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Abstract
Since its invention in 2014, the Adam optimizer [12] has received tremendous attention. On one
hand, it has been widely used in deep learning and many variants have been proposed, while on the
other hand their theoretical convergence property remains to be a mystery. It is far from satisfactory
in the sense that some studies require strong assumptions about the updates, which are not necessarily
applicable in practice, while other studies still follow the original problematic convergence analysis of
Adam, which was shown to be not sufficient to ensure convergence. Although rigorous convergence
analysis exists for Adam, they impose specific requirements on the update of the adaptive step size,
which are not generic enough to cover many other variants of Adam. To address theses issues, in this
extended abstract, we present a simple and generic proof of convergence for a family of Adam-style
methods (including Adam, AMSGrad, Adabound, etc.). Our analysis only requires an increasing or
large "momentum" parameter for the first-order moment, which is indeed the case used in practice,
and a boundness condition on the adaptive factor of the step size, which applies to all variants of
Adam under mild conditions of stochastic gradients. We also establish a variance diminishing result
for the used stochastic gradient estimators. Indeed, our analysis of Adam is so simple and generic
that it can be leveraged to establish the convergence for solving a broader family of non-convex
optimization problems, including min-max, compositional, and bilevel optimization problems. For
the full (earlier) version of this extended abstract, please refer to [11].

1. Introduction

Stochastic adaptive methods originating from AdaGrad for convex minimization [7, 18] have attracted
tremendous attention for stochastic non-convex optimization [2, 13, 17, 23, 28, 32, 34]. Adam [12] is
an important variant of AdaGrad, which is widely used in practice for training deep neural networks,
and many variants of Adam were proposed for improving its performance, e.g. [14, 17, 31]. Its
analysis for non-convex optimization has also received a lot of attention [3]. For more generality, we
consider a family of Adam-style algorithms. The update is given by

Adam-style:


vt+1 = (1− βt)vt + βtOF (xt),

ut+1 = ht(OF (x0), . . . ,OF (xt)),

xt+1 = xt − ηt
vt+1√

ut+1 +G0
, t = 0, . . . , T.

(1)

where ht denotes an appropriate mapping function whose specific choices are given later.
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One criticism of Adam is that it might not converge for some problems with inappropriate
momentum parameters. In particular, the authors of AMSGrad [21] show that Adam with small
momentum parameters can diverge for some problems. However, we notice that the failure of Adam
shown in AMSGrad [21] and the practical success of Adam come from an inconsistent setting
of the momentum parameter for the first-order moment. In practice, this momentum parameter
(corresponding to 1− βt in (1)) is usually set to a large value (e.g., 0.9). However, in the failure case
analysis of Adam [21] and many existing analysis of Adam and their variants [3, 14, 17, 22, 31],
such momentum parameter is set as a small value or a decreasing sequence. We provide the first
analysis of Adam and other variants with a more natural increasing or large momentum parameter
for the first-order moment.

Several recent works have tried to prove the (non)-convergence of Adam. In particular, Zou et al.
[35] establish some sufficient condition for ensuring Adam to converge. In particular, they choose to
increase the momentum parameter for the second-order moment and establish a convergence rate
in the order of log(T )/

√
T , which was similarly established in [6] with some improvement on the

constant factor. Zaheer et al. [31] show that Adam with a sufficiently large mini-batch size can
converge to an accuracy level proportional to the inverse of the mini-batch size. Chen et al. [3] analyze
the convergence properties for a family of Adam-style algorithms. However, their analysis requires
a strong assumption of the updates to ensure the convergence, which does not necessarily hold as
the authors give non-convergence examples. Different from these works, we give an alternative way
to ensure Adam converge by using an increasing or large momentum parameter for the first-order
moment without any restrictions on the momentum parameter for the second-order moment and
without requiring a large mini-batch size. This seems more natural and consistent with the practice.
Indeed, our analysis is applicable to a family of Adam-style algorithms, and is agnostic to the method
for updating the normalization factor in the adaptive step size as long as it can be upper bounded.
The large momentum parameter for the first-order moment is also the key part that differentiates our
convergence analysis with existing non-convergence analysis of Adam [3, 12, 21], which require the
momentum parameter for the first-order moment to be decreasing to zero or sufficiently small.

A key in the analysis is to carefully utilize the design of the stochastic estimator of the gradient.
Traditional methods that simply use an unbiased gradient estimator of the objective function are
not applicable to many problems and also suffer slow convergence due to large variance of the
unbiased stochastic gradients. Recent studies in stochastic non-convex optimization have proposed
better stochastic estimators of the gradient based on variance reduction technique (e.g., SPIDER,
SARAH, STORM) [5, 9, 20, 26]. However, these estimators sacrifice generality as they require that
the unbiased stochastic oracle is Lipschitz continuous with respect to the input, which prohibits many
useful tricks in machine learning for improving generalization and efficiency (e.g., adding random
noise to the stochastic gradient [19], gradient compression [1, 27, 33]). In addition, they also require
computing stochastic gradients at two points per-iteration, making them further restrictive.

In Adam-style methods, the stochastic estimators are based on the moving average. In order
to generate a sequence of iterates {x0,x1, . . . ,xT }, we usually need to track another sequence of
{g(x0), g(x1), . . . , g(xT )}, where g is a Lipschitz continuous mapping that is useful for constructing
the gradient of the objective function. However, g(xt) can be only accessed through an unbiased
stochastic oracle denoted by Og such that for any input x, it returns a random variable Og(x)
satisfying E[Og(x)] = g(x). For more generality, we do not assume that Og is Lipschitz continuous
with respect to the input even g is Lipschitz continuous. One example of such stochastic oracle is
Og(x) = g(x; ζ) + ξ, where Eζ [g(x; ζ)] = g(x) and ξ is a zero-mean random noise (e.g., zero-mean
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Table 1: Comparison with previous results. "mom. para." is short for momentum parameter. 1st and
2nd are short for first order and second order, respectively. "-" denotes no strict requirements
and applicable to a range of updates. ↑ represents increasing as iterations and ↓ represents
decreasing as iterations. ε denotes the target accuracy level for the objective gradient norm,
i.e., E[‖∇F (x)‖] ≤ ε.

Problem Method batch size
↑ or ↓

1st mom. para.
↑ or ↓

2nd mom. para.
Converge?

This work O(1) ↑ - Yes
[12] O(1) ↓ constant No

Non-convex [3] O(1) Non-↑ - No
(Adam-family) [31] O(1/ε2) constant ↑ Yes

[35] O(1) constant ↑ Yes
[6] O(1) constant ↑ Yes

Gaussian noise). Therefore, the variance-reduced stochastic estimators based on SPIDER, SARAH or
STORM are not applicable. Instead, we will consider another stochastic estimator based on moving
average, i.e., we maintain and update a sequence of {z1, . . . , zT } by

zt+1 = (1− βt)zt + βtOg(xt), t = 0, . . . , T. (2)

We refer to this estimator sequence for tracking {g(x1), . . . , g(xT )} as stochastic moving average
estimator (SEMA) in contrast to SPIDER/SARAH/STORM. It the literature, stochastic methods that
employ the above estimator are usually referred to as momentum methods [3, 4, 16], with 1 − βt
called the "momentum" parameter.

Besides in Adam-style methods, SEMA has been widely used in other stochastic non-convex
optimization methods such as in stochastic compositional minimization [8, 10, 24, 25]. Although
the SEMA has been widely used in practice, its power for solving a broad range of stochastic
optimization problems has not been fully discovered. We present a simple and intuitive proof of
convergence of a family of Adam-style algorithms with an increasing or large momentum parameter
for the first-order moment, which include many variants such as Adam, AMSGrad, Adabound,
AdaFom, etc. A surprising result is that Adam with an increasing or large momentum parameter
for the first-order moment indeed converges at the same rate as SGD without any modifications
on the update or restrictions on the "momentum" parameter for the second-order moment. In our
analysis, βt is decreasing in the same order of step size, which yields an increasing "momentum"
parameter 1−βt. This increasing momentum parameter is more natural than the decreasing (or small)
momentum parameter, which is indeed the reason that makes Adam diverge on some examples [21].
Our increasing/large "momentum" parameter 1− βt is also consistent with that the large value close
to 1 used in practice [12]. To the best of our knowledge, this is the first time that Adam was shown
to converge for non-convex optimization with a more natural large "momentum" parameter for the
first-order moment. We also prove that averaged variance of the stochastic estimator of the gradient
decreases over time. A comparison of the results in this paper with existing results is summarized
in Table 1. Moreover, our analysis can be extended to analyze the convergence of Adam-style
algorithms for a broader family of non-convex optimization problems, including compositional
optimization, min-max optimization and bilevel optimization problems [11].
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2. Notations and Preliminaries

Notations and Definitions. Let ‖ · ‖ denote the Euclidean norm of a vector or the spectral norm
of a matrix. Let ‖ · ‖F denote the Frobenius norm of a matrix. A mapping h is L-Lipschitz
continuous iff ‖h(x) − h(x′)‖ ≤ L‖x − x′‖ for any x,x′ ∈ Rd. A function F is called L-
smooth if its gradient ∇F (·) is L-Lipschitz continuous. A function g is λ-strongly convex iff
g(x) ≥ g(x′) + ∇g(x′)>(x − x′) + λ

2‖x − x′‖2 for any x,x′. A function g(y) is called λ-
strongly concave if −g(y) is λ-strongly convex. For a differentiable function f(x,y), we let
∇xf(x,y) and ∇yf(x,y) denote the partial gradients with respect to x and y, respectively. Denote
by∇f(x,y) = (∇xf(x,y)>,∇yf(x,y)>)>. Let ◦ denote an element-wise product. We denote by
x2,
√
x an element-wise square and element-wise square-root, respectively.

We will consider non-convex minimization (4), which has broad applications in machine learning.
This paper focuses on theoretical analysis and our goal for these problems is to find an ε-stationary
solution of the primal objective function F (x) by using stochastic oracles.

Definition 1 Consider a differentiable function F (x), a randomized solution x is called an ε-
stationary point if it satisfies ‖∇F (x)‖ ≤ ε.
Before ending this section, we present the widely used stochastic momentum method for solving
non-convex minimization problem minx∈Rd F (x) through an unbiased stochastic oracle that returns
a random variable OF (x) for any x such that E[OF (x)] = ∇F (x). For solving this problem, the
stochastic momentum method (in particular stochastic heavy-ball (SHB) method) that employs the
SEMA update is given by {

vt+1 = (1− β)vt + βOF (xt)

xt+1 = xt − ηvt+1, t = 0, . . . , T.
(3)

where v0 = OF (x0). In the literature, 1− β is known as the momentum parameter and η is known
as the step size or learning rate. It is notable that the stochastic momentum method can be also
written as zt+1 = βzt− ηOF (xt), and xt+1 = xt + zt [29], which is equivalent to the above update
with some parameter change shown in Appendix A. The above method has been analyzed in various
studies [10, 16, 29, 30]. Nevertheless, we will give a unified analysis for the Adam-family methods
with a much more concise proof, which covers SHB as a special case. A core to the analysis is the
use of a known variance recursion property of the SEMA estimator stated below.

Lemma 2 (Variance Recursion of SEMA)[Lemma 2, [24]] Consider a moving average sequence
zt+1 = (1−βt)zt+βtOh(xt) for tracking h(xt), where Et[Oh(xt)] = h(xt) and h is a L-Lipschitz
continuous mapping. Then we have

Et[‖zt+1 − h(xt)‖2] ≤ (1− βt)‖zt − h(xt−1)‖2 + 2β2
t Et[‖Oh(xt)− h(xt)‖2] +

L2‖xt − xt−1‖2

βt
.

where Et denotes the expectation conditioned on all randomness before Oh(xt).

We refer to the above property as variance recursion (VR) of the SEMA.

3. A Novel Analysis of Adam with a Large Momentum Parameter

In this section, we consider the standard stochastic non-convex minimization, i.e.,

min
x∈Rd

F (x), (4)
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Table 2: Different Adam-style methods and their satisfactions of Assumption 2
method update for ht Additional assumption cl and cu

SHB ut+1 = 1, G = 0 - cl = 1, cu = 1

Adam ut+1 = (1− β′t)ut + β′tO2
F (xt) ‖OF ‖∞ ≤ G cl ≥ 1

G+G0
, cu ≤ 1

G0

AMSGrad
u′t+1 = (1− β′t)u′t + β′tO2

F (xt)
ut+1 = max(ut,u

′
t+1)

‖OF ‖∞ ≤ G cl ≥ 1
G+G0

, cu ≤ 1
G0

AdaFom
(AdaGrad)

ut+1 = 1
t+1

∑t
i=0O2

F (xi) ‖OF ‖∞ ≤ G cl ≥ 1
G+G0

, cu ≤ 1
G0

Adam+ ut+1 = ‖vt+1‖ ‖OF ‖ ≤ G cl ≥ 1√
G+G0

, cu ≤ 1
G0

Adabound
u′t+1 = (1− β′t)u′t + β′tO2

F (xt)
ut = Π[1/c2u,1/c

2
l ][u

′
t+1], G0 = 0

- cl = cl, cu = cu

where F is smooth and is accessible only through an unbiased stochastic oracle. These conditions
are summarized below for our presentation.

Assumption 1 Regarding problem (4), the following conditions hold:

• ∇F is LF Lipschitz continuous;
• F is accessible only through an unbiased stochastic oracle that returns a random variable OF (x)

for any x such that E[OF (x)] = ∇F (x), and OF has a variance bounded by E[‖OF (x) −
∇F (x)‖2] ≤ σ2(1 + c‖∇F (x)‖2) for some c > 0.

Remark: Note that the variance bounded condition is slightly weaker than the standard condition
E[‖OF (x)−∇F (x)‖2] ≤ σ2. An example of a random oracle that satisfies our condition but not
the standard condition is OF (x) = d · ∇F (x) ◦ ei, where i ∈ {1, . . . , d} is randomly sampled and
ei denotes the i-th canonical vector with only i-th element equal to one and others zero. For this
oracle, we can show that E[OF (x)] = ∇F (x) and E[‖OF (x)−∇F (x)‖2] ≤ (d− 1)‖∇F (x)‖2.

In the following we present a novel analysis of Adam-style methods based on VR of SEMA.
The update rule of Adam-style rules has been given in (1). A key to our convergence analysis of
Adam-style algorithms is the boundness of the step size scaling factor st = 1/(

√
ut+1 +G0), which

is presented as an assumption below for more generality. We denote by η̃t = ηtst.
Assumption 2 For the Adam-style algorithms in (1), we assume that st = 1/(

√
ut+1 + G0) is

upper bounded and lower bounded, i.e., there exists 0 < cl < cu such that cl ≤ ‖st‖∞ ≤ cu.

Remark: Under the standard assumption ‖OF (x)‖∞ ≤ G [12, 21], we can see many variants of
Adam will satisfy the above condition. Examples include Adam [12], AMSGrad [21], AdaFom [3],
Adam+ [15], whose ut shown in Table 2 all satisfy the above condition under the bounded stochastic
oracle assumption. Even if the condition ‖OF (x)‖∞ ≤ G is not satisfied, we can also use the
clipping idea to make ut bounded. This is used in Adabound [17], whose ut is given by

Adabound: u′t+1 = (1− β′t)u′t + β′tO2
F (xt), ut = Π[1/c2u,1/c

2
l ][ut+1], G0 = 0,

where cl ≤ cu and Π[a,b] is a projection operator that projects the input into the range [a, b]. We
summarize these updates and their satisfactions of Assumption 2 in Table 2. Note that SHB also
satisfies Assumption 2 automatically.

To prove the convergence of the update (1). We first present a key lemma.
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Lemma 3 For xt+1 = xt − η̃t ◦ vt+1 with ηtcl ≤ η̃t,i ≤ ηtcu and ηtLF ≤ cl/(2c2
u), we have

F (xt+1) ≤ F (xt) +
ηtcu

2
‖∇F (xt)− vt+1‖2 −

ηtcl
2
‖∇F (xt)‖2 −

ηtcl
4
‖vt+1‖2.

With the above lemmas, we can establish the following convergence of Adam-style algorithms.

Theorem 1 Let ∆t = ‖vt+1−∇F (xt)‖2 and F (x0)−F∗ ≤ ∆F where F∗ = min
x
F (x). Suppose

Assumptions 1 and 2 hold. With βt = β ≤ ε2cl
12σ2cu

, ηt = η ≤ min{ β
√
cl

2LF

√
c3u
, 1√

2LF cu
, cl

2c2uLF
},

T ≥ max{6∆0cu
βε2cl

, 12∆F
ηε2cl
}, we have

E

[
1

T + 1

T∑
t=0

‖∇F (xt)‖2
]
≤ ε2, E

[
1

T + 1

T∑
t=0

∆t

]
≤ 2ε2.

Remark: We can see that the Adam-style algorithms enjoy an oracle complexity of O(1/ε4) for
finding an ε-stationary solution. To the best of our knowledge, this is the first time that the Adam
with a large momentum parameter 1− β was proven to converge. One can also use a decreasing step
size ηt ∝ 1/

√
t and decreasing βt = 1/

√
t (i.e, increasing momentum parameter) and establish a

rate of Õ(1/
√
T ) as stated below.

Theorem 2 Let ∆t = ‖vt+1−∇F (xt)‖2 and F (x0)−F∗ ≤ ∆F where F∗ = min
x
F (x). Suppose

Assumption 1 holds. With c1 = min(1, 1
4cσ2 ), βt = cl

8σ2ccu
√
t+1

, ηt = min{ βt
√
cl

2LF

√
c3u
, 1

2LF cu
, cl

2c2uLF
}

and T ≥ Õ(
c5uc

2L2
F σ

4∆2
F /c

5
l +∆2

0c
2c4uσ

4/c4l +1/c

ε4
), we have

E

[
1

T + 1

T∑
t=0

‖∇F (xt)‖2
]
≤ O(ε2), E

[
1

T + 1

T∑
t=0

∆t

]
≤ O(ε2).

4. Conclusion & Discussion

In this paper, we have provided a simple and generic convergence analysis for a family of Adam-style
methods for solving non-convex minimization problems. We leveraged the variance recursion of the
stochastic moving average estimator and established the convergence of practically used Adam and
its variants. Our results bring some new insights to make the Adam method converge or convergence
better.

Indeed, the Lemma 3 paves the way for the convergence analysis of many Adam-style algorithms
for solving a broader family of problems, including non-convex strongly concave min-max optimiza-
tion problems, non-convex stochastic compositional optimization problems, and non-convex bilevel
optimization problems. It is also worth mentioning that we can also prove a faster convergence of the
Adam-style algorithms under a strong Polyak-Łojasiewicz condition. We will explore this direction
and examine how it will affect the convergence rate in the future work.

Finally, it is worth mentioning that the oracle complexities established in this paper are optimal
under a general stochastic unbiased oracle model. In addition, one can also replace the variance
recursion of the stochastic moving average estimator by that of other stochastic estimators (e.g.
STORM) to prove an optimal convergence under Lipchitz continuous oracle model.
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Appendix
Appendix A. Stochastic Momentum Method

In the literature [29], the stochastic heavy-ball method is written as:

SHB:

{
v′t+1 = β′v′t − η′OF (xt)

xt+1 = xt + vt+1, t = 0, . . . , T.
(5)

To show the resemblance between the above update and the one in (3), we can transform them into
one sequence update:

(3) : xt+1 = xt − ηβOF (xt) + (1− β)(xt − xt−1)

SHB: xt+1 = xt − η′OF (xt) + β′(xt − xt−1).

We can see that SHB is equivalent to (3) with η′ = ηβ and β′ = (1− β).

Appendix B. Proof of Lemma 3

Proof Due to the smoothness of F , we can prove that under ηtLF ≤ cl/(2c2
u)

F (xt+1) ≤ F (xt) +∇F (xt)
>(xt+1 − xt) +

LF
2
‖xt+1 − xt‖2

= F (xt)−∇F (xt)
>(η̃t ◦ vt+1) +

LF
2
‖η̃t ◦ vt+1‖2

≤ F (xt) +
1

2
‖
√
η̃t ◦ (∇F (xt)− vt+1)‖2 − 1

2
‖
√
η̃t ◦ ∇F (xt)‖2 + (

LF
2
‖η̃t ◦ vt+1‖2 −

1

2
‖
√
η̃t ◦ vt+1‖2)

≤ F (xt) +
ηtcu

2
‖∇F (xt)− vt+1‖2 −

ηtcl
2
‖∇F (xt)‖2 +

η2
t c

2
uLF − ηtcl

2
‖vt+1‖2

≤ F (xt) +
ηtcu

2
‖∇F (xt)− vt+1‖2 −

ηtcl
2
‖∇F (xt)‖2 −

ηtcl
4
‖vt+1‖2.

Appendix C. Proof of Theorem 1

Proof By applying Lemma 2 to vt+1, we have

Et[∆t+1] ≤ (1− β)∆t + 2β2σ2(1 + c‖∇F (xt+1)‖2) +
L2
F ‖xt+1 − xt‖2

β
.

Hence we have,

E

[
T∑
t=0

∆t

]
≤ E

[
T∑
t=0

∆t −∆t+1

β
+ 2βσ2(T + 1) + 2βσ2c

T∑
t=0

‖∇F (xt+1)‖2 +
T∑
t=0

L2
F η

2c2
u‖vt+1‖2

β2

]
.
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Adding the above inequality with Lemma 3, we have

ηcl
2

E

[
T∑
t=0

‖∇F (xt)‖2
]
≤ F (x0)− F∗ −

ηcl
4

T∑
t=0

‖vt+1‖2

+
ηcu
2

E

[
T∑
t=0

∆t −∆t+1

β
+ 2βσ2(T + 1) + 2βσ2c

T∑
t=0

‖∇F (xt+1)‖2 +
T∑
t=0

L2
F η

2c2
u‖vt+1‖2

β2

]

≤ F (w0)− F∗ −
ηcl
4

T∑
t=0

‖vt+1‖2

+
ηcu
2

E

[
T∑
t=0

∆t −∆t+1

β
+ 2βσ2(T + 1) + 4βσ2c

T∑
t=0

‖∇F (xt)‖2 + 4βσ2cL2
F η

2c2
u‖vt+1‖2

+
T∑
t=0

L2
F η

2c2
u‖vt+1‖2

β2

]

Let L2
F η

2c3
u/(2β

2) ≤ cl/8 (i.e., η ≤ β
√
cl

2LF

√
c3u

) and 2βσ2c ≤ cl/(4cu), 2βσ2cL2
F η

2c3
u ≤ cl/8 (i.e,

ηLF ≤ 1√
2cu

), we have

1

T + 1
E

[
T∑
t=0

‖∇F (xt)‖2
]
≤ ∆0cu
βTcl

+
2(F (x0)− F∗)

ηclT
+ 2βσ2 cu

cl
+

1

2

1

T + 1
E

[ T∑
t=0

‖∇F (xt)‖2
]
.

As a result,

1

T + 1
E

[
T∑
t=0

‖∇F (xt)‖2
]
≤ 2∆0cu

βTcl
+

4(F (x0)− F∗)
ηclT

+ 4βσ2 cu
cl
.

With β ≤ ε2cl
12σ2cu

, T ≥ max{6∆0cu
βε2cl

, 12∆F
ηε2cl
}, we conclude the proof for the first part. For the second

part, we have

E

[
T∑
t=0

∆t

]
≤ ∆0

β
+ βσ2(T + 1) +

cl
2cu

E

[ T∑
t=0

‖∇F (xt)‖2
]

+ E

[ T∑
t=0

cl
2cu
‖vt+1‖2

]

≤ ∆0

β
+ 2βσ2(T + 1) +

1

2
E

[ T∑
t=0

‖∇F (xt)‖2
]

+ E

[ T∑
t=0

1

2
∆t

]
As a result,

E

[
1

T + 1

T∑
t=0

∆t

]
≤ 2∆0

βT
+ 4βσ2 + E

[
1

T + 1

T∑
t=0

‖∇F (xt)‖2
]
≤ 2ε2.
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Appendix D. Poof of Theorem 2

Proof By applying Lemma 2 to vt+1, we have

Et[∆t+1] ≤ (1− βt)∆t + 2β2
t σ

2(1 + c‖∇F (xt+1)‖2) +
L2
F ‖xt+1 − xt‖2

βt
. (6)

Hence we have

E

[
T∑
t=0

βt∆t

]
≤ E

[
T∑
t=0

[∆t −∆t+1] +
T∑
t=0

2β2
t σ

2(1 + c‖∇F (xt+1)‖2) +
T∑
t=0

L2
F η

2
t c

2
u‖vt+1‖2

βt

]
.

(7)

Combining this with Lemma 2,

E

[
T∑
t=0

ηtcl
2
‖∇F (xt)‖2

]

≤ E

[
T∑
t=0

[F (xt)− F (xt+1)]−
T∑
t=0

ηtcl
4
‖vt+1‖2

+
η1cu
2β1

[
T∑
t=0

(∆t −∆t+1) +

T∑
t=0

2β2
t σ

2(1 + c‖∇F (xt+1)‖2) +

T∑
t=0

L2
F η

2
t c

2
u‖vt+1‖2

βt

]]

≤ E

[
T∑
t=0

[F (xt)− F (xt+1)]−
T∑
t=0

ηtcl
4
‖vt+1‖2

+
η1cu
2β1

[
T∑
t=0

(∆t −∆t+1) +

T∑
t=0

2β2
t σ

2 +

T∑
t=0

4β2
t σ

2c‖∇F (xt)‖2) +
T∑
t=0

4β2
t σ

2cL2
F η

2
t c

2
u‖vt+1‖2

+
T∑
t=0

L2
F η

2
t c

2
u‖vt+1‖2

βt

]]

≤ E

[
F (x0)− F∗ +

η1cu∆0

2β1
+

2cuη1

β1

T∑
t=0

β2
t σ

2 +
T∑
t=0

ηtcl
4
‖∇F (xt)‖2)

]
,

(8)

where the last inequality holds because 2η1cu
β1

β2
t σ

2c ≤ ηtcl
4 , 2η1

β1
β2
t σ

2cL2
F η

2
t c

3
u ≤

ηtcl
8 and η1

2β1

L2
F η

2
t c

3
u

βt
≤

ηtcl
8 . Hence,

E[

T∑
t=0

ηT cl‖∇F (xt)‖2] ≤ E[

T∑
t=0

ηtcl‖∇F (xt)‖2]

≤ E

[
4(F (x0)− F∗) +

2η1cu∆0

β1
+

T∑
t=0

8cuη1

β1
β2
t σ

2

]

≤ E

[
4(F (x0)− F∗) +

√
cl∆0

LF
√
cu

+

T∑
t=0

4
√
cl

LF
√
cu
β2
t σ

2

]
.

(9)
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Thus,

E

[
1

T + 1

T∑
t=0

‖∇F (xt)‖2
]
≤ E

[
4(F (x0)− F (x∗))

ηT cl(T + 1)
+

∆0

LF
√
clcuηT (T + 1)

+

T∑
t=0

4β2
t

ηTLF
√
clcu(T + 1)

σ2

]

≤ 4∆F

ηT cl(T + 1)
+

∆0

LF
√
clcuηT (T + 1)

+
4σ2

ηTLF
√
clcu(T + 1)

T∑
t=0

β2
t

≤ 4∆F

ηT cl(T + 1)
+

∆0

LF
√
clcuηT (T + 1)

+
c2
l

16ηTσ2LF c2
√
clc5

u(T + 1)
ln(T + 2).

(10)

Setting T ≥ Õ(
c5uc

2L2
F σ

4∆2
F /c

5
l +∆2

0c
2c4uσ

4/c4l +1/c

ε4
), we conclude the proof for the first part. For the

second part, we have

E

[
T∑
t=0

βt∆t

]
≤ ∆0 +

c2
l

16σ4c2c2
u

ln(T + 2) +
1

2
E

[
T∑
t=0

βt‖∇F (xt)‖2
]

+ E

[
T∑
t=0

1

2
βt∆t

]
.

(11)

Then,

E

[
1

T + 1

T∑
t=0

∆t

]
≤ 2∆0

βTT
+

c2
l

8σ4c2c2
u(T + 1)

ln(T + 2) +
1

2
E

[
T∑
t=0

βt‖∇F (xt)‖2
]
, (12)

which concludes the proof of the second part.
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