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Abstract
In this paper, we consider the formulation of the federated learning problem that is relevant to
both decentralized personalized federated learning and multi-task learning. This formulation is
widespread in the literature and represents the minimization of local losses with regularization
taking into account the communication matrix of the network. First of all, we give lower bounds
for the considered problem in different regularization regimes. We also constructed an optimal
algorithm that matches these lower bounds.

1. Introduction

Over the past few years, there has been a great interest in minimizing the average of convex functions
(local losses)

min
x∈Rd

1

n

n∑
k=1

fk(x). (1)

The interest is due to this problem arises in many machine learning and statistical applications, e.g.,
empirical risk minimization, maximum likelihood estimation and etc. Recently, a new direction
of distributed optimization - Federated Learning (FL) [7, 10], has appeared. Unlike classical dis-
tributed learning, the federated approach assumes that data is not stored on the same device within a
computing cluster, but on client devices, such as laptops, phones, or tablets. This formulation of the
training problem gives rise to many additional questions, ranging from the privacy of client’s data
to a high heterogeneity of data stored on local devices.
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In the simplest setting of distributed and federated learning, our goal is to find a solution for
(1). In this problem we find global model based on all local data. On the other hand, improving the
local models using the knowledge of the global model may need a more careful balance, taking into
account a possible discrepancy between data splits the local models were trained on. Attempts to
find the balance between personalization and globalization have resulted in a series of works united
by a common name – Personalized Federated Learning (PFL). See surveys [6, 8] for more details
and explanations of different techniques.

In this paper, we also cover the topic of PFL and consider the following problem:

min
x=[x1,...,xn]∈Rnd

F (x) ,
1

n

n∑
k=1

fk(xk)︸ ︷︷ ︸
f(x)

+
λ

2
〈x,Wx〉︸ ︷︷ ︸
g(x)

. (2)

This problem consists of two parts: the main part f - local losses with their independent variables
xi and a regularizer g. We assume that our devices are connected to some kind of communication
network. We want models xi and xj to take into account each other if their devices are connected in
the network. For this, it seems natural to penalize the difference between xi and xj . To regularize
all such pairs of models for connected devices, g with matrix W is used . This matrix reflects the
properties of the connection graph (a more formal definition will be given below). From the point
of view of personalization, the issues of choosing λ are very important. The smaller this parameter,
the more personalized these models are.

1.1. Brief literature review

The idea of such a penalty is not new and has been encountered in the literature in various contexts.

Classical decentralized minimization Problem (2) was considered before it became interesting
from the point of view of FL. For example, it appeared in the decentralized optimization. Intuition
suggests that with λ→∞, the problem (2) become closer and closer to another problem:

min
[x1=...=xn]

1

n

n∑
k=1

fk(xk),

which is equivalent to (1). For the first time, the idea of reformulating decentralized optimization in
a penalized form appeared in [9]. The work [2] continues this idea and sheds light on the issue of
optimal selection of λ, and also proposes new algorithms.

Centralized PFL In the centralized case (when the matrixW corresponds to the complete graph),
problem (2) is considered in [3–5]. In particular, work [4] gives lower bounds on the number of
communications and local iterations for solving (2), as well as optimal algorithms that match these
bounds.

Multi-task Learning For classic decentralized optimization, problem (2) is interesting with a
large λ, and with a small λ, it got popular in multi-task learning. This is also a new direction in FL.
Often, in multi-task learning, not only models x, but also configurations of connection network W
are optimized [12]. But there are works about multi-task learning where matrix W is fixed [14]
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1.2. Our contribution

Lower bounds In our paper, we present the obtained lower bounds for the tasks of personalized
federated learning (PFL) (2) in the distributed decentralized case. Moreover, they are true for any
mode of the constant λ, both small and large. The lower bounds obtained in the work [4] are a
special case of our lower bounds, when communication network is represented by a fully connected
graph.

Optimal algorithm Also in our work, we propose an algorithm based on Accelerated Meta-
Algorithm [1]. Our algorithm for solving the problem 2 has a convergence rate that coincides
with the lower bounds with the accuracy of the logarithmic factors.

See summary of our contribution in table 1.2.

Lower Upper

local Ω̃
(√

L
µ

)
Õ
(√

L
µ

)
comm Ω̃

(
min

{√
λλmax(W)

µ ,
√

L
µχ

})
Õ
(

min

{√
λλmax(W)

µ ,
√

L
µχ

})

Table 1: Summary of the contribution

2. Main results

Before present out theoretical results we introduce some notations and assumptions.
We use 〈x, y〉 :=

∑d
i=1 xiyi to define standard inner product of x, y ∈ Rd. It induces `2-norm

in Rd in the following way ‖x‖ :=
√
〈x, x〉.

Assumption 1 Function f(x) from problem (2) isL-smooth w.r.t `2-norm ‖·‖2, i.e. for all x1,x2 ∈
Rnd we have

‖∇f(x2)−∇f(x1)‖ ≤ L ‖x2 − x1‖ .

Assumption 2 Function f(x) from problem (2) is µ-strongly-convex w.r.t. `2-norm ‖ · ‖2, i.e. for
all x1,x2 ∈ Rnd we have

f(x2)− f(x1) ≥ 〈∇f(x1),x2 − x1〉+
µ

2
‖x2 − x1‖2 .

Assumption 3 The communication matrix W in (2) is defined as the Kronecker product of matrix
Ŵ (to be defined further) and the identity matrix Id to take into the consideration that all xk ∈ Rd
(k = 1, . . . , n): W = Ŵ ⊗ Id. The gossip matrix Ŵ satisfies the following conditions (see [11]):

1. Ŵ is symmetric positive semi-definite;

2. The kernel Ŵ consists of vector 1 = (1, . . . , 1)>;

3. Ŵ is defined on the edges of the communication network: ŵi,j 6= 0 if and only if i = j or
(i, j) ∈ E.
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The simplest choice of Ŵ is the Laplace matrix.

Remark 1 It is easy to show that the matrix W is a gossip matrix and also λmax(Ŵ )

λ+min(Ŵ )
= λmax(W)

λ+min(W)
.

It is denoted as χ = λmax(W)

λ+min(W)

We divide our contribution into two parts: lower estimates for the number of communication
and local calls for problem 1 and the optimal algorithm that matches these estimates.

2.1. Lower bounds

Before presenting the lower bounds on the problem 2, we need to enter an assumption on the class
of algorithms for which they will be correct.

Assumption 4 Let {xk}∞k=1 be iterates generated by algorithm A. For each nodes of graph G =
(V, E) we define sequence of local memory {Mi,k}∞k=1 for 1 ≤ i ≤ n:

Mi,0 = span
(
x0i
)

Mi,k+1 =

{
span

(
Mi,k, {xki ,∇f(xk)}

)
, if local oracle at the iteration k

span
(
∪j:(j,i)∈EMj,k

)
, if consensus oracle at the iteration k

Remark 2 Local oracle commonly corresponds to the calculation of the gradient ∇f(xk) and
the implementation of a single gradient step. Consensus oracle corresponds to a communication
round, where information about the each vector xki stored on each node i is transmitted between
neighboring nodes j ((i, j) ∈ E).

Now we are ready to provide you with the main theorem of this section.

Theorem 3 Let k ≥ 0, L ≥ µ, λλ+min(W) ≥ µ, χ ≥ 6. Then, there exist graph G, which
matrix W satisfies Assumption 3, L-smooth µ-strongly convex functions f1, f2, . . . , fn : Rd → R
(see Assumption 1, 2) and a starting point x0 ∈ Rnd such that the sequence of iterates {xk}Nk=1

generated by any algorithm A satisfying Assumption 4

‖xN − x∗‖2 ≥
(

1− 10 max

{√
µ

λλmax(W)
,

√
µ

(L− µ)χ

})Ncomm ‖x0 − x∗‖2

4
(3)

Corollary 4 Let k ≥ 0, L ≥ µ, λλ+min(W) ≥ µ, χ ≥ 6. Then, there exist graph G, which
matrix W satisfies Assumption 3, L-smooth µ-strongly convex functions f1, f2, . . . , fn : Rd → R
(see Assumption 1, 2) and a starting point x0 ∈ Rnd such that for any algorithm A satisfying
Assumption 4 the number of communications to achieve ε-solution to problem (2) is lower bounded
by

Ω̃

(
min

{√
λλmax (W)

µ
,

√
L

µ
χ

})
(4)

and the number of local computations to achieve ε-solution to problem (2) is lower bounded by

Ω̃

(√
L

µ

)
(5)
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Algorithm 1: Accelerated Meta-Algorithm (AM), p = 1, [1] for convex composite optimiza-
tion problem. AM(z0, h, r,H,K).

Input: p ∈ N, number of iterations K, starting point z0, parameter H > 0.
A0 = 0
y0 = z0
λ0 = 1

2H
for k = 0, . . . ,K − 1 do

ak+1 =
λ0 +

√
λ20 + 4λk+1Ak

2
Ak+1 = Ak + ak+1

wk =
Ak
Ak+1

yk +
ak+1

Ak+1
zk

yk+1 = argminy∈Rd
{
h(wk) + 〈∇h(wk), y − wk〉+ r(y) + H

2 ‖y − wk‖
2
}

zk+1 := zk − ak+1∇h(yk+1)− ak+1∇r(yk+1)
end
Output: AM(z0, K) := yK .

Algorithm 2: Restarted Accelerated Meta-Algorithm [1], for strongly convex composite op-
timization problem. RAM(z0, h, r, µ,H, s).

Input: starting point z0, H > 0, µ > 0, number of restarts s > 1.
for k = 0, . . . , s− 1 do

Nk = max

{⌈
4 ·

√
2H

µ

⌉
, 1

}
zk+1 := AM(zk, Nk) // the output of Algorithm 1, with starting
point zk and Nk iterations)

end
Output: zs

2.2. Optimal Algorithm

In this section, we present near-optimal upper bounds for the problem 2. However, before we give
the main theorem of this section, we will briefly describe a universal algorithm for the composite
optimization problem

min
x∈Rd

{h(x) + r(x)} (6)

co-called Accelerated Meta-Algorithm 1 and its restarted version 2 [1]. This method has a linear
convergence rate under the assumptions that h is L(h)-smooth, µ-strongly convex and r is L(r)-
smooth and convex (µ = 0-strongly convex). But the main question is which function will play the
role of the function h, and which will play the role of the function r in the problem 2. Our answer
to this question is as follows: it depends on the value of the parameter λ.

Theorem 5 Let each functions fk(·) satisfy the Assumptions 1, 2 and let δ > 0 be accuracy of
solution auxiliary problem 1. Then to achieve ε-solution to problem 2 solving by Algorithm 1 it
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needs the number of communications

N comm = O

(
min

{√
λλmax(W)

µ
,

√
L

µ
χ

}
log
‖x0 − x?‖2

ε
log

1

δ

)
,

where χ = λmax(W)

λ+min(W)
, and the number of local oracle calls (gradient of each functions fk(·))

N loc = O

(√
L

µ
log
‖x0 − x?‖2

ε
log

1

δ

)

where we take δ as follows
δ =

εµ

8642(L+ λλmax(W) +H)2
.
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Appendix A. Proof Theorem 3

In this section, we prove lower convergence bounds of algorithms for this class of problems 2
similar to the work [4]. As in many papers we give an example of a ”bad” function on which
algorithms satisfying the assumption 4 converge at least at a rate that coincides with the lower
estimates. We consider a linear graph with the number of nodes equal to n = 3

⌊χ
3

⌋
, where χ is

condition number of communication network. Let’s divide the nodes into three types: the first type
includes V1 =

{
1, 2, . . . , n3

}
, the second type includes V2 =

{
n
3 + 1, n3 + 2, . . . , 2n3

}
, the third

type includes V3 =
{
2n
3 + 1, 2n3 + 2, . . . , n

}
. Let d = 2T dimension and T more than n.

fi(x) =


µ
2‖x‖

2 + ax1 + cλ
2

(∑T−1
i=1 (x2i − x2i+1)

)
+ bλ

2 x2T , if i ∈ V1
µ
2‖x‖

2, if i ∈ V2
µ
2‖x‖

2 + cλ
2

(∑T−1
i=1 (x2i+1 − x2i+2)

)
, if i ∈ V3

(7)

For the gossip matrix, we take the Laplacian of a linear graph. Then, for our problem (2), we get
that the matrix W will have the following form:

W = Ŵ ⊗ Id,

where matrix Ŵ has folowing form

Ŵ =
1

2n
·



1 −1

−1 2 −1

−1 2 −1

−1 2 −1

−1 2 −1

. . .

−1 2 −1

−1 1



.

It is easy to make sure that this matrix W satisfies the assumption of the gossip matrix.
According to the definition of functions, now we can write the form of the objective function of

problem 2:
n

λ
F (x) =

1

2
x>Mx+

a

λ

∑
i∈V1

xi(1), (8)

8
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where M looks like

M
def
= nW +

µ

λ
Ind +


M1 0 0

0 0d|V2| 0

0 0 M2

 , where

M1
def
= Id|V1| ⊗



0 0 0 . . . 0

0

 c −c

−c c

 0
. . .

...

0 0

 c −c

−c c

 . . .
...

...
. . . . . . . . .

...

0 . . . . . . . . . b



and

M2
def
= I⊗



 c −c

−c c

 0 . . .

0

 c −c

−c c

 . . .

...
...

. . .


.

Due to the fact that the functions of each type are similar, their minima coincide. Therefore, we
denote them as follows

argmin
x

fi(x) =


x?, if i ∈ V1
y∗, if i ∈ V2
z∗, if i ∈ V3

(9)

Now we give a proof of the lemma that indicates a recursive connection

Lemma 6 (see [4]) Let

wi
def
=



(
z?i
x?i

)
if i is even(

x?i
z?i

)
if i is odd

. (10)

Then, we have
wi+1 = Qwi (11)

9
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where

Q
def
=

−
1

2c(1+ 2µ
λ )

c+µ
λ
+ 1

2
c

− c+µ
λ
+ 1

2
c

(
1 + 2µ

λ

)(
2(c+µ

λ
+ 1

2)
2

c − 2c

)
 (12)

Proof Let’s write down the first-order optimality conditions for the problem (2)(
c+

µ

λ
+

1

2

)
x?2i+1 − cx?2i −

1

2
y∗2i+1 = 0, for 0 ≤ i ≤ T − 1 (13)

(
c+

µ

λ
+

1

2

)
x?2i − cx?2i+1 −

1

2
y∗2i = 0, for 0 ≤ i ≤ T − 1 (14)

(
c+

µ

λ
+

1

2

)
z∗2i−1 − cz∗2i −

1

2
y∗2i−1 = 0, for 1 ≤ i ≤ T − 1 (15)(

c+
µ

λ
+

1

2

)
z∗2i − cz∗2i−1 −

1

2
y∗2i = 0, for 1 ≤ i ≤ T − 1 (16)

(
1 +

2µ

λ

)
y∗i − x?i = 0, for 1 ≤ i ≤ 2T − 1 (17)(

1 +
2µ

λ

)
y∗i − z∗i = 0, for 1 ≤ i ≤ 2T − 1 (18)

Combining (15) and (16), we get for all 1 ≤ i ≤ T c 0

−c− 1
2 −

µ
λ

1
2


z?2i
y?2i

 =

c+ 1
2 + µ

λ −1
2

−c 0


z?2i−1
y?2i−1

 (19)

Rewriting this equation, we getz?2i
y?2i

 =

 − 1
2c

c+µ
λ
+ 1

2
c

− c+µ
λ
+ 1

2
c

2(c+µ
λ
+ 1

2)
2

c − 2c


y?2i−1
z?2i−1

 .

Similarly, using (13), (14) we get for all 1 ≤ i ≤ Tx?2i+1

y?2i+1

 =

 − 1
2c

c+µ
λ
+ 1

2
c

− c+µ
λ
+ 1

2
c

2(c+µ
λ
+ 1

2)
2

c − 2c


y?2i
x?2i

 .

Using (17) and (18), we obtainx?2i+1

z?2i+1

 =

−
1

2c(1+ 2µ
λ )

c+µ
λ
+ 1

2
c

− c+µ
λ
+ 1

2
c

(
1 + 2µ

λ

)(
2(c+µ

λ
+ 1

2)
2

c − 2c

)

z?2i
x?2i

 .

10
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z?2i
x?2i

 =

−
1

2c(1+ 2µ
λ )

c+µ
λ
+ 1

2
c

− c+µ
λ
+ 1

2
c

(
1 + 2µ

λ

)(
2(c+µ

λ
+ 1

2)
2

c − 2c

)

x?2i−1
z?2i−1

 .

The following lemma would be very difficult to prove without using Mathematica due to very
cumbersome expressions. The following statement shows a recursive relationship between coordi-
nates in the following sense wi = γi−1w1, where γ is the eigenvalue of the matrix Q.

Lemma 7 (see [4]) Choose c
def
=

{
δ µ
λλmax(W) if L ≥ λλmax(W) + µ

δ µ
λλmax(W) if L < λλmax(W) + µ

, δ ≥ 1 and

b
def
=

1 + 2µ
λ

2

(
−(1 + 2µλ )ν

2(1 + 2c+ 2µλ )
+

−α+ 2
√
α2 − 4β

4(1 + 2µλ)(1 + 2c+ 2µλ )

)
− 1

2
− µ

λ
(20)

Then, we have b ≥ 0 and

wi = γi−1w1 6=

0

0

 for i = 1, 2, . . . , d

where

γ
def
=

α

8c(1 + 2µλ )
−
√

(α2 − 4β)

8c(1 + 2µλ )
≥ 1− 10

√
1

δ
, (21)

where

α = −1 + 4c− 4c2 + 8
µ

λ
+ 24cx− 16c2

µ

λ
+ 24

(µ
λ

)2
+ 48c

(µ
λ

)2
−16c2

(µ
λ

)2
+ 32

(µ
λ

)3
+ 32c

(µ
λ

)3
+ 16

(µ
λ

)4
and

β = 2 + 8c+ 24c2 + 16
(µ
λ

)
+ 48c

(µ
λ

)
+ 96c2

(µ
λ

)
+ 48

(µ
λ

)2
+96c

(µ
λ

)2
+ 96c2

(µ
λ

)2
+ 64

(µ
λ

)3
+ 64c

(µ
λ

)3
+ 32

(µ
λ

)4
and

ν = −1− 4c+ 4c2 − 4
(µ
λ

)
− 8c

(µ
λ

)
− 4

(µ
λ

)2
Proof First, using the Mathematica software package, we calculate the minimum eigenvalue γ of
the matrix W and prove that it satisfies the inequality. For a detailed study of the proof, see the file
or screenshots Using Mathematica, we find the eigenvector v of the matrix Q corresponding to the

11
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eigenvalue γ

v =

 −(1+2µ
λ
)ν

2(1+2c+2µ
λ
)

+
−α+2

√
α2−4β

4(1+2µ
λ
)(1+2c+2µ

λ
)

1

 (22)

Now, using Mathematica, we prove that b ≥ 0 It is easy to see that when choosing the parameter b
according to (20), the vector wi is proportional to the eigenvector v of the matrix Q.

Now we are ready to complete the proof of the theorem 3. Let x0 = 0 ∈ Rnd.After N iteration
of algorithm A let xN has K non-zero coordinates(below we will establish a connection between
the number of non-zero coordinates and the number of iteration of algorithm A). Then using the
equations (17), (18), we obtain

‖xN − x?‖2

‖x0 − x?‖
≥ 1

2

∑d
i=K+2 ‖wj‖2 + (y∗j )

2∑d
i=1 ‖wj‖2 + (y∗j )

2
=

1

2

∑d
i=K+2 ‖wj‖2 +

(
λ

µ+λ

)2
(y∗j )

2

∑d
i=1 ‖wj‖2 +

(
λ

µ+λ

)2
(z∗j )2

=
1

2

∑d
i=K+2 ‖Rw̃j‖2∑d
i=1 ‖Rw̃j‖2

,

where R =

1 0

0

√
1 +

(
λ

µ+λ

)2
 and w̃j = (x?j , z

∗
j )> (w̃j = γj−1w̃1). It is not difficult to see

that the matrix is positive definite and symmetric. Therefore, you can use it to define a new norm
‖w‖R =

√
〈x,Rx〉 and use the properties of the norm. Then for large enough d we have

‖xN − x?‖2

‖x0 − x?‖2
≥ 1

2

∑d
i=K+2 ‖Rw̃j‖2∑d
i=1 ‖Rw̃j‖2

=
1

2

∑d
i=K+2 γ

j−1‖Rw̃1‖2∑d
i=1 γ

j−1‖Rw̃1‖2
=

1

2

∑d
i=K+2 γ

j−1∑d
i=1 γ

j−1

=
1

2

γK+1
∑d−K−2

i=0 γj∑d−1
i=0 γ

j
=

1

2
γK+1 1− γd−K−1

1− γd
≥ 1

4

(
1− 10

√
1

δ

)K
It is worth noting that the number of communication roundsNcomm can be expressed in terms of

Kthe number of non-zero coordinates of xN . Due to the fact that the communication network G is
linear, it is necessary to conduct a number of communications equal to the diameter of the graph in
order to transfer information from the first node to the last. Therefore, the number of communication
rounds Ncomm is the number of non-zero coordinates of xN multiplied by the diameter. In turn, the
diameter is equal to

√
χ. Thus, we obtain

‖xN − x?‖2 ≥ 1

4

(
1− 10

√
1

δ

)Ncomm√
χ

‖x0 − x?‖2

≥ 1

4

(
1− 10

√
1

δχ

)Ncomm

‖x0 − x?‖2

Now we have to consider two cases: one when L ≥ λλmax(W) + µ, the other when L <
λλmax(W) + µ. Moreover, we must select the parameter δ in such a way that δ ≥ 1 but also
c ≤ 1.

13
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• L ≥ λλmax(W) + µ: if we take δ =
λλ+min(W)

µ , then we have c ≤ 1 and

‖xN − x?‖2 ≥ 1

4

(
1− 10

√
µ

λλmax(W)

)Ncomm

‖x0 − x?‖2

• L < λλmax(W) + µ: if we take δ = L−µ
µ , then we have c ≤ 1 and

‖xN − x?‖2 ≥ 1

4

(
1− 10

√
µ

(L− µ)χ

)Ncomm

‖x0 − x?‖2

Summing up the results obtained, we obtain

‖xN − x?‖2 ≥
(

1− 10 max

{√
µ

λλmax(W)
,

√
µ

(L− µ)χ

})Ncomm ‖x0 − x?‖2

4

Appendix B. Proof Theorem 5

For analysis we consider auxiliary problem 1 of Algorithm 1 with p = 1:

yk+1 = argmin
y∈Rd

{
f(wk) + 〈∇f(wk), y − wk〉+ g(y) +

H

2
‖y − wk‖2

}
(23)

Case 1 λλmax(W) ≥ L Then we take f(x) like sum component, g(x) like λ
2 〈x,Wx〉 and we know

that number of calls of gradient of f :

N∇fk = O

(√
L

µ
log
‖x0 − x?‖2

ε

)
(24)

Now we look carefully at auxiliary problem. We know Ker(W) is not empty. And function
g(x) takes zero on this subspace Ker(W). Then we can divide our problem on two subproblem:
minimization of quadratic form with matrix H · I on Ker(W) and minimization of quadratic form
with matrix λW + H · I on (Ker(W))⊥. Complexity of the first problem is equal to O (1).
Complexity of the second problem is equal to

O

(√
H + λλmax(W)

max{H,λλ+min(W)}
log

1

δ

)
,

where δ is accuracy of solution to the auxiliary problem 1. Then we can say number of calls of
gradient of g:

NWx = O

(√
L

µ

√
H + λλmax(W)

max{H,λλ+min(W)}
log
‖x0 − x?‖2

ε
log

1

δ

)
(25)

Calculate the following√
H + λλmax(W)

max{H,λλ+min(W)}
= min

{√
H + λλmax(W)

H
,

√
H + λλmax(W)

λλ+min(W)

}

14
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Taking H be equal to L, we get

NWx = O

(
min

{√
λλmax(W)

µ
,

√
L

µ

λλmax(W)

λλ+min(W)

}
log
‖x0 − x?‖2

ε
log

1

δ

)
(26)

Case 2 λλmax(W) < L Then we take g(x) like sum component, f(x) like λ
2 〈x,Wx〉 and we

know that number of calls of gradient of f :

NWx = O

(√
λλmax(W)

µ
log
‖x0 − x?‖2

ε

)
(27)

we know that number of calls of gradient of g:

N∇fk = O

(√
λλmax(W)

µ

√
L+H

µ+H
log
‖x0 − x?‖2

ε
log

1

δ

)
,

where δ is accuracy of solution to the auxiliary problem 1. Taking H be equal to λλmax (W), we
get

N∇fk = O

(√
L

µ
log
‖x0 − x?‖2

ε
log

1

δ

)
,

Overall, we have

NWx = O

(
min

{√
λλmax(W)

µ
,

√
L

µ

λλmax(W)

λλ+min(W)

}
log
‖x0 − x?‖2

ε
log

1

δ

)
(28)

and

N∇fk = O

(√
L

µ
log
‖x0 − x?‖2

ε
log

1

δ

)
(29)

Now we consider δ accuracy of auxiliary problem 1. According to theorem from [13], we can
take δ like this

δ =
εµ

8642(L+ λλmax(W) +H)2
,

because function f(x) is L-smooth and λ
2 〈x,Wx〉 is λλmax (W)-smooth.
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