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Abstract
In this paper, prior knowledge expressed in the form of polyhedral sets is introduced into the train-
ing of a deep neural network. This approach to using prior knowledge extends earlier work that
applies Farkas’ Theorem of the Alternative to linear support vector machine classifiers. Through
this extension, we gain the ability to sculpt the decision boundary of a neural network by training on
a set of discrete data while simultaneously fitting an uncountable number of points that live within
a polytope that is defined by prior knowledge. We demonstrate viability of this approach on both
synthetic and benchmark data sets.

1. Introduction

Prior knowledge allows one to regularize solutions of network models using information that is ei-
ther implicit in observations, or known from experience. In this work, we incorporate prior knowl-
edge that is represented as polyhedral sets into deep neural networks. Our approach builds on the
technique introduced in [4] that applies a consequence of Farkas’ Lemma, which concerns solv-
ability of linear systems, to linear support vector machines (SVM). Prior knowledge expressed as
polyhedral sets is quite general: one asserts that entire regions are contained within one of two linear
half-spaces.

When training networks using prior knowledge, one uses a hybrid of “virtual” and instance-
based information [14]. Since prior knowledge exists in a wide variety of forms, significant effort
has been spent developing techniques that incorporate this extra information into existing machine
learning models [3, 10]. Our paper is another contribution to this effort. In addition to polyhedral
sets, other forms of prior knowledge include logical rules [15], invariance under group transforma-
tions [13], and radial symmetry [6].

Contributions In this paper, we extend polyhedral knowledge to deep learning architectures.
Polyhedral knowledge is a parsimonious description of entire regions containing an uncountable
number of points. These regions supplement training data. To our knowledge, this is the first attempt
to use knowledge in this way for deep networks. Our approach can be used for data augmentation,
model robustness, applications of fairness, and regularization.

Notation All vectors are column vectors. If x ∈ Rn, the ith entry of x is denoted xi. The notation
A ∈ Rm×n represents a matrix, and Ai represents row i of the matrix A. e is a vector of ones. A
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hyperplane in Rn is specified by a vector w ∈ Rn and a scalar γ ∈ R. The hyperplane defined
by the pair (w, γ) is the set of x ∈ Rn that satisfy w′x = γ. A convex polyhedral region in Rn is
described by all x ∈ Rn that satisfy a linear inequality Bx ≤ b, where B ∈ Rm×n and b ∈ Rm.
Unless otherwise specified, we will assume such sets are nonempty and convex.

2. Linear Support Vector Machines and Polyhedral Prior Knowledge

Our formulation of polyhedral knowledge for neural networks adapts the technique introduced for
use with linear support vector machines in [4]. For reasons of space, we refer reader to that reference
for details. The following proposition is the fundamental result of polyhedral knowledge for linear
support vector machines.

Proposition 1 LetK := {x : Bx ≤ b} be nonempty. ThenK lies in the halfspace {x : x′w ≥ γ + 1}
if and only if there exists u ∈ Rm that satisfies B′u+ w = 0, b′u+ γ + 1 ≤ 0, u ≥ 0.

The proof of this proposition combines Farkas’ Lemma with the observation that the statement in
the proposition is equivalent to the statement, “Bx ≤ b, x′w < γ+1 has no solution.” Equivalently,
for a two class SVM, Bx ≤ b implies that the label of x is +1. A similar kind of statement holds
for the points with label −1. The set {x : Bx ≤ b} is a polytope, and in the context of training a
network, we call it a knowledge set. Figure 1 illustrates the effect that polyhedral prior knowledge

Figure 1: Example of a soft margin hyperplane found by solving a standard SVM (left), an SVM with one
polyhedral knowledge set (middle) and an SVM with two polyhedral knowledge sets (right).

has on the SVM separating hyperplane. In the examples shown, two linearly separable sets live in
R2, and they are used to train a linear classifier. A segment of the decision boundary is shown. The
middle and right axes show the data as well as the knowledge sets, along with a segment of the
decision boundary found by solving a linear program [4]. In contrast to a standard linear classifier,
regions and discrete points serve as part of the training set. Note that the program does not use the
vertices of the regions, which are left implicitly defined.

3. Polyhedral Knowledge for Neural Networks

We now show how to encode polyhedral knowledge in a way that is compatible with a neural
network. We adapt the linear SVM theory of Section 2 to the training of the network. Our data
consist of points living in two disjoint classes, A+ and A−, with corresponding labels y ∈ {1,−1},
both of which live in the input space, Rn.
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Embedding Let Ψ : Rn → Rh denote the mapping from the input space to the penultimate layer
of a feed-forward network, and let Φ : Rn → R denote the mapping from the input space to the final
layer of the network. For binary classification, one trains by minimizing

∑
i ‖Φ(Ai)− yi‖p. The

function Ψ is an embedding function, for it maps points in the input space to Rh. Assume the trained
network is an ideal classifier. Since the last layer of the network is linear, we have that Ψ(A+) and
Ψ(A−) are linearly separable in Rh. That is, the final layer of the trained network describes w ∈ Rh

and γ ∈ R that define a separating hyperplane for the sets Ψ(A+) and Ψ(A−).

Polyhedral knowledge Polyhedral knowledge is expressed as a collection of inequalities that
apply to points in Rn (the input space). We need to create a collection of new inequalities that holds
for the embedding of our points in Rh. Let B and b characterize one of the knowledge sets in Rn

through the inequality Bx ≤ b. There is equivalence between the set of x that satisfy Bx ≤ b, and
the set of extremal vertices of this set. Let V denote the extremal vertices of our knowledge set.
Now consider the embedding of these points, namely Ψ(V ). The convex hull of Ψ(V ) is the set of
ξ ∈ Rh that satisfy Fξ ≤ f for some matrix F and column vector f . We will let (F, f) represent
the embeddings of the knowledge set (B, b).
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Figure 2: Incorporating prior knowledge into a neural network relies on the function Ψ that maps the ex-
tremal vertices of the knowledge sets, expressed in the input space of dimension n, into the em-
bedding space of dimension h. Qhull is used to construct embedded knowledge sets.

Network loss A linear SVM solves a constrained program, but network training optimizes an
unconstrained program. To adapt the constrained program to our network, wherever a constraint
is desired, we add to the network loss function a penalty term, unless the constraint is variable
nonnegativity, in which case we replace the variable with its square. The network loss function has
three types of terms: one for model fit, one each for knowledge sets of the +1 and the −1 classes.

Let (Bi, bi) and (Cj , cj) define knowledge sets for +1 and −1 classes, respectively. Let Vi
denote the vertices of the polytope defined by (Bi, bi), and letW j denote the vertices of the polytope
defined by (Cj , cj). Let (F i, f i) and (Gj , gj) denote the inequalities that define the convex hulls of
Ψ(V i) and Ψ(W j), respectively. We represent the weight and bias parameters of the last layer of
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our network using w and γ. The complete form of the network’s loss function is:

L{(F i,fi)},{(Gj ,gj)}(A, y) :=
∑
m

‖Φ(Am)− ym‖+ν

 ∑
0≤i<k

∥∥∥F i′ (ui)2 + w
∥∥∥+ (f i

′ (
ui
)2

+ γ + 1)++

∑
0≤j<`

∥∥∥Gj ′ (vj)2 − w∥∥∥+ (gj
′ (
vj
)2 − γ + 1)+

 ,

where ν ≥ 0 is a parameter. The only structural difference between a standard network and the one
described here is the addition of the parameters ui and vj , along with several terms that act on the
final layer. The best choice of norm to use in the loss function remains an open question, and we
were guided by empirical results. We experimented with a variety of alternatives, including a sum
of squared Euclidean norms.

Algorithm 1 Forward evaluation of the network loss function, L. The knowledge sets (Bi, bi) and (Cj , cj)

are fixed attributes of the network, as are the extreme vertices of these sets, denoted V i and W j , respectively.
The network contains parameters ui and vj that need to be trained with backpropagation. These weights do
not interact with the data directly, but only with the knowledge sets and parameters of the last layer. Convex
hulls are found by calling Qhull[2].

1: procedure L(A, y)
2: l0 ←

∑
m ‖Φ(Am)− ym‖ . Standard loss applied to data and label

3: (F i, f i)← Qhull(Ψ(V i)) . Qhull constructs the convex hull of embedded vertices
4: (Gj , gj)← Qhull(Ψ

(
W j
)
)

5: l1 ←
∑

0≤i<k

∥∥∥F i′ (ui
)2

+ w
∥∥∥+ (f i′ (ui

)2
+ γ + 1)+ . Knowledge term for

{
(Bi, bi)

}
6: l2 ←

∑
0≤j<`

∥∥∥Gj ′ (vj)2 − w∥∥∥+ (gj
′ (
vj
)2 − γ + 1)+ . Knowledge term for

{
(Cj , cj)

}
7: return l0 + ν(l1 + l2)

8: end procedure

Algorithm 1 provides details of the foreward evaluation of the network loss function. For the
three terms l0, l1 and l2, backpropagation in response to l0 is standard. For l1, the matrices F i

and the vectors f i are treated as constants. This means the gradient with respect to ui, w and γ is
elementary to compute. A similar statement holds for l2.

4. Numerical Experiments

In this section, we report results of several numerical experiments to demonstrate feasibility of the
foregoing. Our implementation uses the software libraries PyTorch, NumPy, SciPy and Qhull [2, 8,
11, 16]. The compute resource for all examples was a 2.3 GHz 8-Core Intel Core i9. All models
trained using the Adam optimizer, and the learning rate was held fixed at 0.001.

2D Examples In Figure 3 (first row), we consider four points in the plane arranged in an XOR
pattern and four knowledge sets, also arranged in an XOR pattern. The XOR configuration is inter-
esting because it is not linearly separable. Also note that three of the knowledge sets do not contain
any data. The data and arrangement here approximates a similar example used to demonstrate poly-
hedral knowledge for nonlinear kernel SVMs in [5]. The top left and middle right axes show the
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values of the network’s functional Φ evaluated on a subset of the plane, and the middle left and far
right axes show sign Φ on that same subset.

The Figure shows the results of training a network with two hidden layers, each of dimension 6.
In the top left pair, no knowledge was used during training, and while the data are all correctly
classified, the boundaries of the knowledge sets are violated. In the top right pair, we trained a
network having the same structure, except that for this image knowledge was added to the network.
The data are all still correctly classified, but the decision boundary has been shifted, and it has
essentially no intersection with the knowledge sets. The top left axes converged after 1000 epochs.
The top right axes trained for 5000 epochs. Both required less than 1 minute of CPU time to train.

Figure 3: The top row shows results of training a 2-layer network with hidden dimension 6 on 4 points of
data arranged in an XOR configuration without (left) and with (right) knowledge. The bottom
row shows the same, but for a checkerboard pattern. The boundaries of the checkerboard are
approximately learned, even though there are no additional observations added to the training.

Figure 3 (second row) shows the results of a similar experiment. In this figure, the network
consists of two layers, with hidden dimension 160 and embedding dimension 20. The data consists
of 16 points, arranged in a 4× 4 checkerboard pattern. The knowledge consists of three essentially
disjoint squares for each class. As before, neither the knowledge sets nor the data are linearly
separable when represented in the plane.

In the left pair of axes, 16 data points were used to train a network, and no knowledge was
present. The data are all correctly classified, but boundaries are unconstrained. In the right pair
of axes, the six knowledge sets are used as well as 16 points to train the network. The network
correctly classifies all the data, and it also approximates the desired boundaries that the knowledge
sets describe. Note that the vertices of the knowledge sets are not included in the training set. The
network of the left pair of axes converged after 1000 epochs, the network in the right pair ran for
20000 epochs, and it required 160 seconds to train.
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MNIST One-Shot Learning Experiments We report here the results of one-shot learning applied
to the MNIST dataset. For these experiments, we fed the model only 1 datapoint for each class, and
tested discriminatory power of a binary classifier between digit pairs (1, 7) and (4, 9). For each digit,
the associated knowledge provided to the neural net was generated by doing 10-means clustering on
the entire MNIST dataset terms of that digit, and generating the convex hull of those points. On this
task, the addition of this knowledge provides a significant performance improvement. As a result,
we believe that knowledge-based neural net classifiers could be a very powerful tool for few-shot
learning.

Table 1: An example of polyhedral knowledge applied to a sample of MNIST data. Only 1 data point is fed
into the model, and the knowledge is the convex hull of 10 means from k-mean clustering the full
MNIST dataset.

Digits No Knowledge With Knowledge
Prec AUC Prec AUC

1 vs 7 0.951± 0.071 0.895± 0.061 0.980± 0.008 0.952± 0.002
4 vs 9 0.628± 0.072 0.597± 0.044 0.632± 0.006 0.629± 0.006

5. Conclusion and Future Work

We have presented a knowledge-based formulation that allows one to train neural networks using
a hybrid of data and polyhedral sets. The classifier is obtained by using the network to embed
polytopes that live in the input space, and then to directly apply the theory of prior polyhedral
knowledge for linear SVMs to the last layer. In doing this, we take advantage of the fact that
the last layer of a network can be treated as a linear classifier, and so the previous layers act as a
kernel, which we learn during the course of training. It is possible to modify existing networks to
accommodate this type of knowledge by adding a small number of variables to the network and
straightforward modifications to the network loss function.

Given the appeal to convexity theory in our framework, future work can explore the question of
whether input convex neural networks [1] can benefit the embedding of polytopes. With our current
method, there is no special structure imposed on the embedding function Ψ, which is implemented
using Qhull. A practical alternative implementation could sample from each polytope’s convex hull,
and then use the samples to more directly control how the polytopes embed. Recent work [7, 9, 12]
may facilitate using a black-box process for the construction of the convex hull of embedded vertices
as an approximated differentiable process. In this way, the base network will synergize with the
convex hull construction smoothly during the end-to-end gradient-based optimization process.
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