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Abstract
The task of hyper-parameter optimization (HPO) is burdened with heavy computational costs due
to the intractability of optimizing both a model’s weights and its hyper-parameters simultaneously.
In this work, we introduce a new class of HPO method and explore how the low-rank factorization
of the convolutional weights of intermediate layers of a convolutional neural network can be used to
define an analytical response surface [2] for optimizing hyper-parameters, using only training data.
We quantify how this surface behaves as a surrogate to model performance and can be solved using
a trust-region search algorithm, which we call autoHyper. The algorithm outperforms state-of-the-
art such as Bayesian Optimization and generalizes across model, optimizer, and dataset selection.
Our code can be found at https://github.com/MathieuTuli/autoHyper.

1. Introduction

Figure 1: Left: Validation Accuracy vs.
Right: stable rank metric tracked auto-
Hyper (see section 2)

The task of hyper-parameter optimization (HPO) is bur-
dened with computational intractability caused by a dual-
optimization problem, whereby optimization over a net-
work’s weights as well as its hyper-parameters cannot
happen simultaneously [2]. The abstract formulation of
HPO can be defined as
λ∗ ← arg min

λ∈Λ
{Ex∼M [L(x;Aλ(X(train))]} as defined by

Bergstra and Bengio [2], where X(train) and x are random
variables, modelled by some natural distribution M , that
represent the train and validation data, respectively. L(·)
is some expected loss and Aλ(X(train)) is a learning algorithm that maps X(train) to some learned
function, conditioned on the hyper-parameter set λ. Note that this learned function, denoted as
f(θ;λ;X(train)), involves its own independent inner optimization problem. Because of this, opti-
mization over the hyper-parameters λ cannot occur until optimization over f(θ;λ;X(train)) is com-
plete. This means that HPO in this form suffers from heavy computational burden and is practically
unsolvable. However, Bergstra and Bengio [2] showed that this burden is reduced if we simplify our
scope and only consider λ∗ ← arg min

λ∈Λ
τ(λ) where, τ is called the response surface and Λ is some

set of choices for λ (i.e. the search space). Simply put, the goal of the response surface is to act
as an easier to solve surrogate function parameterized by λ whose minimization is correlated to the
minimization of our networks’s objective function. Importantly, this response surface is supposed
to be much easier to solve for, and removes the dual-optimization problem.
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Unfortunately, little advancements in an analytical model of the response surface τ has led to
estimating it by (a) running multiple trials of different HP configurations (e.g. Random Search)
against validation datassets; or (b) characterizing the distribution model of a certain configuration’s
performance metric (e.g. validation performances) to numerically define a relationship between τ
and λ (e.g. Bayesian Optimization). Despite the success of these methods, they exist as estimations
of a response surface, which is itself already a simplification/estimation of our initial objective
function, which we argue is inefficient and sub optimal. We work towards resolving this issue.

In this paper, we deviate from existing classes of HPO methods and explore an alternative sur-
rogate metric that demonstrates how to perform almost fully automatic HPO using only the training
dataset. Our contributions are as follows: (1) stemming from the notion of stable rank in [7, 10],
we introduce the task of monitoring the well-posedness of learning layers in a Convolutional Neu-
ral Network (CNN) in order to develop a well-defined analytical response surface. Figure 1 shows
how our new metric behaves well and tractably in contrast to conventional validation performance
measures. This response surface deviates from existing works and exists as a new class of HPO;
(2) we propose a trust-region search algorithm, dubbed autoHyper, to optimize our response surface
and conduct HPO using only the training set. This algorithm almost eliminates all need for human
intuition or manual intervention, and is not bound by a manually set searching space, paving the way
towards automatic HPO; and (3), we extend the autoHyper algorithm to multi-dimensional HPO.

2. A New Response Surface Model

2.1. Stable Rank via Low-Rank Factorization

We wish to analyze the weight matrices of our neural network and develop a metric that we can
track, per epoch, that acts as a surrogate to validation performance. To do so, we decompose the
weight matrices of the network and study them by use of low-rank factorization, similar to what
Hosseini et al. [8] did for channel size optimization. Consider the 4-D tensor W ∈ RN1×N2×N3×N4

as the weights of a layer in a CNN (N1 & N2 being the height and width of kernel size, N3 & N4

the input and output channel size, respectively). We decompose W along some dimension d as

W[4-D Tensor]
unfold−−−→Wd[2-D Matrix]

factorize + decompose−−−−−−−−−−−−→ ÛdΣ̂dV̂
T
d +Ed.

Figure 2: Low-Rank Decomposition
(figure replicated from [8])

We subsequently define Ŵd = ÛdΣ̂dV̂
T
d for simplicity,

where Ŵd is the low-rank matrix containing limited non-
zero singular values. We use the Variational Bayesian
Matrix Factorization (VBMF) [16] for the low-rank fac-
torization. This factorization is critical as it captures the
presence of noise, allowing analysis to be invariant to the
randomness of initialization. Note, unfolding isn’t neces-
sary for linear layers (e.g. for LSTMs), and the analysis
is the same. Through this factorization, initially, the low-
rank component Ŵd has empty structure (i.e. Ŵd = �)
as the randomness of the initialized weights is fully cap-
tured by Ed. As training progresses, the low-rank com-
ponent will gain structure and becomes non-empty as the
network learns to map inputs to outputs. This is visualized in Figure 2 for a ResNet34 layer. Notice
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how the low-rank matrix maintains its structure and strengthens its structure over training, while
the perturbing noise element decays. We state that such behaviour leads to a stabilized encoding
layer and indicates a beneficial progress in learning. Following [7], we define the stable rank of the
weight matrix as

Gd(Ŵd) =
1

Nd · σ1(Ŵd)

N
′
d∑

i=1

σi(Ŵd), (1)

where σ1 ≥ σ2 ≥ . . . ≥ σNd
are low-rank singular values in descending order. Here Nd =

rank{Ŵd} and the unfolding is done either on input or output channels i.e. d ∈ {3, 4}. We can
further parameterize the stable rank Gd by the HP set λ, epoch t, and network layer ` as Ḡd,t,`(λ).
Note that Ḡd,t,`(λ) ∈ [0, 1] and is used to probe CNN layers to monitor how well information is
carried from input to output maps. A perfect network and set of HPs would yield Ḡd,T,`(λ) =
1 ∀` ∈ [L], where L is the network’ number of layers and T is the last epoch. In this case,
each layer is a near-perfect autoencoder and the information propagation through the network is
maximized. Conversely, Ḡd,T,`(λ) = 0 indicates that the information flow is very weak meaning the
mapping is effectively random (‖Ed ‖ is maximized). See Appendix-A for further explanation.

2.2. Definition of New Response Function

If Ḡd,t,`(λ) = 0 in early stages of training, no learning has occurred. This is due to the perturbing
noise Ed being fully populated and the low-rank structure Ŵd being effectively empty. In practice,
too small of an initial learning rate would also result in such a behaviour as insufficient progress has
been made to reduce the randomization. We argue this becomes useful to track the number of layers
with zero-valued Gd as we will subsequently aim to minimize this measure across the network. This
effectively becomes a measure of channel rank, and we denote this rank per epoch as

Zt(λ)← 1

2L

L∑
`

∑
d∈{3,4}

I[Ḡd,t,`(λ) = 0] where I[Ḡd,t,`(λ) = 0] =

{
1 if Ḡd,t,`(λ) = 0
0 otherwise

,

where Zt(λ) ∈ [0, 1). We pay no attention to which layers in particular have zero-valued Gd; this
could perhaps be explored in future work. The intuition behind averaging across all layers is to
ensure that our model is “globally” optimized and not just locally within certain layers. Finally, we
define the average rank across T epochs – which we call the global stable rank – as

Z(λ)← 1

T

∑
t∈[T ]

Zt(λ) ; Z(λ) ∈ [0, 1). (2)

This measure is therefore akin to a normalized summation of the zero-valued singular values from
low-rank measures across all layers’ input and output unfolded-tensor arrays over T epochs.

To solve for the optimal HP set λ, we state that this is achieved when the rate of change of Z(λ)
first goes to zero. Visually, looking at Figure 3(a)subfigure (and Figures C.2 & C.3 in Appendix-C),
the optimal HP is at the inception of the plateau in Z(λ). In support of this, we note that Wilson
et al. [21] found a more optimal learning rate for Adam applied to CIFAR10 to be 3× 10−4 instead
of the author suggested 1× 10−3, and highlight how this value sits at the location we discuss here;
the inception of the plateau in the rate of change of Z(λ). We formulate our response surface as

3



TOWARDS ROBUST AND AUTOMATIC HYPER-PARAMETER TUNNING

(a) Surrogate Behaviour (b) 2D Response Surface

Figure 3: (a) Surrogate behaviour of Z(η) to training loss and accuracy. Red indicates the learning
rate and model chosen by our method, with other trialled points in grayscale. (b) Two-dimensional
response surface for λ = {η, γ} for ResNet34 applied to CIFAR10, trained using Adam.

λ∗ ← arg min
λ

[τ(λ) = 1−Z(λ) subject to ‖ ∇λZ(λ) ‖22≤ ε]

where ε ∈ [0, 1) is a small error. We do not explicitly calculate the gradient ∇λZ(λ), but use the
rate of change to guide convergence towards the inception of the plateauing region (see section 3).

3. autoHyper: Automatic HP Tuning

Algorithm 1 autoHyper

Require: number of epochs T = 5, starting λ(0)

1: RH = [ ] ; (empty list of rank histories)
2: j = 0
3: while True do
4: - compute trust-region TRλ

(j)
for λ(j).

5: for each permutation λ(j∗) in TRλ
(j) do

6: - train for T epochs, record Z(λ(j∗))
7: if each of Z(λ(j∗)) < 0.9 then
8: - step in direction of max Z(λ(j∗))
9: else

10: - k ← argminj∗ list of [Z(λ(j∗))]

11: - λ(j+1) ← TRλ
(j)

[k]
12: - append smallest Z(λ(j∗)) to RH
13: - compute cumprod(RH)0.8

14: if rate of change plateaus then
15: break
16: j += 1

How it works. The pseudo-code for au-
toHyper is presented in Algorithm 1. To find
the inception of the plateuing region, autoHy-
per runs a trust-region optimization algorithm,
where the trust-region is formed around the HP
set, and stepping is made relative to our metric,
Z(λ). That is, at each step, autoHyper com-
putes the trust-region around its current HP set
λ: For each HP in the set λ, autoHyper scales
it up and down and computes the combinatorial
permutation of {λi/αi, λi, λi ∗ αi ∀λi ∈ λ},
where αi is a stepping constant and is set per
HP. This provides a set of unique HP config-
urations that we denote as TRλ. For each
configuration in this set, autoHyper trains for
T = 5 epochs and computes our metric Z(λ).
Note that with caching of past values we do
not need to search over each of these configura-
tions. This trust-region optimization algorithm
first steps in the direction such thatZ(λstart) ≥
0.9. A step simply involves updating our HPs to the permutation that meets our given criteria, in
this case Z(λstart) ≥ 0.9. This start point matters since we take the cumulative product of stable
ranks over trials. After, the algorithm steps in the direction to minimize Z(λ). At each step, this
minimum Z(λ) is recorded. This continues until the cumulative product of the list of stable ranks
[Z(λstart), . . . ,Z(λj)] plateaus, where j is the step count in the trust-region search.
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Choosing the trust-region size. The choice of trust-region size will have a significant effect on
the results. It should be selected be such that sequential increments of each HP should be sufficiently
small, so as to not take too large a step. For autoHyper, we search around the current HPs by scaling
the current HPs (up and down) by a factor of 1.5, which is derived from similar scaling factors when
doing a logarithmic grid search. This factor should be tuned for different HPs.

Stablizing Z(λ). We calculate the rate of change of Z(λ) using the cumulative product of the
sequence [Z(λ0), . . . ,Z(λj)], to the power of 0.8. Since our response surface is not guaranteed
to monotonically decrease, we employ the cumulative product of [Z(λ0), . . . ,Z(λj)], which does
monotonically decrease – since Z(λ) ∈ [0, 1) – to guarantee convergence. The cumulative product
(to the power of 0.8) is a good choice because (a) it dampens noise well and (b) regulates the rapid
decay of the cumulative product. This power is technically tune-able, however we fix it and show
in our experiments that it generalizes well. Figure C.3 in Appendix-C demonstrates further insight.

Computational requirements. Z(λ) is computed (i.e. 1 step) using T = 5 epochs due to sta-
bilization of our metric after 5 epochs. Figure 4 visualizes epoch consumption for our experiments.

Figure 4: Required number of epochs for autoHyper to converge over various setups.

4. Experiments

4.1. Experimental Setups

One-dimensional comparison. We restrict our focus to the initial learning rate (λ = η) and run
experiments on CIFAR10 [12], CIFAR100 [12], TinyImageNet [13], and ImageNet [17]. On CI-
FAR10 and CIFAR100, we apply ResNet18 and ResNet34 [6], ResNeXt50 [22], and DenseNet121
[9]. On TinyImageNet and ImageNet, we apply ResNet34. For architectures applied to CIFAR10
and CIFAR100, we train using Adam [11], AdaBound [15], Adas(β = {0.8, 0.9, 0.95, 0.975}) [7] (with
early-stop), AdaGrad [4], RMSProp [19], and SLS [20]. For ResNet34 applied to TinyImageNet,
we train using Adam, AdaBound, AdaGrad, and Adas(β = {0.8, 0.9, 0.95, 0.975}). For ResNet34 applied
to ImageNet, we train using Adam and Adas(β = {0.9, 0.95, 0.975}). Further, we conduct baselines us-
ing the author suggested learning rates, RS generated learning rates, and BO generated learning
rates. Only Adam, AdaBound, AdaGrad, and Adas0.9 are used in the RS and BO baselines. Each
experiment is run for 5 randomly initialized trials, each for 250 epochs, and we report averages.

Two-dimensional Comparison. We restrict our focus to the initial learning rate and weight
decay rate (λ = {η, γ}) and run experiments on CIFAR10, CIFAR100, and TinyImageNet. We
apply ResNet34 and train using Adam, AdaBound, AdaGrad, and Adasβ = 0.9. Our baseline is
composed only of BO generated initial learning rate and weight decay rate. Each experiment is run
5 times from randomly initialized starting points, each for 250 epochs, and we report averages.

Random Search and Bayesian Optimization setup. Because RS and BO are highly sensitive
to the manually set search spaces [3, 18], we attempt a fair comparison by providing similar search
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spaces that autoHyper is designed around. That is, for learning rate, ηmin = 1× 10−4 and ηmax =
0.1 and for weight decay rate, γmin = 1× 10−7 and γmax = 0.1. Both RS and BO are given
the same computational budget that autoHyper had for each experiment (see Figure 4). This does
provide the RS and BO experiments with a slight advantage since a priori knowledge of how many
epochs and trials to consider is not provided to autoHyper. Further, RS and BO are given the
advantage of using the test set for evaluation, since CIFAR10/CIFAR100 do not have an explicit
development set. This was also done for TinyImageNet.

Additional notes. For BO, we used the Adaptive Experimentation Platform (https://ax.
dev/ [1]). Additional results and details are in Appendix-D and Appendix-E.

A note on multi-fidelity techniques. We attempted experiments on HyperBand [14] and BOHB
[5] using the HPBandSter library but found that tuning the number of iterations (e.g. for successive
halving) and the allocated budget to be difficult and iterative, and performance was significantly
worse. For fairness, those experiments were not completed, as they required much more tuning.

4.2. Results

4.2.1. ONE-DIMENSIONAL COMPARISON

Consistency across experimental setup. Table 1 tells us that our method generalizes well to ex-
perimental setups. If there is loss of performance when using an initial learning rate generated by
autoHyper, this loss is < 1% in all experiments except three: On CIFAR100, the author baselines
of ResNeXt50 trained using Adam, ResNext50 trained using RMSProp, and DenseNet121 trained
using AdaBound achieve 1.2%, 2.28% and 2.3% better top-1 test accuracy, respectively.

Table 1: Final epoch (250) top-1 test accuracies for λ = η. Values marked with a ‘*’ indicate
early-stopping. The best result is highlighted in green, and for autoHyper results, orange highlights
when the results lie within the standard deviation from the best.

ResNet34 on TinyImageNet ResNet34 on CIFAR100
Optimizer Author RS BO autoHyper Author RS BO autoHyper

AdaBound 55.48±0.67 54.88±0.57 55.18±0.13 56.22±0.17 71.94±0.66 73.17±0.09 73.34±0.50 73.15±0.24

AdaGrad 55.81±0.84 50.66±0.33 51.26±0.55 55.04±0.54 67.02±0.23 66.02±0.59 67.11±0.54 67.43±0.59

Adam 52.13±1.14 54.86±0.21 54.96±0.39 54.46±1.14 71.11±0.37 70.55±0.15 70.94±0.62 71.43±0.28

Adas0.9 59.91±0.45 59.76±0.50 59.52±0.19 61.56±0.58 75.99±0.09 73.51±0.13 69.38±0.62 75.78∗
±0.21

ResNet18 on CIFAR100 DenseNet121 on CIFAR100
Optimizer Author RS BO autoHyper Author RS BO autoHyper

AdaBound 72.04±0.30 73.24±0.30 73.28±0.21 73.16±0.25 68.90±0.36 69.30±0.22 68.91±0.23 67.00±0.20

AdaGrad 67.76±0.50 67.75±0.24 67.40±0.43 67.75±0.56 62.14±0.15 62.43±0.83 62.57±0.65 62.79±0.35

Adam 70.34±0.27 70.58±0.24 71.03±0.42 70.09±0.35 67.48±0.17 67.96±0.23 68.58±0.64 69.05±0.49

Adas0.9 75.15±0.17 75.11±0.18 75.13±0.23 75.27∗
±0.28 73.25±0.25 73.22±0.30 72.89±0.20 73.13∗

±0.44

Improved performance over RS and BO. We highlight how autoHyper is able to generalize
over experimental setup whereas RS and BO cannot. In particular, RS and BO applied on AdaGrad
and Adas0.9 struggle to compete with autoHyper, particularly in more complex datasets such as
CIFAR100. This is most evident in ResNet34 applied to CIFAR100 (see Table 1). This highlights
how autoHyper can automatically find more competitive learning rates to RS and BO and without
any manual intervention. Most interestingly, RS and BO were given a large advantage in that testing
accuracy was used in their implementation rather than the conventional validation accuracy, and yet
autoHyper’s performance (which uses training data) is maintained.
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Table 2: ImageNet test accuracies for λ = η.

ResNet34 on ImageNet
Method Adam Adas0.9 Adas0.95 Adas0.975

Author 63.75±0.08 72.11±0.16 73.05±0.17 72.52±0.03

autoHyper 68.68±0.24 71.87∗
±0.20 73.09±0.23 72.42±0.15

ImageNet/TinyImageNet Improvements.
We highlight how well autoHyper performs
when applied to TinyImagetNet and Im-
ageNet. ResNet34 trained using Adam
and applied to TinyImageNet and ImageNet
achieves final improvements of 3.14% and
4.93% in top-1 test accuracy, respectively, shown in Table 2. Such improvements come at a minimal
cost using our method, requiring 65 epochs (4 hours) and 80 epochs (59 hours) for TinyImageNet
and ImageNet, respectively (Figure 4).

Fast and consistent convergence rates. We visualize the convergence rates of our method in
Figure 4. Importantly, we identify autoHyper’s consistency in required epochs per optimizer across
architecture and dataset selection as well as the low convergence times. Our method exhibits less
consistent results when optimizing using SLS as SLS tends to result in high Z(η) over multiple
epochs and different learning rates. Despite this, our autoHyper still converges and performs well.

Table 3: Final epoch (250) top-1 test accuracies λ = {η, γ}.

ResNet34 on TinyImageNet ResNet34 on CIFAR10
Method AdaBound AdaGrad Adam Adas0.9 AdaBound AdaGrad Adam Adas0.9

BO 54.92±0.30 49.56±0.54 53.45±0.56 58.17±0.32 93.21±0.16 90.50±0.16 93.18±0.25 91.52±0.08

autoHyper 57.02±0.20 55.59±0.71 55.29±0.20 58.19±0.20 92.84±0.28 91.49±0.21 93.24±0.06 92.64±0.18

4.2.2. TWO-DIMENSIONAL COMPARISON

Improved performance over Bayesian Optimization. Analyzing Table 3, we see that autoHyper
outperforms BO in the two-dimensional case. In particular, there is a 3.74% improvement for
ResNet34 applied to CIFAR100 using Adam. Of the 12 experiments, there are only 3 where BO
is able to outperform autoHyper. We note that, of these 3 cases, autoHyper is within the standard
deviation of error in all but two: ResNet34 applied to CIFAR100 using AdaGrad and Adas0.9.

Improvements in TinyImageNet. We highlight how autoHyper is able to significantly outper-
form BO on the more complex TinyImageNet dataset. In particular, ResNet34 applied to TinyIm-
ageNet, autoHyper achieves 2.1%, 6.03%, and 1.84% improvement when using AdaBound, Ada-
Grad, and Adam, respectively. This result is very promising as complex datasets are often the most
difficult and time consuming datasets to perform HPO on.

5. Conclusion

In this introductory work, we explored a new class of hyper-parameter optimization and proposed
an analytical response surface that acts as a surrogate to validation metrics and generalizes well.
We proposed an algorithm, autoHyper, that optimizes for this surface and progresses towards fully
automatic multi-dimensional HPO. autoHyper is able to, on average, outperform existing SOTA and
only requires training data. In future works, we would like to expand beyond the two-dimensional
case and explore further developments to our metric. Further, we would like to research ways in
eliminating the current internal hyper-parameters as well improvements in computational complex-
ities, particularly when applied to the multi-dimensional case.
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Appendix A. Stable Rank Optimality

Given the definitions of stable rank in Equation 1 , we argue that a stable rank of 1 indicates a
perfectly learned network. Specifically, higher values G(Ŵd) → 1 indicates that most singular
values are non-zero (i.e. σ2

i (Ŵd) > 0∀i ∈ [1, . . . , n′] where n′ → n. This creates a subspace
spanned by a set of independent vectors corresponding to the non-zero singular values mentioned
above. In other words, G(Ŵd)→ 1 corresponds to a many-to-many mapping but not a many-to-low
(i.e. rank-deficient) mapping. Also, note that the stable rank is measured on the low-rank and not the
raw measure of the weights. So the higher value indicates that the learned weight matrix contains
more non-empty structure which can be interpreted as a sign of a meaningful learning.

Appendix B. Rank behaviour over multiple epochs

Here we present the behaviour of Zt(η).

(a) Adam (b) AdaGrad (c) Adas β = 0.8 (d) RMSProp

(e) Adam (f ) AdaGrad (g) Adas β = 0.8 (h) RMSProp

Figure B.1: Rank (Zt(η)) for various learning rates on VGG16 trained using Adam, AdaGrad,
Adas β = 0.8, and RMSProp and applied to CIFAR10. A fixed epoch budget of 20 was used. We
highlight how across these 20 epochs, very little progress is made beyond the first first epochs. It is
from this analysis that we choose our epoch range of T = 5.

Appendix C. Additional Figures for Response Surface

10



TOWARDS ROBUST AND AUTOMATIC HYPER-PARAMETER TUNNING

Figure C.2: Behaviour of our metric Z(λ) in response to initial learning rate and weight decay.
Note that we plot the regularized cumulative product of Z(λ) here.

Figure C.3: Zt(η) for various learning rates using Adam on ResNet34 applied to CIFAR10. The
author-suggested initial learning rate is indicated by the red markers, and the autoHyper suggested
learning rate is indicated by the green markers.

(a) ResNet34/Adam (b) EffNetB0/Adasβ = 0.8

Figure C.4: Z(η) (blue) vs. cumprod(Z(η))0.8 (orange) for (a) a stable and (b) an unstable archi-
tecture on CIFAR10.
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Appendix D. Additional Experimental Details for Subsection 4.1

We note the additional configurations for our experimental setups.
Datasets: For CIFAR10 and CIFAR100, we perform random cropping to 32 × 32 and random

horizontal flipping on the training images and make no alterations to the test set. For TinyImageNet,
we perform random resized cropping to 64 × 64 and random horizontal flipping on the training
images and center crop resizing to 64 × 64 on the test set. For ImageNet, we follow He et al. [6]
and perform random resized cropping to 224× 244 and random horizontal flipping and 256× 256
resizing with 224× 224 center cropping on the test set.

Additional Configurations: Experiments on CIFAR10, CIFAR100, and TinyImageNet used
mini-batch sizes of 128 and ImageNet experiments used mini-batch sizes of 256. For weight decay,
5× 10−4 was used for Adas-variants on CIFAR10 and CIFAR100 experiments and 1× 10−4 for
all optimizers on TinyImageNet and ImageNet experiments, with the exception of Adam using a
weight decay of 7.8125× 10−6. For Adas-variant, the momentum rate for momentum-SGD was
set to 0.9. All other hyper-parameters for each respective optimizer remained default as reported
in their original papers. For author suggested learning rates, for CIFAR10 and CIFAR100, we use
the manually tuned suggested learning rates as reported in Wilson et al. [21] for Adam, RMSProp,
and AdaGrad. For TinyImageNet and ImageNet, we use the suggested learning rates as reported
in each optimizer’s respective paper. Refer to Tables 4-8 to see exactly which learning rates were
used, as well as the learning rates generated by autoHyper. Further, see 8 for the learning rates and
weight decay reates generated by BO and autoHyper. CIFAR10, CIFAR100, and TinyImageNet
experiments were trained for 5 trials with a maximum of 250 epochs and ImageNet experiments
were trained for 3 trials with a maximum of 150 epochs. Due to Adas’ stable test accuracy behaviour
as demonstrated by Hosseini and Plataniotis [7], an early-stop criteria, monitoring testing accuracy,
was used for CIFAR10, CIFAR100, and ImageNet experiments. For CIFAR10 and CIFAR100, a
threshold of 1× 10−3 for Adasβ = 0.8 and 1× 10−4 for Adasβ = {0.9, 0.95} and patience window of
10 epochs. For ImageNet, a threshold of 1× 10−4 for Adasβ = {0.8, 0.9, 0.95} and patience window
of 20 epochs. No early stop is used for Adasβ = 0.975.

Learning Rates: We report every learning rate in Tables 4-8.
Random Search: The search space is set to [1× 10−4, 0.1] and a loguniform (see SciPy)

distribution is used for sampling. This is motivated by the fact that autoHyper also uses and
logarithmically-spaced grid space. We note that we ran initial tests against a uniform distribu-
tion for sampling was done and showed slightly worse results, as the favouring of smaller learning
rates benefits the optimizers we considered. In keeping with autoHyper’s design, the learning rate
that resulted in highest training accuracy after 5 epochs was chosen. One could also track testing
loss, however we found very little to no differences between the two in initial testing. Further work
could include completing both testing loss and testing accuracy baselines, and picking the best one,
however this is double the computational that autoHyper requires and therefore we deemed it not
a fair comparison. Note also we used testing accuracy and not validation accuracy as is normally
done, however this only benefits Random Search.

Bayesian Optimization: We used Facebook’s Adaptive Experimentation Platform (AX) to per-
form the Bayesian Optimization. In the background, AX uses Balandat et al. [1], and we refer the
reader to that paper for specific details. In keeping with Random Search as well as tutorials on
the AX website, testing accuracy was used. Note also we used testing accuracy and not validation
accuracy as is normally done, however this only benefits Bayesian Optimization.
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Table 4: Learning Rates for ResNet34 applied to ImageNet

Optimizer Author autoHyper

Adam 0.001 0.0001965
Adas(0.9) 0.02 0.011479
Adas(0.95) 0.02 0.011479
Adas(0.975) 0.02 0.011479

Table 5: Learning rates for ResNet34 applied to TinyImageNet. These are the one-dimensional
hyper-parameter comparison values.

Optimizer Author RS BO autoHyper
AdaBound 1.00e-3 1.24e-4 1.64e-4 9.44e-5
AdaGrad 1.00e-2 7.15e-4 7.97e-4 2.24e-3

Adam 1.00e-3 1.75e-4 1.81e-4 1.96e-4
Adas0.9 3.00e-2 3.95e-2 6.76e-2 8.59e-3
Adas0.8 3.00e-2 - - 1.01e-2
Adas0.95 3.00e-2 - - 8.59e-3
Adas0.975 3.00e-2 - - 8.59e-3
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Table 6: Learning rates for various networks applied to CIFAR10 in the one-dimensional compari-
son.

(a) ResNet18
Optimizer Author RS BO autoHyper
AdaBound 1.00e-3 2.65e-4 2.55e-4 3.60e-4
AdaGrad 1.00e-2 2.13e-3 2.56e-3 4.97e-3

Adam 3.00e-4 1.45e-4 3.37e-4 6.76e-4
Adas0.9 3.00e-2 2.23e-2 2.60e-2 1.04e-2
Adas0.8 3.00e-2 - - 1.27e-2
Adas0.95 3.00e-2 - - 1.04e-2
Adas0.975 3.00e-2 - - 1.04e-2
RMSProp 3.00e-4 - - 4.70e-4

SLS 1.0 - - 3.42e-2

(b) ResNet34
Optimizer Author RS BO autoHyper
AdaBound 1.00e-3 3.92e-4 5.47e-4 3.47e-4
AdaGrad 1.00e-2 1.60e-3 1.63e-3 2.86e-3

Adam 3.00e-4 3.30e-4 3.42e-4 3.34e-4
Adas0.9 3.00e-2 6.78e-3 4.32e-3 1.24e-2
Adas0.8 3.00e-2 - - 1.24e-2
Adas0.95 3.00e-2 - - 1.24e-2
Adas0.975 3.00e-2 - - 1.24e-2
RMSProp 3.00e-4 - - 1.68e-4

SLS 1.0 - - 3.42e-2

(c) ResNeXt50
Optimizer Author RS BO autoHyper
AdaBound 1.00e-3 1.87e-4 4.79e-4 9.72e-4
AdaGrad 1.00e-2 3.80e-3 4.96e-3 8.97e-3

Adam 3.00e-4 1.48e-4 2.82e-4 9.72e-4
Adas0.9 3.00e-2 1.38e-2 1.86e-2 2.32e-2
Adas0.8 3.00e-2 - - 1.27e-2
Adas0.95 3.00e-2 - - 2.31e-2
Adas0.975 3.00e-2 - - 1.04e-2
RMSProp 3.00e-4 - - 4.70e-4

SLS 1.0 - - 3.42e-2

(d) DenseNet121
Optimizer Author RS BO autoHyper
AdaBound 1.00e-3 8.91e-4 9.21e-4 3.02e-3
AdaGrad 1.00e-2 4.85e-3 8.37e-3 1.54e-2

Adam 3.00e-4 7.50e-4 4.81e-4 2.01e-3
Adas0.9 3.00e-2 2.09e-2 3.07e-2 5.98e-2
Adas0.8 3.00e-2 - - 6.10e-2
Adas0.95 3.00e-2 - - 4.92e-2
Adas0.975 3.00e-2 - - 5.98e-2
RMSProp 3.00e-4 - - 2.01e-3

SLS 1.0 - - 3.12e-3
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Table 7: Learning rates for various networks applied to CIFAR100 in the one-dimensional compar-
ison.

(a) ResNet18
Optimizer Author RS BO autoHyper
AdaBound 1.00e-3 3.43e-4 2.92e-4 2.49e-4
AdaGrad 1.00e-2 4.51e-3 2.87e-3 4.97e-3

Adam 3.00e-4 3.59e-4 2.87e-4 6.76e-4
Adas0.9 3.00e-2 5.52e-2 3.06e-2 1.27e-2
Adas0.8 3.00e-2 - - 1.27e-2
Adas0.95 3.00e-2 - - 1.04e-2
Adas0.975 3.00e-2 - - 7.07e-3
RMSProp 3.00e-4 - - 4.70e-4

SLS 1.0 - - 3.42e-2

(b) ResNet34
Optimizer Author RS BO autoHyper
AdaBound 1.00e-3 3.53e-4 1.76e-4 3.47e-4
AdaGrad 1.00e-2 1.83e-3 2.35e-3 2.24e-3

Adam 3.00e-4 1.25e-4 2.42e-4 2.41e-4
Adas0.9 3.00e-2 9.25e-3 2.14e-3 1.02e-2
Adas0.8 3.00e-2 - - 1.03e-2
Adas0.95 3.00e-2 - - 1.50e-2
Adas0.975 3.00e-2 - - 1.02e-2
RMSProp 3.00e-4 - - 1.97e-4

SLS 1.0 - - 3.42e-2

(c) ResNeXt50
Optimizer Author RS BO autoHyper
AdaBound 1.00e-3 3.69e-4 5.03e-4 9.72e-4
AdaGrad 1.00e-2 2.74e-3 5.86e-3 1.19e-2

Adam 3.00e-4 4.38e-4 5.44e-4 9.72e-4
Adas0.9 3.00e-2 1.16e-2 1.26e-2 2.75e-2
Adas0.8 3.00e-2 - - 1.27e-2
Adas0.95 3.00e-2 - - 2.27e-2
Adas0.975 3.00e-2 - - 7.0e-3
RMSProp 3.00e-4 - - 4.70e-4

SLS 1.0 - - 3.42e-2

(d) DenseNet121
Optimizer Author RS BO autoHyper
AdaBound 1.00e-3 8.91e-4 9.21e-4 3.02e-3
AdaGrad 1.00e-2 4.85e-3 8.37e-3 1.54e-2

Adam 3.00e-4 7.50e-4 4.81e-4 2.01e-3
Adas0.9 3.00e-2 2.09e-2 3.07e-2 5.98e-2
Adas0.8 3.00e-2 - - 3.98e-2
Adas0.95 3.00e-2 - - 3.57e-2
Adas0.975 3.00e-2 - - 5.04e-2
RMSProp 3.00e-4 - - 6.76e-2

SLS 1.0 - - 8.79e-2
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Table 8: Learning rates for ResNet34 applied to various dataset for the two-dimensional comparison.

(a) TinyImageNet
Optimizer BO autoHyper

LR (η) WD (γ) LR (η) WD (γ)
AdaBound 5.33e-5 6.28e-4 1.62e-5 7.17e-8
AdaGrad 5.21e-4 1.27e-3 4.27e-3 1.04e-7

Adam 7.03e-4 5.50e-6 2.19e-4 1.00e-7
Adas0.9 8.99e-3 1.05e-6 1.89e-2 9.67e-7

(b) CIFAR10
Optimizer BO autoHyper

LR (η) WD (γ) LR (η) WD (γ)
AdaBound 9.66e-6 4.32e-6 6.67e-4 3.41e-8
AdaGrad 2.92e-3 3.29e-5 6.20e-3 3.17e-7

Adam 4.35e-4 1.68e-8 6.67e-4 1.00e-7
Adas0.9 2.86e-3 1.87e-6 2.74e-2 6.43e-7

(c) CIFAR100
Optimizer BO autoHyper

LR (η) WD (γ) LR (η) WD (γ)
AdaBound 1.19e-5 5.73e-7 3.67e-6 2.35e-8
AdaGrad 4.08e-3 1.03e-3 6.20e-3 1.51e-7

Adam 1.52e-3 1.01e-6 4.60e-4 7.17e-8
Adas0.9 7.70e-3 1.12e-7 2.74e-2 4.60e-7
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Appendix E. Additional Results for Subsection 4.2

Table 9: Final epoch (250) top-1 test accuracies average over each trial for one-dimensional search
(λ = η). Values marked with a ‘*’ indicate early-stopping. The best result is highlighted in green,
and for autoHyper results, orange highlights when the results lie with the standard deviation from
the best.

(a) ResNet34 on TinyImageNet
Optimizer Author RS BO autoHyper

Adas0.8 57.98±0.44 - - 58.02±0.42

Adas0.95 60.74±0.20 - - 62.28±0.44

Adas0.975 61.44±0.27 - - 61.81±0.45

(c) ResNet34 on CIFAR10
Optimizer Author RS BO autoHyper

Adas0.8 93.02±0.13 - - 93.40∗
±0.15

Adas0.95 95.20±0.11 - - 95.08∗
±0.18

Adas0.975 95.24±0.15 - - 95.13±0.11

RMSProp 92.90±0.29 - - 93.03±0.23

SLS 93.45±0.16 - - 93.33±0.06

(d) ResNet34 on CIFAR100
Optimizer Author RS BO autoHyper

Adas0.8 74.21±0.26 - - 73.58∗±0.36

Adas0.95 77.60±0.22 - - 77.48∗
±0.37

Adas0.975 78.00±0.28 - - 78.26±0.35

RMSProp 70.25±0.29 - - 70.57±0.40

SLS 73.22±0.11 - - 73.77±0.12

(e) ResNet18 on CIFAR10
Optimizer Author RS BO autoHyper

AdaBound 92.35±0.18 92.64±0.21 93.15±0.11 92.85±0.06

AdaGrad 91.23±0.25 89.71±0.18 90.00±0.08 90.87±0.14

Adam 92.93±0.22 92.59±0.05 92.92±0.18 92.95±0.24

Adas0.9 94.05±0.10 94.11±0.13 94.01±0.05 93.75∗±0.12

Adas0.8 92.92±0.19 - - 92.80∗
±0.16

Adas0.95 94.93±0.11 - - 94.74∗
±0.16

Adas0.975 95.14±0.20 - - 94.94±0.04

RMSProp 92.62±0.30 - - 92.69±0.33

SLS 93.45±0.16 - - 93.33±0.06

(f) ResNet18 on CIFAR100
Optimizer Author RS BO autoHyper

Adas0.8 73.59±0.09 - - 73.38∗
±0.28

Adas0.95 76.53±0.30 - - 76.49∗
±0.37

Adas0.975 77.23±0.09 - - 76.68±0.18

RMSProp 70.08±0.23 - - 69.28±0.50

SLS 73.22±0.11 - - 73.77±0.12
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Table 10: Final epoch (250) top-1 test accuracies average over each trial for one-dimensional search
(λ = η). Values marked with a ‘*’ indicate early-stopping. The best result is highlighted in green,
and for autoHyper results, orange highlights when the results lie with the standard deviation from
the best.

(g) ResNeXt50 on CIFAR10
Optimizer Author RS BO autoHyper

AdaBound 91.42±0.42 92.37±0.19 92.10±0.19 91.69±0.33

AdaGrad 90.07±0.27 89.02±0.23 89.26±0.26 90.13±0.19

Adam 92.18±0.31 91.90±0.17 92.29±0.33 92.12±0.07

Adas0.9 93.60±0.16 93.51±0.12 93.39±0.12 93.51∗
±0.12

Adas0.8 91.56±0.07 - - 91.49∗
±0.16

Adas0.95 94.62±0.10 - - 94.61∗
±0.11

Adas0.975 95.03±0.12 - - 95.02±0.06

RMSProp 92.15±0.20 - - 91.34±0.59

SLS 93.49±0.14 - - 93.56±0.20

(h) ResNeXt50 on CIFAR100
Optimizer Author RS BO autoHyper

AdaBound 71.43±0.30 72.50±0.28 72.27±0.30 71.20±0.34

AdaGrad 65.66±0.36 62.32±0.15 66.07±0.38 66.03±0.56

Adam 70.32±0.46 70.33±0.36 69.95±0.40 69.12±0.16

Adas0.9 74.43±0.14 73.75±0.30 73.97±0.16 74.41∗
±0.26

Adas0.8 72.41±0.16 - - 72.00∗
±0.44

Adas0.95 75.95±0.26 - - 75.63∗
±0.12

Adas0.975 76.46±0.24 - - 76.58±0.21

RMSProp 69.45±1.17 - - 67.17±0.70

SLS 72.08±0.43 - - 71.82±0.22

(i) DenseNet121 on CIFAR10
Optimizer Author RS BO autoHyper

Adas0.8 91.28±0.23 - - 91.59∗
±0.25

Adas0.95 93.51±0.20 - - 93.33∗
±0.24

Adas0.975 93.83±0.20 - - 93.47±0.24

RMSProp 91.29±0.20 - - 91.83±0.30

SLS 93.16±0.13 - - 93.36±0.18

(j) DenseNet121 on CIFAR100
Optimizer Author RS BO autoHyper

Adas0.8 70.63±0.33 - - 71.01∗
±0.28

Adas0.95 74.22±0.24 - - 73.98∗
±0.33

Adas0.975 74.10±0.47 - - 73.97±0.36

RMSProp 66.61±0.58 - - 68.13±0.00

SLS 69.44±0.61 - - 70.25±0.19
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(a)

Figure E.5: Results of the (a) ablative study and (b) Random Search comparison experiments. Titles
below plots indicate what experiment the above plots refers to. Legend labels marked by ‘*’ (solid
lines) show results for autoHyper generated learning rates and dotted lines are the (a) baselines and
(b) Random Search results.
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Figure E.6: Test accuracy and trianing loss for EfficientNetB0 applied to CIFAR100. Importantly,
EfficientNetB0 is an unstable network architecture in relation to our response surface and yet our
method, autoHyper, is still able to converge and achieve competitive performance.

Figure E.7: Demonstration of the importance of initial learning rate in scheduled learning rate case,
for ResNet18 applied on CIFAR10, using Step-Decay method with step-size = 25 epochs and decay
rate = 0.5. As before, the dotted line represents the baseline results, with initial learning rate =
0.1, and the solid line represents the results using autoHyper’s suggested learning rate of 0.008585.
These results highlight the importance of initial learning rate, even when using a scheduled learning
rate heuristic, and demonstrates the importance of the additional step-size and decay rate hyper-
parameters. Despite better initial performance from the autoHyper suggest learning rate, the step-
size and decay rate choice cause the performance to plateau too early.
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Figure E.8: Full results of CIFAR100, TinyImageNet, and ImageNet experiments. Top-1 test ac-
curacy and training losses are reported for CIFAR100 experiments and top-1 and top-5 test and
training accuracies are reported for TinyImageNet and ImageNet. Titles below the figures indicate
to which experiments the above figures belong to. As before, lines indicated by the ‘*’ (solid lines),
are results using initial learning rate as suggested by autoHyper.
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Figure E.9: Top-1 Test Accuracy and Test Loss for ResNet34 Experiments applied on TinyIma-
geNet. As before, lines indicated by the ‘*’ (solid lines), are results using initial learning rate as
suggested by autoHyper. These results visualize the inconsistency in tracking test loss as a metric
to optimize final testing accuracy. This can be seen, for example, when looking at the test loss and
test accuracy plots for Adam, where the test loss for the baseline is lower than that of the autoHy-
per suggested results but autoHyper achieves better test accuracy. These results also highlight the
instability of tracking testing accuracy or less instead of the metric defined in Equation 5.
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