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Abstract
The StochAstic Recursive grAdient algoritHm (SARAH) algorithm is a variance reduced variant
of the Stochastic Gradient Descent (SGD) algorithm that needs a gradient of the objective function
from time to time. In this paper, we remove the necessity of a full gradient computation. This is
achieved by using a randomized reshuffling strategy and aggregating stochastic gradients obtained
in each epoch. The aggregated stochastic gradients serve as an estimate of a full gradient in the
SARAH algorithm. We provide a theoretical analysis of the proposed approach and conclude the
paper with numerical experiments that demonstrate the efficiency of this approach.

1. Introduction

In this paper we address the problem of minimizing a finite-sum problem of the form

min
w∈Rd

{
P (w) :=

1

n

n∑
i=1

fi(w)

}
, (1)

where ∀i ∈ [n] := {1, 2, . . . , n} the fi is a convex function. We will further assume that w∗ =
arg minP (w) exists.

Problems of this form are very common in e.g., supervised learning [25]. Let a training dataset
consists of n pairs, i.e., {(xi, yi)}ni=1, where xi ∈ Rd is a feature vector for a datapoint i and yi is
the corresponding label. Then for example, the least squares regression problem corresponds to (1)
with fi(w) = 1

2(xTi w − yi)2. If yi ∈ {−1, 1} would indicate a class, then a logistic regression is
obtained by choosing fi(w) = log(1 + exp(−yixTi w)).

Recently, many algorithms have been proposed for solving (1). In this paper, we are interested
in a subclass of these algorithms that fall into a stochastic gradient descent (SGD) framework orig-
inating from a work of Robbins and Monro in ’50s [23]. Let vt will be some sort of (possibly
stochastic and very rough) approximation of ∇P (wt), then many SGD type algorithms update the
w as follows:

wt+1 = wt − ηtvt, (2)

where ηt > 0 is a predefined step-size. The classical SGD defines vt = ∇fi(wt), where i ∈ [n] is
chosen randomly [26] or its mini-batch version [27], where vt = 1

|St|
∑

i∈St
∇fi(wt), with St ⊂ [n].

Even with an unbiased gradient estimates of SGD, where E[vt|wt] = ∇P (wt), the variance of vt is
the main source of slower convergence [2, 9, 19].

© A. Beznosikov & M. Takáč.
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1.1. Brief literature review

Recently, many variance-reduced variants of SGD have been proposed, including SAG/SAGA [5,
22, 24], SVRG [1, 8, 30], MISO [14], SARAH [7, 17, 18, 21], SPIDER [6], STORM [4], PAGE [12],
and many others. Generally speaking, the variance reduced variants of SGD still aim to sample
O(1) functions and use their gradients to update vt. For example, SVRG [8] will fix a point w̃,
in which a full gradient ∇P (w̃) is computed and subsequently stochastic gradient is defined as
vt = ∇fi(wt)−∇fi(w̃) +∇P (w̃), where i ∈ [n] is picked at random.

SARAH Algorithm. The SARAH algorithm [17], on the other hand, updates vt recursively. It
starts with a full gradient computation v0 = ∇P (w0), then taking a step (2) and updating the
gradient estimate recursively as vt+1 = ∇fi(wt)−∇fi(wt−1)+vt. For smooth and strongly convex
problem, the procedure highlighted above converge, but not to the optimal solution w∗. Therefore,
similarly to SVRG, the process is restarted after i) a predefined number of iterations, ii) randomly
[10–12], or iii) decided in run-time by computing the ratio ‖vt‖/‖v0‖ (SARAH+ [17]), and a new
full gradient estimate has to be computed. To elevate this issue, e.g., in [21], they proposed inexact
SARAH (iSARAH), where the full gradient estimate is replaced by a mini-batch gradient estimate
v0 = 1

|S|
∑

i∈S fi(w0), where S ⊂ [n]. To find a point ŵ such that ‖∇P (ŵ)‖2 ≤ ε, the mini-batch
size has to be chosen as |S| ∼ O(1ε ), and the step-size will be η ∼ O( εL).

There are a few variants of SARAH that do not need any restart and no full gradient estimate.
E.g., the Hybrid Variance-Reduce variant [13] defines

vt = β∇fi(wt) + (1− β) (∇fi(wt)−∇fi(wt−1) + vt−1) , (3)

where β ∈ (0, 1) is a hyper-parameter. A STORM variant [4] uses (3) not with a fixed value of
parameter β, but in STORM, the value of βt is diminishing to 0. The ZeroSARAH [11] is another
variant, where the vt is a combination of (3) with SAG/SAGA.

Random Sampling vs. Random Reshuffle. All the stochastic algorithms discussed so far sample
function fi randomly. However, it is a standard practice, for a finite-sum problem, not to choose
functions fi randomly with replacement, but rather make a data permutation/shuffling and then
choose the fis in a cyclic fashion. In [16] a few basic shuffling are discussed, including

• Random Reshuffling (RR) - reshuffle data before each epoch;
• Shuffle-Once (SO) - shuffle data only once before optimizing;
• Incremental Gradient (IG) - access data in a cycling fashion over the given dataset.

There are a few recent papers that provide a theoretical analysis of some SGD type algorithms (e.g.,
SGD, SVRG) in this settings, including [15, 16, 20, 28].

1.2. Contribution

The main contribution of this paper is the modification of the SARAH algorithm to remove the
requirement of computing a full gradient∇P (w), while achieving a linear convergence with a fixed
step-size for strongly convex objective. The crucial algorithmic modification that was needed to
achieve this goal, was to replace the random selection of functions by either of the shuffle options
(RR, SO, IG) and designing a mechanism that can build a progressively better approximation of a
full gradient∇P (wt) as wt → w∗
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2. Shuffled-SARAH

2.1. Building Gradient Estimate While Optimizing

An intuition. Accessing data in a cyclic order (using any alternative described above) allows us
to estimate a full gradient ṽ ≈ ∇P . Indeed, if the step-size ηt in (2) would be zero, and vt would
be a stochastic gradient∇fi, then by averaging all of the stochastic gradients in one pass, we would
obtain exact full gradient ∇P (w). As η increases, the stochastic gradients would be computed at
different points

ṽ =
1

n

n∑
i=1

∇fπi(wi), (4)

and hence we would not obtain the exact full gradient of P (w) but rather just a rough estimate. But
is it just the η that affects how good the ṽ will be? Of course not, as wt is updated using (2), one
can see that the radius of a set of ws that are used to compute gradient estimates is dependent on vt.
Ideally, as we will converge go w∗, then also vt → ∇P (w∗) = 0 and hence ṽ will be getting closer
to∇P (wt).

Building the gradient estimate. Our proposed approach to eliminate the need to compute the full
gradient is based on a simple recursive update. Let us initialize ṽ0 = 0 ∈ Rd. Then while making a
pass i = {1, 2, . . . , n} over the data, we will keep updating ṽ using the gradient estimates as follows

ṽi =
i− 1

i
ṽi−1 +

1

i
∇fπi(wi), for i ∈ {1, 2, . . . , n}.

It is easy exercise to see that ṽi will be the average of gradients seen so far, and moreover, after n
updates, it will be exactly as in (4). Let us note that making the pass over the dataset is a crucial to
build a good estimate of the gradient and random selection of functions would not achieve this goal.

The Algorithm. We are now ready to explain the Shuffled-SARAH algorithm (shown in Al-
gorithm 1) in detail. The algorithm starts by choosing an intial solution w−, which can be done
randomly and setting to e.g., 0. We will then define v0 = 0 which will always serve as a full gra-
dient estimate of ∇P . In line 5 we are defining ṽ to point to the same memory address as v0. This
basically means, that v0 and ṽ will be always identical during the first pass s = 0, and any change to
ṽ will be also made to v0. Note that after lines 18,19 are executed, the vs and ṽ will be two different
vectors. The reason why we put in place in line 13 is again only to ensure that for s = 0 both v0
and ṽ will be the same.

The random permutation in line 11 could have one of the three options mentioned in Section 1.1.
For RR, we will permute the [n] each time, for SO we will only shuffle one for s = 0 and define
πs = π0 for any s > 0. In IG option we have πs = (1, 2, . . . , n) ∀s.

3. Theoretical Analysis

Before present out theoretical results we introduce some notations and assumptions.
We use 〈x, y〉 :=

∑n
i=1 xiyi to define standard inner product of x, y ∈ Rd. It induces `2-norm

in Rd in the following way ‖x‖ :=
√
〈x, x〉.
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Algorithm 1: Shuffled-SARAH
1 Input: 0 < η step-size
2 choose w− ∈ Rd
3 w = w−

4 v0 = 0 ∈ Rd
5 ṽ = &(v0) // ṽ will point to v0
6 ∆ = 0 ∈ Rd
7 for s = 0, 1, 2, . . . do
8 define ws := w
9 w− = w

10 w = w − ηvs
11 obtain permutation πs = (π1s , . . . , π

n
s ) of [n] by some rule

12 for i = 1, 2, . . . , n do
13 ṽ = i−1

i ṽ + 1
i∇fπi

s
(w)

14 ∆ = ∆ +∇fπi
s
(w)−∇fπi

s
(w−)

15 w− = w
16 w = w − η(vs + ∆)

17 end
18 vs+1 = ṽ

19 ṽ = 0 ∈ Rd

20 ∆ = 0 ∈ Rd

21 end
22 Return: w

Assumption 1 For problem (1) the following hold:
(i) Each fi : Rd → R is convex and twice differentiable, with L-smooth gradient:

‖∇fi(w1)−∇fi(w2)‖ ≤ L‖w1 − w2‖,

for all w1, w2 ∈ Rd;
(ii) P (w) is µ-strongly convex function with minimizer x∗ and optimal value P ∗;

(iii) Each fi is δ-similar with P , i.e. for all w ∈ Rd it holds that

‖∇2fi(w)−∇2P (w)‖ ≤ δ/2.

The last assumption means the similarity of {fi} For example, this effect is observed when the data
is divided uniformly across batches fi, then with a high probability of δ ∼ L√

b
, where b is a size of

local batch fi (number of data points in fi) [29].
The following theorem presents the convergence guarantees of Shuffled-SARAH.

Theorem 1 Suppose that Assumption 1 hold. Consider Shuffled-SARAH (Algorithm 1) with
the choice of η such that

η ≤ min

[
1

8nL
;

1

8n2δ

]
. (5)
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Then, we have

P (ws+1)− P ∗ +
η(n+ 1)

16
‖vs‖2 ≤

(
1− ηµ(n+ 1)

2

)(
P (ws)− P ∗ +

η(n+ 1)

16
‖vs−1‖2

)
.

Hence, it is easy to obtain an estimate for the number of outer iterations in Algorithm 1.

Corollary 2 Fix ε, and let us run Shuffled-SARAH with η from (5). Then we can obtain an
ε-accuracy solution on f after

S = O
(

max

[
L

µ
;
δn

µ

]
log

1

ε

)
iterations.

4. Numerical experiments

Trajectory We start with a toy experiment in R2 with a quadratic function. We compare the
trajectories of the classical SARAH (two random and average), the average trajectory of the RR-
SARAH (see Algorithm 2 in Appendix B), and the random trajectory Shuffled-SARAH with
Random Reshuffling.
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SARAH (average)
RR-SARAH
Shuffle-SARAH with RR

Figure 1: Trajectories on quadratic function.

Logistic regression Next, we consider the logistic regression problem with `2-regularization for
binary classification with

fi(w) =
1

b

b∑
k=1

log (1 + exp (−yk · (Xbw)k)) +
λ

2
‖w‖2,

where Xb ∈ Rb×d is a matrix of objects, y1, . . . , yb ∈ {−1, 1} are labels for these objects, b is
the size of the local datasets and w ∈ Rd is a vector of weights. We optimize this problem for
mushrooms, a9a, w8a datasets from LIBSVM library[3]. More details on the dataset parameters
can be found in Table 1. We compare the following method settings: 1) SARAH with theoretical
parameters n = 4.5κ, η = 1/(2L) (see [17]), 2) SARAH with optimal parameters (is selected by
brute force - see Table 2), 3) RR-SARAH with optimal step-size, 4) Shuffled-SARAH (Random
Reshuffling) with optimal step-size, 5) Shuffled-SARAH (Shuffle Once) with optimal step-size.
All methods are run 20 times, and the convergence results are averaged. We are interested in how
these methods converge in terms of the epochs number (1 epoch is a call the full gradient P or the
number of gradients fi equivalent to the call∇P ). For results see Figures 2, 4, 5. One can note that
in these cases our new methods are superior to the original SARAH.

5



RANDOM-RESHUFFLED SARAH DOES NOT NEED FULL GRADIENT COMPUTATIONS

full size b d L

mushrooms 8124 64 112 5,3
a9a 32561 256 123 3,5
w8a 49749 256 300 28,5

Table 1: Summary of datasets.
n η

mushrooms 0, 5 · (L/µ) 1/L

a9a 0, 25 · (L/µ) 1/L

w8a L/µ 1/L

Table 2: Optimal parameters for SARAH.
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Figure 2: Convergence of SARAH-type methods on various LiBSVM datasets. Convergence on
the function.
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Figure 3: ‖vs −∇P (ws)‖2 changes.

The vs is getting closer to ∇P (ws) The goal of this experiment is to show that v is good the
approximation of ∇P and improves with each iteration. To do this, we analyze the changes of
‖vs−∇P (ws)‖2 on the logistic regression problem (see the previous paragraph). See the results in
Figure 3. It can be seen that the difference is decreasing ‖vs −∇P (ws)‖2.
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Marten van Dijk. New convergence aspects of stochastic gradient algorithms. J. Mach. Learn.
Res., 20:176–1, 2019.

[20] Lam M Nguyen, Quoc Tran-Dinh, Dzung T Phan, Phuong Ha Nguyen, and Marten van
Dijk. A unified convergence analysis for shuffling-type gradient methods. arXiv preprint
arXiv:2002.08246, 2020.

[21] Lam M Nguyen, Katya Scheinberg, and Martin Takáč. Inexact SARAH algorithm for stochas-
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Appendix A. Additional experimental results
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Figure 4: Convergence of SARAH-type methods on various LiBSVM datasets. Convergence on
the distance to the solution.

0 20 40 60 80 100 120
Epoch

10 7

10 5

10 3

10 1

||
P(

w
)||

/|
|

P(
w

0 )
||

mushrooms
SARAH (theory)
SARAH (optimal)
RR-SARAH
Shuffle-SARAH with RR
Shuffle-SARAH with SO

0 20 40 60 80 100 120
Epoch

10 7

10 5

10 3

10 1

||
P(

w
)||

/|
|

P(
w

0 )
||

a9a
SARAH (theory)
SARAH (optimal)
RR-SARAH
Shuffle-SARAH with RR
Shuffle-SARAH with SO

0 20 40 60 80 100
Epoch

10 8

10 6

10 4

10 2

100

102

||
P(

w
)||

/|
|

P(
w

0 )
||

w8a
SARAH (theory)
SARAH (optimal)
RR-SARAH
Shuffle-SARAH with RR
Shuffle-SARAH with SO

(a) mushrooms (b) a9a dataset (c) w8a dataset

Figure 5: Convergence of SARAH-type methods on various LIBSVM datasets. Convergence on
the norm og the gradient.

Appendix B. RR-SARAH

This Algorithm is a modification of the original SARAH using Random Reshuffling. Unlike Algo-
rithm 1, this algorithm uses the full gradient∇P .

Theorem 3 Suppose that Assumption 1 hold. Consider RR-SARAH (Algorithm 2) with the choice
of η such that

η ≤ min

[
1

8nL
;

1

8n2δ

]
. (6)

Then, we have

P (ws+1)− P ∗ ≤
(

1− ηµ(n+ 1)

2

)
(P (ws)− P ∗) .
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Algorithm 2: RR-SARAH

1 Input: 0 < η step-size
2 choose w− ∈ Rd
3 w = w−

4 for s = 0, 1, 2, . . . do
5 define ws := w
6 v = ∇P (w)
7 w− = w
8 w = w − ηv
9 sample a permutation πs = (π1s , . . . , π

n
s ) of [n]

10 for i = 1, 2, . . . , n do
11 v = v +∇fπi

s
(w)−∇fπi

s
(w−)

12 w− = w
13 w = w − ηv
14 end
15 end
16 Return: w

Corollary 4 Fix ε, and let us run RR-SARAH with η from (6). Then we can derive an ε-accuracy
solution on f after

S = O
(

max

[
L

µ
;
δn

µ

]
log

1

ε

)
iterations.

Appendix C. Missing proofs for Section 3 and Appendix B

Before we start to prove, let us note that δ-similarity from Assumption 1 gives δ/2-smoothness of
function fi − P for any i. Then this implies δ-smoothness of function fi − fj for any i, j

‖∇fi(w1)−∇fj(w1)− (∇fi(w2)−∇fj(w2))‖
≤ ‖∇fi(w1)−∇P (w1)− (∇fi(w2)−∇P (w2))‖

+ ‖∇P (w1)−∇fj(w1)− (∇P (w2)−∇fj(w2))‖
≤ 2 · (δ/2)‖w1 − w2‖2 = δ‖w1 − w2‖2 (7)

Next we introduce additional notation for simplicity. If we consider Algorithm 1 in iteration s 6= 0,
one can note that update rule is nothing more than

ws = w0
s = wn+1

s−1 ,

vs = v0s =
1

n

n∑
i=1

fπi
s−1

(wis−1),

w1
s = w0

s − ηv0s ,
vis = vi−1s + fπi

s
(wis)− fπi

s
(wi−1s ),

wi+1
s = wis − ηvis.

10
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These new notations will be used further in the proofs. For Algorithm 2, one can do exactly the
same notations with vs = v0s = ∇P (ws).

Lemma 5 Under Assumption 1, for Algorithms 1 and 2 with η from (5) the following holds

P (ws+1) ≤ P (ws)−
ηn

2
‖∇P (ws)‖2 +

ηn

2

∥∥∥∥∥∇P (ws)−
1

n

n∑
i=1

vis

∥∥∥∥∥
2

.

Proof: Using L-smoothness of function P , we have

P (ws+1) ≤ P (ws) + 〈∇P (ws), ws+1 − ws〉+
L

2
‖ws+1 − ws‖2

= P (ws)− η(n+ 1)

〈
∇P (ws),

1

n+ 1

n∑
i=0

vis

〉
+
η2(n+ 1)2L

2

∥∥∥∥∥ 1

n+ 1

n∑
i=0

vis

∥∥∥∥∥
2

= P (ws)−
η(n+ 1)

2

‖∇P (ws)‖2 +

∥∥∥∥∥ 1

n+ 1

n∑
i=0

vis

∥∥∥∥∥
2

−

∥∥∥∥∥∇P (ws)−
1

n+ 1

n∑
i=0

vis

∥∥∥∥∥
2


+
η2(n+ 1)2L

2

∥∥∥∥∥ 1

n+ 1

n∑
i=0

vis

∥∥∥∥∥
2

= P (ws)−
η(n+ 1)

2
‖∇P (ws)‖2 −

η(n+ 1)

2
(1− η(n+ 1)L)

∥∥∥∥∥ 1

n+ 1

n∑
i=0

vis

∥∥∥∥∥
2

+
η(n+ 1)

2

∥∥∥∥∥∇P (ws)−
1

n+ 1

n∑
i=0

vis

∥∥∥∥∥
2

.

With η ≤ 1
8nL ≤

1
(n+1)L we get

P (ws+1) ≤ P (ws)−
η(n+ 1)

2
‖∇P (ws)‖2 +

η(n+ 1)

2

∥∥∥∥∥∇P (ws)−
1

n+ 1

n∑
i=0

vis

∥∥∥∥∥
2

.

Which completes the proof.

�

Lemma 6 Under Assumption 1, for Algorithms 1 and 2 the following holds∥∥∥∥∥∇P (ws)−
1

n+ 1

n∑
i=0

vis

∥∥∥∥∥
2

≤ 2‖∇P (ws)− vs‖2 +

(
4L2

n+ 1
+ 4δ2n

) n∑
i=0

‖wis − ws‖2.

11
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Proof: Using the rule for vis, we get∥∥∥∥∇P (ws)−
1

n+ 1

n∑
i=0

vis

∥∥∥∥2 =
1

(n+ 1)2
∥∥(n+ 1)∇P (ws)− (vns + . . .+ v0t )

∥∥2
=

1

(n+ 1)2
∥∥(n+ 1)∇P (ws)

−
[
∇fπn

s
(wns )−∇fπn

s
(wn−1s ) + 2vn−1s + vn−2s . . .+ v0s

]∥∥2
=

1

(n+ 1)2
∥∥(n+ 1)∇P (ws)−

[
∇fπn

s
(wns )−∇fπn

s
(wn−1s )

+ 2∇fπn−1
s

(wn−1s )− 2∇fπn−1
s

(wn−2s )

+ 3vn−2s + vn−3s . . .+ v0s
]∥∥2.

Continuing further∥∥∥∥∇P (ws)−
1

n+ 1

n∑
i=0

vis

∥∥∥∥2 =
1

(n+ 1)2
∥∥(n+ 1)∇P (ws)−

[
∇fπn

s
(wns )−∇fπn

s
(wn−1s )

+ 2∇fπn−1
s

(wn−1s )− 2∇fπn−1
s

(wn−2s )

+ 3∇fπn−2
s

(wn−2s )− 3∇fπn−2
t

(wn−3s )

. . .

+ n∇fπ1
s
(w1

s)− n∇fπ1
s
(w0

s) + (n+ 1)v0s
]∥∥2

≤ 2

(n+ 1)2
‖(n+ 1)∇P (ws)− (n+ 1)vs‖2

+
2

(n+ 1)2
∥∥∇fπn

s
(wns )−∇fπn

s
(wn−1s )

+ 2∇fπn−1
s

(wn−1s )− 2∇fπn−1
s

(wn−2s )

+ 3∇fπn−2
s

(wn−2s )− 3∇fπn−2
t

(wn−3s )

. . .

+ n∇fπ1
s
(w1

s)− n∇fπ1
s
(w0

s)
∥∥2.

In last we use ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2. Then∥∥∥∥∇P (ws)−
1

n+ 1

n∑
i=0

vis

∥∥∥∥2 ≤ 2

(n+ 1)2
‖(n+ 1)∇P (ws)− (n+ 1)vs‖2

+
2

(n+ 1)2
∥∥∇fπn

s
(wns )−∇fπn

s
(ws)

+∇fπn
s
(ws)−∇fπn−1

s
(ws)− (∇fπn

s
(wn−1s )−∇fπn−1

s
(wn−1s ))

+∇fπn−1
s

(ws) +∇fπn−1
s

(wn−1s )− 2∇fπn−1
s

(wn−2s )

+ 3∇fπn−2
s

(wn−2s )− 3∇fπn−2
t

(wn−3s )

. . .

+ n∇fπ1
s
(w1

s)− n∇fπ1
s
(w0

s)
∥∥2.

12
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Using ‖a+ b‖2 ≤ (1 + c)‖a‖2 + (1 + 1/c)‖b‖2 with c = n, we have∥∥∥∥∥∇P (ws)−
1

n+ 1

n∑
i=0

vis

∥∥∥∥∥
2

≤ 2‖∇P (ws)− vs‖2

+
2

n+ 1

∥∥∇fπn
s
(wns )−∇fπn

s
(ws)

+∇fπn
s
(ws)−∇fπn−1

s
(ws)− (∇fπn

s
(wn−1s )−∇fπn−1

s
(wn−1s ))

∥∥2
+

2

(n+ 1)2

(
1 +

1

n

)∥∥∇fπn−1
s

(ws) +∇fπn−1
s

(wn−1s )− 2∇fπn−1
s

(wn−2s )

+ 3∇fπn−2
s

(wn−2s )− 3∇fπn−2
t

(wn−3s )

. . .

+ n∇fπ1
s
(w1

s)− n∇fπ1
s
(w0

s)
∥∥2

≤ 2‖∇f(xt)− v0t ‖2

+
4

n+ 1

∥∥∇fπn
s
(wns )−∇fπn

s
(ws)

∥∥2
+

4

n+ 1

∥∥∇fπn
s
(ws)−∇fπn−1

s
(ws)− (∇fπn

s
(wn−1s )−∇fπn−1

s
(wn−1s ))

∥∥2
+

2

n(n+ 1)

∥∥∇fπn−1
s

(wn−1s )−∇fπn−1
s

(ws)

+ 2∇fπn−1
s

(ws)− 2∇fπn−2
s

(ws)− (2∇fπn−1
s

(wn−2s )− 2∇fπn−2
s

(wn−2s ))

+ 2∇fπn−2
s

(ws) +∇fπn−2
s

(wn−2s )− 3∇fπn−2
t

(wn−3s )

. . .

+ n∇fπ1
s
(w1

s)− n∇fπ1
s
(w0

s)
∥∥2.

Using δ-similarity (7) and L-smoothness (Assumption 1)∥∥∥∥∥∇P (ws)−
1

n+ 1

n∑
i=0

vis

∥∥∥∥∥
2

≤ 2‖∇P (ws)− vs‖22

+
4L2

n+ 1

∥∥wns − ws∥∥2 +
4δ2

n+ 1

∥∥ws − wn−1s

∥∥2
+

2

n(n+ 1)

∥∥∇fπn−1
s

(wn−1s )−∇fπn−1
s

(ws)

+ 2∇fπn−1
s

(ws)− 2∇fπn−2
s

(ws)− (2∇fπn−1
s

(wn−2s )− 2∇fπn−2
s

(wn−2s ))

+ 2∇fπn−2
s

(ws) +∇fπn−2
s

(wn−2s )− 3∇fπn−2
t

(wn−3s )

. . .

+ n∇fπ1
s
(w1

s)− n∇fπ1
s
(w0

s)
∥∥2.
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Using ‖a+ b‖2 ≤ (1 + c)‖a‖2 + (1 + 1/c)‖b‖2 with c = n− 1∥∥∥∥∥∇P (ws)−
1

n+ 1

n∑
i=0

vis

∥∥∥∥∥
2

≤ 2‖∇P (ws)− vs‖2

+
4L2

n+ 1

∥∥wns − ws∥∥2 +
4δ2

n+ 1

∥∥ws − wn−1s

∥∥2
+

2

n+ 1

∥∥∇fπn−1
s

(wn−1s )−∇fπn−1
s

(ws)

+ 2∇fπn−1
s

(ws)− 2∇fπn−2
s

(ws)− (2∇fπn−1
s

(wn−2s )− 2∇fπn−2
s

(wn−2s ))
∥∥2

+
2

(n+ 1)(n− 1)

∥∥2∇fπn−2
s

(ws) +∇fπn−2
s

(wn−2s )− 3∇fπn−2
t

(wn−3s )

. . .

+ n∇fπ1
s
(w1

s)− n∇fπ1
s
(w0

s)
∥∥2

≤ 2‖∇P (ws)− vs‖2

+
4L2

n+ 1

∥∥wns − ws∥∥2 +
4δ2

n+ 1

∥∥ws − wn−1s

∥∥2
+

4

n+ 1

∥∥∇fπn−1
s

(wn−1s )−∇fπn−1
s

(ws)
∥∥2

+
4

n+ 1

∥∥∇fπn−1
s

(ws)− 2∇fπn−2
s

(ws)− (2∇fπn−1
s

(wn−2s )− 2∇fπn−2
s

(wn−2s ))
∥∥2

+
2

(n+ 1)(n− 1)

∥∥2∇fπn−2
s

(ws) +∇fπn−2
s

(wn−2s )− 3∇fπn−2
t

(wn−3s )

. . .

+ n∇fπ1
s
(w1

s)− n∇fπ1
s
(w0

s)
∥∥2.

Again with δ-similarity and L-smoothness∥∥∥∥∥∇P (ws)−
1

n+ 1

n∑
i=0

vis

∥∥∥∥∥
2

≤ 2‖∇P (ws)− vs‖2

+
4L2

n+ 1

∥∥wns − ws∥∥2 +
4δ2

n+ 1

∥∥ws − wn−1s

∥∥2
+

4L2

n+ 1

∥∥wn−1s − ws
∥∥2 + 22 · 4δ2

n+ 1

∥∥ws − wn−2s

∥∥2
+

2

(n+ 1)(n− 1)

∥∥2∇fπn−2
s

(ws) +∇fπn−2
s

(wn−2s )− 3∇fπn−2
t

(wn−3s )

. . .

+ n∇fπ1
s
(w1

s)− n∇fπ1
s
(w0

s)
∥∥2.
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Continuing further we have∥∥∥∥∥∇P (ws)−
1

n+ 1

n∑
i=0

vis

∥∥∥∥∥
2

≤ 2‖∇P (ws)− vs‖2

+
4L2

n+ 1

∥∥wns − ws∥∥2 + 12 · 4δ2

n+ 1

∥∥ws − wn−1s

∥∥2
+

4L2

n+ 1

∥∥wn−1s − ws
∥∥2 + 22 · 4δ2

n+ 1

∥∥ws − wn−2s

∥∥2
. . .

+
4L2

n+ 1

∥∥w1
s − ws

∥∥2 + n2 · 4δ2

n+ 1

∥∥ws − w0
s

∥∥2
≤ 2‖∇P (ws)− vs‖2 +

(
4L2

n+ 1
+ 4δ2n

) n∑
i=1

‖wis − ws‖2.

Which completes the proof.

�

Proof of Theorem 3. For RR-SARAH vs = ∇P (ws), then by Lemma 6 we get∥∥∥∥∥∇P (ws)−
1

n+ 1

n∑
i=0

vis

∥∥∥∥∥
2

≤
(

4L2

n+ 1
+ 4δ2n

) n∑
i=1

‖wis − ws‖2.

And with Lemma 5

P (ws+1) ≤ P (ws)−
η(n+ 1)

2
‖∇P (ws)‖2 +

η(n+ 1)

2

(
4L2

n+ 1
+ 4δ2n

) n∑
i=1

‖wis − ws‖2.

Then we will work with
n∑
i=1
‖wis − ws‖2. By Lemma 3 from [17] (see the proof) we get that

‖vis‖2 ≤ ‖vi−1s ‖2. Then

n∑
i=1

‖wis − ws‖2 = η2
n∑
i=1

∥∥∥∥∥
i−1∑
k=0

vks

∥∥∥∥∥
2

≤ η2
n∑
i=1

i
i−1∑
k=0

∥∥∥vks∥∥∥2 ≤ η2 n∑
i=1

i
i−1∑
k=0

‖vs‖2

≤ η2 ‖vs‖2
n∑
i=1

i

i−1∑
k=0

1

≤ η2n3 ‖vs‖2 = η2n3 ‖∇P (ws)‖2 .

Hence

P (ws+1) ≤ P (ws)−
η(n+ 1)

2
‖∇P (ws)‖2 +

η(n+ 1)

2

(
4L2

n+ 1
+ 4δ2n

)
· η2n3 ‖∇P (ws)‖2

≤ P (ws)−
η(n+ 1)

2

(
1−

(
4L2

n+ 1
+ 4δ2n

)
· η2n3

)
‖∇P (ws)‖2.
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With γ ≤ 1
8nL ; 1

8n2δ
we get

P (ws+1)− P ∗ ≤ P (ws)− P ∗ −
η(n+ 1)

4
‖∇P (ws)‖2.

Strong-convexity of P end the proof:

P (ws+1)− P ∗ ≤
(

1− η(n+ 1)µ

2

)
(P (ws)− P ∗) .

�

Proof of Theorem 1. For RR-SARAH vs = 1
n

n∑
i=1

fπi
s−1

(wis−1), then∥∥∥∥∥∇P (ws)−
1

n

n∑
i=1

vis

∥∥∥∥∥
2

≤
(

4L2

n+ 1
+ 4δ2n

) n∑
i=1

‖wis − ws‖2 + 2

∥∥∥∥∥ 1

n

n∑
i=1

fπi
s−1

(ws)− fπi
s−1

(wis−1)

∥∥∥∥∥
2

≤
(

4L2

n+ 1
+ 4δ2n

) n∑
i=1

‖wis − ws‖2 +
2L2

n

n∑
i=1

∥∥wis−1 − ws∥∥2 .
With

n∑
i=1
‖wit−wt‖2 we work in the same way as in proof of Theorem 3. And with

n∑
i=1

∥∥wis−1 − ws∥∥2
n∑
i=1

‖wis−1 − ws‖2 = η2
n∑
i=1

∥∥∥∥∥
n+1−i∑
k=1

vn+1−k
s−1

∥∥∥∥∥
2

≤ η2
n∑
i=1

(n+ 1− i)
n+1−i∑
k=1

∥∥∥vn+1−k
s−1

∥∥∥2
≤ η2

n∑
i=1

(n+ 1− i)
n+1−i∑
k=1

‖vs−1‖2

≤ η2 ‖vs−1‖2
n∑
i=1

(n+ 1− i)
n+1−i∑
k=1

1

≤ η2n3 ‖vs−1‖2 . (8)

With Lemma 5

P (ws+1) ≤ P (ws)−
η(n+ 1)

2
‖∇P (ws)‖2 +

η(n+ 1)

2

[(
4L2

n+ 1
+ 4δ2n

)
· η2n3 ‖vs‖2 +

2L2

n
· η2n3 ‖vs−1‖2

]
= P (ws)−

η(n+ 1)

4
‖∇P (ws)‖2 +

η(n+ 1)

2

[(
4L2

n+ 1
+ 4δ2n

)
· η2n3 ‖vs‖2 +

2L2

n
· η2n3 ‖vs−1‖2

]
− η(n+ 1)

4
‖∇P (ws)‖2

≤ P (ws)−
η(n+ 1)

4
‖∇P (ws)‖2 +

η(n+ 1)

2

[(
4L2

n+ 1
+ 4δ2n

)
· η2n3 ‖vs‖2 +

2L2

n
· η2n3 ‖vs−1‖2

]
− η(n+ 1)

8
‖vs‖2 +

η(n+ 1)

4
‖vs −∇P (ws)‖2

≤ P (ws)−
η(n+ 1)

4
‖∇P (ws)‖2 +

η(n+ 1)

2

[(
4L2

n+ 1
+ 4δ2n

)
· η2n3 ‖vs‖2 +

2L2

n
· η2n3 ‖vs−1‖2

]
− η(n+ 1)

8
‖vs‖2 +

η(n+ 1)

4
· 2L2

n
· η2n3 ‖vs−1‖2 .
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The last is deduced the same way as (8). Small rearrangement gives

P (ws+1)− P ∗ ≤ P (ws)− P ∗ −
η(n+ 1)

4
‖∇P (ws)‖2

− η(n+ 1)

8

(
1−

(
16L2

n+ 1
+ 16δ2n

)
· η2n3

)
‖vs‖2 + η(n+ 1) · 2L2

n
· η2n3 ‖vs−1‖2 .

η ≤ min{ 1
8nL ; 1

8n2δ
} gives

P (ws+1)− P ∗ +
η(n+ 1)

16
‖vs‖2 ≤ P (ws)− P ∗ −

η(n+ 1)

4
‖∇P (ws)‖2 +

η(n+ 1)

16
· 32L2

n
· η2n3 ‖vs−1‖2 .

With η ≤ 1
8Ln , we get 32L2η2n2 ≤

(
1− η(n+1)µ

2

)
and

P (ws+1)− P ∗ +
η(n+ 1)

16
‖vs‖2 ≤ P (ws)− P ∗ −

η(n+ 1)

4
‖∇P (ws)‖2 +

(
1− η(n+ 1)µ

2

)
· η(n+ 1)

16
‖vs−1‖2 .

Strong-convexity of P ends the proof.

�
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