracle called the base learner, which returns a base hy-
pothesis h with maximum edge Ei[yih(xi)] with respect to a given distribution over the sample
((x1, y1), . . . , (xm, ym)). In particular, for the ℓ1-norm regularized soft margin optimization prob-
lem, several boosting algorithms have theoretical iteration bound for finding ϵ-approximate solu-
tions. They are not as fast as classical LPBoost by Demiriz et al., which has no non-trivial iteration
bound. In this paper, we propose a new boosting scheme. We assume a special base learner, which
returns the average margin distribution vector Eh[(yih(xi))

m
i=1] with respect to a certain distribu-

tion over the base hypothesis class H . Under this scheme, we propose a boosting algorithm whose
iteration bound is O((r lnm)/ϵ2) and running time is O(m lnm) per iteration, where r is the VC
dimension of H . Moreover, we also propose an efficient implementation for the new base learner,
given that a relevant sub-class H|S of H is represented by a non-deterministic version of the Zero-
suppressed Decision Diagram (NZDD), where NZDD is a data structure for representing a family
of sets succinctly.

1. Introduction

Theory and algorithms for large-margin classifiers with sparse weights have been studied exten-
sively. Those classifiers are guaranteed to have low generalization error when they have a large
margin on the training samples (e.g., [9, 10]) and are helpful for feature selection purposes. A
standard formulation for learning a sparse linear classifier is the 1-norm regularized soft margin
optimization problem (defined later), a linear program (LP). Off-the-shelf LP solvers can solve this
problem, but they are still not efficient enough for massive data. Boosting is a way to overcome this
issue.

Some boosting algorithms optimize the soft margin problem, but these algorithms have theoret-
ical or practical issues. For example, LPBoost [1] solves sub-problems of the soft margin problem
iteratively (the column generation approach in the optimization literature). LPBoost works well
experimentally, but there is no non-trivial iteration bound proven so far. Moreover, it needs to
run Ω(m) iterations in the worst case [13], where m is the number of training examples. ERLP-
Boost [15], a variant of LPBoost, solves sub-problems with an entropic regularizer iteratively. It
often works slower than LPBoost per iteration, but its iteration bound is shown to be O(log(m)/ϵ2)
to obtain an ϵ-approximate solution. Thus, we are motivated to investigate provable boosting algo-
rithms with both theoretical iteration guarantees and practical performances.
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Table 1: The classical boostings assume that the base learner returns a max edge hypothesis for
given distribution. Our work assumes a base learner that returns the average margin distri-
bution. H|S is introduced in section 3, whose size is bounded by the VC dimension of H .

LPBoost [1] ERLPBoost [15] SS algorithm [11] Our work

Iteration bound Ω(m) O(ln(m/ν)/ϵ2) O(ln(m)/ϵ2) O(ln(|H|S)/ϵ
2)

Problem per iter. Linear Program Ent. min. Sorting Sorting
Base Learner Max edge Max edge Max edge Average vector

This paper shows a new boosting scheme that reduces the 1-norm regularized soft margin opti-
mization to strongly smooth function optimization. An advantage of this scheme is that we can apply
Frank-Wolfe-based methods, for which only linear optimization is required at each iteration. In fact,
by employing an entropic regularizer in the scheme, our boosting algorithm runs in O((r lnm)/ϵ2)
iterations to obtain an ϵ-approximate solution, where r is the VC dimension of H . For the class of
decision stumps over Rd, we have a tighter iteration bound O((ln d+ lnm)/ϵ2), which is compet-
itive to previous bounds. Furthermore, the linear optimization is reduced to a sorting problem for
each iteration and can be solved in O(m logm) time. On the other hand, our scheme requires a
base learner, which is different from the standard one. The standard base learner for the soft margin
optimization returns a hypothesis with the maximum edge w.r.t. the given distribution. Instead, our
base learner is supposed to return an “average margin distribution” over the sample w.r.t. a given
distribution. For example, the average can be viewed as a soft-max of edges of hypotheses with
the entropic regularizer. We show that our base learner runs efficiently, given that the restriction
of hypotheses over the sample is represented by a data structure called Non-deterministic Zero-
suppressed Decision Diagram (NZDD) [3], where NZDD is a variant of Zero Suppressed Decision
Diagram (ZDD) [5, 7]. The time complexity for computing the average margin distribution depends
linearly on the size of NZDD. Further, we also propose an efficient method to construct an NZDD
when the hypotheses are decision stumps over d, whose time and space complexity are O(dm lnm)
and O(dm), respectively. Table 1 compares our work and others. Finally, we validate the effec-
tiveness of the 1-norm soft margin formulation and the computational advantages of our proposed
algorithm for real data sets with the base hypotheses of decision stumps.

2. Preliminaries

For notational simplicity, let [k] = {1, . . . , k} for k ∈ N. We write m-dimensional probability
simplex capped by ν ∈ [1,m] by ∆m,ν = {d ∈ [0, 1/ν]m | ∥d∥1 = 1}. If ν = 1, the capped
simplex becomes the standard simplex so that we write ∆m for shorthand. A function f is called β-
strongly smooth w.r.t. ℓp-norm if for all x and y, f(y) ≤ f(x)+∇f(x) ·(y−x)+ β

2 ∥y−x∥2p. We
also write the indicator function for an event A as I[A], that is, I[A] = 1 if A is true and 0 otherwise.

Soft margin optimization. Let X ⊆ Rd be a domain of interest. The soft margin maximiza-
tion problem is a standard formulation for classification tasks [9]. Let H ⊆ {−1,+1}X be a set
of hypotheses. Given a sequence of training examples S = ((x1, y1), . . . , (xm, ym)) ∈ (X ×
{−1,+1})m and a capping parameter ν ∈ [1,m], the objective of the soft margin maximization is
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to find a combined hypothesis fw =
∑

h∈H whh whose weight vector w is a solution of

max
w∈∆H ,ξ≥0

min
i∈[m]

[∑
wh∈H whu

h
i + ξi

]
− 1

ν

∑m
i=1 ξi, (1)

where we use the notation uhi = yih(xi) for shorthand. IfH is a huge or infinitely large set, problem
(1) cannot be solved directly. Boosting is a framework that overcomes this issue.

NZDD. Non-deterministic ZDD (NZDD, for shorthand) is a variant of the Zero-Suppressed De-
cision Diagram [5, 7], which is a data structure that represents a family of sets proposed in [3]. An
NZDD G is a quadruple G = (V,E,Σ, ψ), where (V,E) is a Directed Acyclic Graph (DAG) with
a root and a leaf, and Σ is a ground set, ψ : E → 2Σ is a function that assigns a set of labels
to each edge e ∈ E. Let PG be the set of all root-to-leaf path of G. For each path P ∈ PG, let
L(P ) =

⋃
e∈P ψ(e). Since ψ(e) ⊂ Σ, each path P represent a subsetL(P ) ⊂ Σ. Therefore, we can

see that an NZDD is a data structure that represents a family of sets L(G) := {L(P ) | P ∈ PG}.

3. A new scheme

In this section, we first present a new scheme that solves the soft margin maximization problem.
Before we get to the main point, we first discuss the hypothesis class. Let S be the sequence of
training examples defined in section 2, and letH be the hypothesis class the base learner picks from.
We introduce an equivalence relation overH defined as h1 ≡ h2 ⇐⇒ ∀i ∈ [m], h1(xi) = h2(xi).
Then, H can be partitioned into the equivalence classes H1 ∪H2 ∪ · · · ∪Hp for some p ∈ N. We
define a set of representatives asH|S = {h1, . . . , hp}, where hi is a representative of the equivalence
class Hi. An optimal solution of problem (1) with respect to H|S is also an optimal solution of H .
Therefore it is sufficient to consider H|S instead of H . Although the size of H|S is smaller than H ,
it may have exponentially many hypotheses.

3.1. Formulation

Our main idea is first to add a regularizer to the objective of (1), then take the dual form, and finally,
solve the dual problem by the boosting-like method. We consider the regularized problem of (1),

max
w∈∆H|S ,ξ≥0

min
i∈[m]

[∑
wh∈H|S

whu
h
i + ξi

]
− 1

ν

m∑
i=1

ξi −
1

η

∑
h∈H|S

wh lnwh (2)

where η > 0 is a parameter. Now, we take the dual form of (2). The resulting objective function of
the dual problem has a favorable property for its gradient.

Theorem 3.1 The dual problem of (2) is

min
d

1

η

∑
h∈H|S

eηd·uh subject to d ∈ ∆m,ν . (3)

We denote the objective function of (2) by Jη. Here, a notable difference between our algorithm
and ERLPBoost is that ERLPBoost first takes the dual form of the soft margin optimization problem
then solves its entropy regularized problem. In contrast, our algorithm solves the dual problem of the
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entropy regularized soft margin optimization problem. The main difference between the classical
boosting settings and ours is the role of the base learner. In our framework, the base learner returns
the average margin distribution while the base learner in the classical settings returns a max edge
hypothesis. If we choose η > 0 appropriately, we can obtain an ϵ-approximate solution of the dual
problem of (1).

Lemma 3.1 If η ≥ 2
ϵ ln |H|S |, then an ϵ/2-approximate solution of problem (3) is also an ϵ-

approximate solution of the dual problem of the original problem (1).

In general, the computation of |H|S | is hard. In such a case, we can use the upper bound of |H|S |.
Note that by Sauer’s lemma (e.g., [9]), the size of H|S can be bounded by (em/r)r, where r is the
VC dimension ofH so that η = (2r/ϵ) ln(em/r) is a reasonable choice that satisfies the assumption
of lemma 3.1. Furthermore, if the hypothesis class is the decision stump class, then the size of |H|S |
is upper bounded by 2d(m+1), thus we can use η = 2 ln(2d(m+1))/ϵ as a parameter. We propose
a new scheme to solve (3) by some convex optimization algorithm; for each iteration t = 1, . . . , T ,
the booster sends the distribution dt ∈ ∆m,ν to the base learner. Then the base learner returns an
average margin distribution ∇Jη(dt) = Eh[u

h | dt], where Pr[h | dt] ∝ eηd
t·uh for all h ∈ H|S .

After T rounds, the algorithm outputs a combined hypothesis fwT = Eh[h | dT ]. This weighting
is based on the primal-dual relation for the optimal solution of (3). Unfortunately, this conversion
might not guarantee an ϵ-approximate solution of (1), but as dT is close to the optimal solution
of (3), wT is also close to the optimal solution of (2). We give an efficient way to compute this
average margin distribution ∇Jη(dt) in section 4. For now, we assume that there exists an efficient
algorithm that computes the margin distributions. Under this assumption, we can use the convex
optimization techniques for a strongly smooth function.

4. Algorithm for our scheme

In order to achieve fast computation per iteration, we apply the Frank-Wolfe algorithm [2]. This
algorithm optimizes the convex function over a closed convex set by solving LP iteratively. Roughly
speaking, the FW algorithm uses the gradient vector over the feasible region and the LP optimizer
over the feasible region. We apply this algorithm to our optimization problem ( 3). In our case, the
LP step can be achieved by sorting. The gradient computation step corresponds to the base learner
call, and the rest steps correspond to updating the distribution step for boosting. We first show the
algorithm’s convergence rate for our case, and then we show how to compute the gradient vector
and the linear programming step. The convergence rate of the FW algorithm is as follows:

Theorem 4.1 (Jaggi [4]) Consider an optimization problem minx∈D f(x), where D is a closed
convex set, and f is β-strongly smooth function w.r.t. a norm ∥ · ∥. Let D be the diameter of D with
respect to norm ∥ · ∥. Then, the FW algorithm converges in O

(
βD
t

)
iterations.

Since diam∥·∥1(∆m,ν) ≤ 2 and Jη(d) is η-strongly smooth w.r.t. ℓ1-norm, we get the following
corollary: the convergence rate for our case.

Corollary 4.1 Applying the FW algorithm to problem (3), it finds an ϵ-approximate solution of the
dual problem of (1) in O

(
1
ϵ2
ln |H|S |

)
iterations.
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4.1. Computation of the gradient

We now describe how to compute the base learner in the new boosting scheme. Our main idea is to
construct an NZDD for H|S whose each root-to-leaf path corresponds to a vector in H|S , and then
we compute the required average margin distribution over the NZDD.

Construct an NZDD for H|S . The first step depends on the structure of H . For the general H|S ,
we enumerate the elements of H|S then use ZCOMP 1 [12]. However, this approach tends to
generate a large NZDD. So it is better to construct a specialized NZDD for eachH|S . If theH is the
decision stump class over Rd, then we can construct the NZDD in O(dm) time and O(dm) space.

Computation of the average margin distribution. Let G = (V,E, [m], ψ) be the NZDD the
base learner has. We now describe how to compute the average margin distribution for any distribu-
tion d ∈ ∆m,ν given to the base learner. This computation consists of two steps; First, we compute
normalized weights over edges by the weight pushing algorithm [8]. Then we compute the weights
on hypotheses by dynamic programming over the weighted NZDD. For the decision stump class,
the computation over the NZDD is faster than the naive computation. The overall computation time
of a gradient vector is O(|G|), where |G| =

∑
e∈E |ψ(e)|.

5. Experiments

We use Gurobi optimizer 9.0.1 with an academic license to solve the sub-problems (LPs and QPs) of
LPBoost and ERLPBoost. To solve the entropy minimization of ERLPBoost, we adopt the sequen-
tial quadratic programming as in [14]. We evaluate the computation times of LPBoost, ERLPBoost,
SS algorithm, and our algorithm on some LIBSVM data sets 2. We set the accuracy parameter
ϵ = 0.01 and the capping parameter ν = 0.8m and run each algorithm until meeting its stopping
criterion. We set the ERLPBoost parameter η as η = (2/ϵ) lnm and set the parameter η of our
algorithm as the number of paths of the NZDD for H|S . Table 2 shows that their computation times
(seconds) for the data sets. In most cases, our algorithm terminates earlier than others, except for
the RCV1 data set. Also, for the real sim data set, ours terminates much faster. A possible reason for
these behaviors would be that the underlying problems are close to the classical Frank-Wolfe algo-
rithm’s best case or worst case. For instance, if the optimal solution is an extreme point in ∆m,ν , the
algorithm could reach it quickly. On the other hand, if the solution is not an extreme point but on the
boundary of ∆m,ν , the algorithm would require the worst-case bound iterations. More sophisticated
variants of the Frank-Wolfe algorithm, e.g., [6], might avoid such worst situations.

Table 2: Comparison of the computation times (seconds) of boosting algorithms.

Madelon Covtype Gissete Real sim RCV1

LPBoost 6.49 20.53 23.95 789.47 1059.85
ERLPBoost 33.68 55.52 36.23 591.43 1251.37
SS algo. 8.71 970.87 647.87 23.03 9893.03
Our work 9.56 3.39 0.99 10.19 3630.69

1. http://www.sd.is.uec.ac.jp/toda/code/zcomp.html
2. The LIBSVM data sets are from https://www.csie.ntu.edu.tw/˜cjlin/libsvm/.
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Appendix A. Algorithms and proofs

In this Appendix, we show the main algorithm and NZDDs.

A.1. Proof of lemma 3.1

Since the dual problem is derived by simple calculation, we only prove the strong smoothness of
Jη(d). The hessian of Jη(d) is

∇2Jη(d) = ηEh∈H|S

[
uhuh

⊤
∣∣∣d]− ηEh∈H|S

[
uh | d

]
Eh∈H|S

[
uh | d

]⊤
. (4)

Using the fact that uh ∈ {−1,+1}m for all h ∈ H|S , we get

w⊤∇2Jη(d)w =ηEh∈H|S

[
(w · uh)2

]
− η

(
w · Eh∈H|S [u

h]
)2

≤ηEh∈H|S

[
(w · uh)2

]
≤ ηEh∈H|S

[
∥w∥21 | d

]
= η∥w∥21

for all w and d ∈ ∆m,ν . Therefore, for all d,d0 ∈ ∆m,ν , there exists a z ∈ ∆m,ν such that

Jη(d) =Jη(d
0) + (d− d0) · ∇Jη(d0) +

1

2
(d− d0)⊤∇2Jη(z)(d− d0)

≤Jη(d0) + (d− d0) · ∇Jη(d0) +
η

2
∥d− d0∥21,

where the first equality follows from Taylor’s theorem.

A.2. Main algorithm

Algorithm 1 shows our boosting algorithm. We can regard this algorithm as the classical Frank-
Wolfe algorithm that minimizes Jη over ∆m,ν . Since the feasible region is ∆m,ν , the linear pro-
gramming step can be solved by sorting. We also terminate the for loop if the stopping criterion is
satisfied. This stopping criterion comes from

Jη(d
t)− Jη(d

⋆) ≤ (dt − d⋆) · Jη(dt) ≤ (dt − st) · Jη(dt),

where the first inequality follows from the convexity of Jη and the second inequality follows from
the definition of st. Therefore, if the stopping criterion is satisfied, it implies that dt is an ϵ/2-
approximate solution.

Appendix B. Computation of average margin vector

Let G = (V,E, [m], ψ) be the NZDD the base learner has. We now describe how to compute the
average margin distribution for any distribution d ∈ ∆m,ν given to the base learner. This compu-
tation consists of 2 steps; We first assign a weight to each edge e ∈ E as a(e) =

∏
i∈ψ(e) e

2ηdi .
After that, apply the weight pushing algorithm [8] to this weighted DAG (V,E, a). The input of the
weight pushing algorithm is a DAG (V,E) and a function a : E → R+ that assigns weight to each
edge in E. Then, the weight pushing algorithm returns a function b : E → R+ that satisfies

∀P ∈ PG,
∏
e∈P

b(e) =

∏
e∈P a(e)∑

P ′∈PG
∏
e∈P ′ a(e)

.
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Algorithm 1: New boosting scheme with Frank-Wolfe
input : Training examples S, accuracy ϵ > 0, capping parameter ν ∈ [1,m], and access to a

base learner.
Initialize d0 = (1/m)1, η = 2

ϵ ln |H|S |.
for t = 0 to T do

Send dt to the base learner.
Receive the average margin distribution ∇Jη(d) = Eh∈H|S

[
uh | d

]
from the base learner.

Let πt(1), . . . , πt(m) be the indices that satisfies
πt(i) ≤ πt(j) ⇐⇒ ∇Jη(dt)i ≤ ∇Jη(dt)j .

Set ∀i ∈ [m], stπt(i) =


1/ν i ∈ ⌊ν⌋
1− (⌊ν⌋/ν) i = ⌊ν⌋+ 1

0 otherwise

.

// This corresponds to st ∈ arg min
s∈∆m,ν

s · ∇Jη(dt) in FW algorithm.

if (dt − st) · ∇Jη(dt) ≤ ϵ/2 then
Set T = t, break.

end
Set λt = 2

t+2 and update distribution dt+1 = dt + λt(s
t − dt).

end

Compute wTh = eηd
T ·uh∑

h′∈H eηdT ·uh′
, ∀h ∈ H|S .

output: Combined hypothesis fwT =
∑

h∈H|S
wTh h.

Since we assigned weight as above, after using the weight pushing algorithm, we can get a weighting
function that satisfies By definition of a : E → R, the output function b satisfies

∀P ∈ PG,
∏
e∈P b(e) =

∏
e∈P

∏
i∈ψ(e) e

2ηdi∑
P ′∈PG

∏
e∈P ′

∏
i∈ψ(e) e

2ηdi
. (5)

Let b : E → R be the function returned by the weight pushing algorithm whose input is a weighting
function a : E → R defined above. Let PG be the corresponding path from the root to the leaf.
Then, we can express

∀i ∈ [m], Eu∈U [u | d] =
∑
u∈U

e2ηd·u∑
u′∈U e

2ηd·u′ ui

=
∑
P∈PG

(∏
e∈P

ŵ(e)

)
I[i∈∪e′∈P ψ(e′)]

=
∑
e∈E

I[i∈ψ(e)]

 ∑
P∈PG

I[e′∈P ]

∏
e∈P

ŵ(e)

 =:
∑
e∈E

I[i∈ψ(e)]q(e)

where the third equality follows the fact that each label appears at most once for each path. Let
PG(u, v) be the set of paths from node u to v, and let r, ℓ ∈ V be the root node and leaf node,
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Algorithm 2: Compute the average margin distribution
input : Distribution d ∈ ∆m,ν over S and NZDD (V,E), where V is topologically sorted.
Assign weight to each edge e ∈ E as a(e) =

∏
i∈ψ(e) e

2ηdi .
Let b : E → [0, 1] be the function returned by the weight pushing algorithm with weighting a.
Set z(v1) = 1.
for i = 2 to |V | do

z(vi) =
∑

e=(u,vi)∈E z(u)b(e).
end
For all e = (u, v) ∈ E, compute q(e) = z(u)b(e).
Compute ri =

∑
e∈E I[i∈ψ(e)]q(e) ∈ [0, 1] for all i ∈ [m].

output: 2r − 1.

respectively. By simple observation, we can see that for each edge e = (u, v), q(e) can be written
as q(e) = b(e)

∑
P∈PG(r,u)

∏
e′∈P b(e

′). Therefore, once we topologically sorted the vertices in
V , we can compute q(e) for all e ∈ E by dynamic programming. The overall computation time
of an average margin distribution for given distribution is O(|G|). Algorithm 2 summarizes the
procedures above.
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