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Abstract
Restricted isometry property (RIP), essentially stating that the linear measurements are approximately norm-
preserving, plays a crucial role in studying low-rank matrix recovery problem. However, RIP fails in the
robust setting, when a subset of the measurements are grossly corrupted with noise. In this work, we
propose a robust restricted isometry property, called Sign-RIP, and show its broad applications in robust
low-rank matrix recovery. In particular, we show that Sign-RIP can guarantee the uniform convergence of the
subdifferentials of the robust matrix recovery with nonsmooth loss function, even at the presence of arbitrarily
dense and arbitrarily large outliers. Based on Sign-RIP, we characterize the location of the critical points in
the robust rank-1 matrix recovery, and prove that they are either close to the true solution, or have small norm.
Moreover, in the over-parameterized regime, where the rank of the true solution is over-estimated, we show
that subgradient method converges to the true solution at a (nearly) dimension-free rate. We show that the
new notion of sign-RIP enjoys almost the same sample complexity as its classical counterparts, but provides
significantly better robustness against noise.

1. Introduction

Inspired by the surprising success of simple local-search algorithms in nonconvex optimization arising in
modern machine learning tasks, a recent body of work focuses on studying the local and global optimization
landscape of these problems. A prototypical class of such problems is low-rank matrix recovery, where
the goal is to recover a low-rank matrix from a limited number of linear and noisy measurements. Low-
rank matrix recovery is the cornerstone for many modern machine learning problems, including motion
detection [2], face recognition [12], recommender systems [13], and system identification [4, 11].

Despite the inherent difficulty of low-rank matrix recovery in its worst case—a fact noted as early as
1995 [14]—it is known that convex relaxation methods can correctly recover the low-rank matrix under the
so-called restricted isometry property (RIP) [3, 15, 19], but suffer from high computational cost. Roughly
speaking, RIP entails that the measurement operator is approximately norm-preserving over the set of
low-rank matrices. One of the breakthrough results in this line of research was presented in 2016 NeurIPS
papers [1, 7], showing that, for smooth low-rank matrix recovery, simple saddle-escaping algorithms, such as
perturbed gradient descent (GD) [6, 8], provably converge to the true low-rank solution. The main intuition
behind this result is a simple, yet striking one: under the same RIP condition, the nonconvex formulation of
smooth low-rank matrix recovery problem is devoid of spurious local minima. This result lead to a flurry of
follow-up papers characterizing the landscape of other variants of low-rank matrix recovery [10, 20–22].

Despite the significance of different notions of RIP within the realm of low-rank matrix recovery, they
face major breakdowns in robust settings, where a subset of the measurements are grossly corrupted with
large noise values. The main reason behind the failure of the existing RIP techniques is that they only apply
to nearly clean measurements, and hence, are oblivious to the nature of the noise.
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The main goal of this paper is to precisely pinpoint and remedy this challenge. In particular, we study a
well-known class of matrix recovery problems with nonsmooth and nonconvex `1 formulation, called robust
matrix recovery. We introduce an alternative notion of RIP, called Sign-RIP, that can capture and take into
account the nature of the noise in robust matrix recovery. Based on Sign-RIP, we take the first step towards
demystifying the robustness of the `1 formulation of the problem against large-and-sparse noise values. Our
main contributions are summarized as follows:

- (Uniform convergence of subdifferentials) We use Sign-RIP to study the landscape of the robust matrix
recovery against large noise values. In particular, we show that, under Sign-RIP, the subdifferentials of
the nonsmooth matrix recovery are well-behaved, and they converge uniformly to the gradients of an
“ideal”, noiseless formulation of the problem, even if the measurements are subject to large noise values.
Moreover, we show that Sign-RIP holds, even if an arbitrarily large fraction of the measurements
are corrupted with arbitrarily large noise values, provided that the number of measurements scales
polynomially with the corruption probability, but only linearly with the true dimension of the problem.

- (Characterization of the critical points) We show that Sign-RIP can be used to characterize the locations
of the critical points for the robust rank-1 matrix recovery. In particular, we show that, under Sign-RIP,
all critical points lie close to the true rank-1 solution, or have small norm.

- (Implicit regularization with over-parameterization) Based on Sign-RIP, we show that a subgradi-
ent method with decaying step sizes provably converges to the true rank-1 solution in the over-
parameterized regime, where the true rank is unknown and over-estimated.

To streamline the presentation, all the proofs are deferred to the appendix.

2. Background and Prior Work

In robust matrix recovery problem, the goal is to recover a rank-r∗ positive semidefnite matrix X∗ ∈ Rd×d,
from a limited number of linear measurements of the form y = A(X∗) + s, where y = [y1, y2, . . . , ym]>

is the vector of measurements, and s is a noise vector. The linear operator A is defined as A(X∗) =
[〈A1, X

∗〉, 〈A2, X
∗〉, . . . , 〈Am, X∗〉]>, where {Ai}mi=1 are measurement matrices. One popular approach for

recovering the true low-rank matrix is to consider the following empirical risk minimization (ERM) problem

min
U∈Rd×r′

f`q(U) =
1

2m

∥∥∥y −A(UU>)
∥∥∥q
`q
, (1)

where r′ is an upper bound for the rank of the true solution, and UU> is used in lieu of X∗ to ensure the
positive semidefiniteness of the solution.

`2`2`2-RIP: Evidently, the above optimization problem is over-parameterized if r′ > r∗, since the unknown
variable is not restricted to the set of low-rank matrices, and consequently, its globally optimal solution need
not be low-rank. Nonetheless, it is recently shown that, for the choice of q = 2, simple gradient descent
(GD) algorithm provably converges to the true rank-r∗ solution, even if r′ � r∗ (e.g. r′ = d) [10, 22]. The
key idea behind the convergence proof of GD is the closeness of its gradient to that of the “ideal”, noiseless
population loss function f̄`2(U) = ‖UU> −X∗‖2F . More concretely, the gradient of f`2(U) can be written

as∇f`2(U) = Q(UU>−X∗)U , where Q(M) = 1
m

∑m
i=1 (〈Ai,M〉+ si)

Ai+A
>
i

2 . One sufficient condition
for ∇f`2(U) ≈ ∇f̄`2(U) is to ensure that Q(M) remains uniformly close to M for every rank-(r∗ + r′)
matrix X1. In the noiseless setting, this condition can be guaranteed by the so-called `2-RIP.

1. The paper [10] requires the similarity of Q(X) and X for lower rank matrices (rank-r∗ as opposed to rank-(r∗ + r′)), but their
result only holds for r′ = d.
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Definition 1 (`2-RIP [10, 22]) The linear operator A(·) satisfies `2-RIP with parameters (r, δ) if, for every
rank-r matrix M , we have (1− δ)‖M‖2F ≤

1
m‖A(M)‖2 ≤ (1 + δ)‖M‖2F .

Roughly speaking, `2-RIP entails that the linear operator A(·) is nearly norm-preserving for every rank-r
matrix. It is well-known that with Gaussian measurements, `2-RIP is satisfied with parameters (r, δ), provided
that m & dr [15]. However, our next proposition shows that `2-RIP is not enough to guarantee Q(X) ≈ X
when the measurements are subject to noise.

Proposition 2 Suppose that r′ = d and the measurement matrices {Ai}mi=1 defining the linear operatorA(·)
have i.i.d. standard Gaussian entries. Moreover, suppose that the noise vector s satisfies si

i.i.d.∼ N (0, σ2)
with probability p, and si = 0 with probability 1− p, for every i = 1, . . . ,m. Then we have

P

(
sup
X∈S
‖Q(X)−X‖F &

√
(1 + pσ2)d2

m

)
≥ 1

2
.

(a) (b)

Figure 1: (a) The accuracy of the obtained solutions by solving (1)
via gradient descent. Each measurement is corrupted with a large
noise with probability p. (b) The linear operator A(·) satisfies the
`1/`2-RIP, but the subdifferentials of the `1-loss show sporadic
behavior. Here, f(U) is the population loss.

The above proposition shows that, in order to
guarantee Q(X) ≈ X , the number of measure-
ments should be at least m & (1 + pσ2)d2, and
hence, grow with the variance of the noise. How-
ever, for any fixed δ, `2-RIP is guaranteed to be
satisfied with m . d2, which is independent of
the noise variance. This highlights a fundamental
pitfall of `2-RIP in the existence of outliers: the
matrices Q(X) and X may be far apart, even if
the linear mapping A(·) satisfies `2-RIP. Figure 1a
illustrates that the discrepancy between Q(X) and
X in the noisy setting leads to the ultimate failure
of the gradient descent algorithm.

`1/`2`1/`2`1/`2-RIP: With the goal of robustifying the solution against outlier noise, recent work has studied the
landscape of the nonsmooth optimization (1) with q = 1 under `1/`2-RIP. Roughly speaking, `1/`2-RIP
imposes a similar condition to `2-RIP, but on the `1-loss function. In particular, it entails that 1

m‖A(X)‖1
remains close to

√
2/π‖X‖F , for every rank-r matrix X . Under `1/`2-RIP, it is recently shown that

subgradient method converges to the ground truth with q = 1, provided that the true rank of the solution
is known and the initial point is sufficiently close to the ground truth [9, 17]. However, `1/`2-RIP is
also oblivious to the nature of the noise, and as a result, cannot guarantee the global convergence of the
corresponding subdifferentials of f`1(U). Figure 1b shows an instance of (1) with q = 1, where the linear
operator A(·) satisfies `1/`2-RIP, and yet the subdifferentials of the loss function suffer from sporadic
behavior due to noise, giving rise to numerous undesirable local minima.

The aforementioned challenges highlight the fundamental limitations of the existing notions of RIP in the
context of robust matrix recovery with large noise. This calls for a new approach for analyzing the landscape
of robust matrix recovery; a goal that is at crux of this paper.

3. Our Approach: Sign-RIP for `1`1`1-loss Function

Our goal is to study the following ERM problem with `1-loss function:

min
U∈Rd×r′

f`1(U) =
1

2m

∥∥∥y −A(UU>)
∥∥∥

1
, (2)
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The simplest algorithm for solving (2) is subgradient method (SubGM). At every iteration, SubGM
selects an arbitrary direction Dt from the subdifferential of the `1-loss at the current solution, and then
updates the solution by moving towards −Dt with a step size ηt (see Algorithm (1) in Appendix). Figure 2a
illustrates that SubGM with diminishing step sizes can successfully recover the true rank-1 solution in both
exact and over-parameterized regimes when applied to the `1-loss (2), even if 10% of the measurements are
grossly contaminated with noise. On the other hand, GD on the smooth loss function quickly overfits to
the noise within a few iterations. Figure 2b shows the robustness of SubGM against increasing fraction of
noisy measurements. It can be seen that SubGM recovers the true solution, even if more than half of the
measurements are corrupted with noise, pinpointing its superiority over GD.

To study the convergence of SubGM, it is essential to analyze the behavior of the subdifferential

∂f`1(Ut) =
1

m

m∑
i=1

Sign(〈Ai, UtU>t −X?〉 − si)
Ai +A>i

2
Ut.

(a) (b)

Figure 2: (a) SubGD with geometrically decaying step sizes re-
covers the true rank-1 matrix in both exact (r′ = r = 1) and
over-parameterized (r′ > r) regimes. GD with small step sizes over-
fits to the noise. (b) SubGD with geometrically decaying step sizes
recovers the true rank-1 matrix in the over-parameterized regime
(r′ = d = 20), for different number of measurements m and corrup-
tion probabilities p.

The key idea behind our proposed technique
is to study the theoretical superiority of the ro-
bust matrix recovery with `1-loss, by character-
izing its distance to an ideal, noiseless problem
f̄`2(U) = ‖UU> − X∗‖2F . In particular, we
show that robust matrix recovery with `1-loss
benefits from strong robustness properties, pro-
vided that its subdifferentials resemble the gra-
dients of f̄`2(U). In particular, upon defining

Q(X) = 1
m

∑m
i=1 Sign(〈Ai, X〉 − si)

Ai+A
>
i

2 , our
goal is to provide conditions under which, for any
Q ∈ Q(UU> −X∗), the subgradient QU of the
`1-loss function points approximately towards the
direction (UU> −X∗)U , which is the gradient of
f̄`2(U). This is formalized through the notion of Sign-RIP. For a matrix X , its r-restricted Frobenius norm is
defined as ‖X‖F,r := sup‖Y ‖F=1,rank(Y )≤r 〈X,Y 〉.

Definition 3 (Sign-RIP) The measurements are said to satisfy Sign-RIP with parameters (r, δ) and a scaling
function ϕ if, for every rank-r matrix X and every Q ∈ Q(X), we have

∥∥∥Q− ϕ(X) X
‖X‖F

∥∥∥
F,r
≤ ϕ(X)δ.

At the first glance, one may speculate that Sign-RIP is extremely restrictive: roughly speaking, it requires the
uniform concentration of random set-valued function Q(X), for every rank-r matrix X . However, we show
that, Sign-RIP enjoys the same linear sample complexity as `2- [15] and `1/`2-RIP [9] for standard Gaussian
measurement matrices, and hence, is not statistically more restrictive than its classical counterparts. To this
goal, first we introduce our considered noise model:

Assumption 1 (Noise model) Given a corruption probability p, each entry of the noise vector s is indepen-
dently drawn from a mean-zero distribution P with probability p and zero otherwise.

Notice that our proposed noise model does not impose any assumption on the magnitude of the nonzero
elements of s, or the specific form of their distribution, which makes it particularly suitable for modeling
outliers with arbitrary magnitudes. Next, we characterize the sample complexity of Sign-RIP for Gaussian
measurement matrices.

4



Theorem 4 Assume that the measurement matrices {Ai}mi=1 defining the linear operator A(·) are i.i.d.
standard Gaussian entries, and that the noise vector s satisfies Assumption 1. Then, Sign-RIP holds with

parameters (r, δ) and a scaling function ϕ(X) =
√

2
π

(
1− p+ pE

[
e−s

2
i /(2‖X‖F )

])
with probability of at

least 1− Ce−cmδ4 , provided that m &
dr
(

log
(

1
(1−p)δ

)
∨1
)

δ4(1−p)4 .

Based on Sign-RIP, we next study the landscape of the robust rank-1 matrix recovery with outlier noise.

4. Characterization of Critical Points in Robust Rank-1 Matrix Recovery

In this section, we characterize the critical points of the robust rank-1 matrix recovery. In particular, we show
that, under Sign-RIP, all critical points lie within a small neighborhood of the ground truth or the origin.

Suppose that r′ = r? = 1, andX∗ = u∗u∗> for u∗ ∈ Rd×1. For simplicity and without loss of generality,
we assume that ‖u∗‖ = 1. Recall that Ū is a critical point of f`1(U) if it satisfies 0 ∈ ∂f`1(Ū). Moreover, Ū
is a local minimum of f`1(U) if f`1(Ū) ≤ f`1(U) for every U ∈ B(Ū , ε), for some ε > 0. All local minima
of f`1(U) are also critical points [5]. Our next theorem characterizes the critical points of f`1(U), the proof
of which is in Appendix.

Theorem 5 Assume that the measurements satisfy the Sign-RIP condition with parameters (2, δ) and a
strictly positive and uniformly bounded scaling function ϕ(X). Moreover, suppose that U with ‖U‖ ≤ R for
some R ≥ 1 is a critical point of (2) with r′ = r∗ = 1. Then, we have ‖UU> − u∗u∗>‖F . δ or ‖U‖2 . δ,
provided that δ . 1/R3.

The above theorem shows that, under Sign-RIP with small δ, the critical points of f`1(U) are either close to
the ground truth, or have very small norm. Combined with Theorem 4, this leads to the following corollary.

Corollary 6 Assume that {Ai}mi=1 are standard Gaussian matrices, and the noise vector s satisfies Assump-
tion 1. Moreover, suppose that U with ‖U‖ ≤ R for some R ≥ 1 is a critical point of (2) with r′ = r∗ = 1.
Then, we have ‖UU> − u∗u∗>‖F . δ or ‖U‖2 . δ with an overwhelming probability, provided that

m &
dr′ log

(
1

(1−p)δ

)
δ4(1−p)4 and δ . 1/R3. Additionally, we have UU> = u∗u∗> or ‖U‖ . δ, if p ≤ 1

2 −
δ√

2/π−δ
.

Earlier works on robust matrix recovery with `1-loss can only characterize the critical points of f`1(U)
locally within a very small neighborhood of the global minima [9, 17]. Corollary 6 extends this result in two
ways for r∗ = 1: first, it provides a global characterization of the critical points. In particular, it shows that,
with sufficiently large number of measurements, all critical points with a bounded norm concentrate around
the ground truth or the origin, provided that p < 1. Moreover, it shows that, if additionally we have p < 1/2,
all critical points that are not close to the origin must coincide the ground truth.

5. Over-parameterized Robust Rank-1 Matrix Recovery

In this section, we study the over-parameterized robust matrix recovery problem. In particular, we show that,
under Sign-RIP condition, SubGM converges to the true rank-1 solution in the over-parameterized regime,
without any explicit regularization or rank constraint.
Intuition behind our analysis. Suppose that Sign-RIP holds with sufficiently small δ. Then, we have
Dt ≈ ϕt (UtUt−X∗)Ut

‖UtUt−X∗‖F for every Dt ∈ ∂f`1(Ut), where for simplicity, we define ϕt = ϕ(UtUt −X∗). Based
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on this approximation, the iterations of SubGM can be approximated as Ut+1 ≈ Ut − ηtϕt · (UtUt−X∗)Ut
‖UtUt−X∗‖F .

Consequently, with the choice of ηt = η0ϕ
−1
t ‖UtUt −X∗‖F , the iterations of SubGM reduce to

Ut+1 ≈ Ut − η0 · (UtUt −X∗)Ut (3)

which are precisely the iterations of GD with a constant step size η0, applied to the ideal, noiseless `2-loss
function f̄`2(U) = ‖UU> −X∗‖2F . This implies that, under Sign-RIP, SubGM behaves similar to GD with a
constant step size, when applied to f̄`2(U). A caveat of this analysis is that the proposed step sizes are in
terms of ϕ−1

t ‖UtUt−X∗‖F , which is not known a priori. In the noiseless scenario, Sign-RIP can be invoked
to show that ϕ−1

t ‖UtUt −X∗‖F can be accurately estimated as π
2m‖y −A(UtUt)‖1. However, with noisy

measurements, the value of ‖UtUt −X∗‖F cannot be estimated merely based on ‖y −A(UtU
>
t )‖1, since

the `1-loss function ‖y −A(UtU
>
t )‖1 is no longer an unbiased estimator of ‖UtU>t −X∗‖F and is highly

sensitive to the magnitude of the noise. To alleviate this issue, we instead consider geometrically decaying step
sizes ηt = η0

‖Q‖F ρ
t, whereQ ∈ Q(UtUt−X∗) and 0 < ρ < 1 is a predefined decay rate. Due to Sign-RIP, we

have ‖Q‖F ≈ ϕ(UtU
>
t −X∗), which implies that Ut+1 ≈ Ut − η0ρ

t
∥∥UtU>t −X?

∥∥−1

F

(
UtU

>
t −X?

)
Ut.

A closer look at this equation reveals that, at every iteration, SubGD points to the negative gradient of
‖UtU>t −X∗‖2F , while the geometrically decaying step size ηt = η0ρ

t guarantees the convergence of the
algorithm.

Theorem 7 Assume that r′ ≥ r∗ = 1, and the measurements satisfy the Sign-RIP condition with parameters
(min{r′ + 1, d}, δ), where δ . 1 and ϕ(X) is strictly positive and uniformly bounded. Suppose that the
initialization matrix B0 is chosen via Algorithm 2 in Appendix, and UT is obtained via SubGM. Moreover,
suppose that α �

√
δ/ 4
√
r′, and the step size ηt = η0ρ

t satisfying η0 . δ and ρ = 1−Θ
(
η0/ log 1

α

)
. Then,

after T � log
(
r′

δ

)
/η0 iterations, we have

∥∥∥UTU>T −X?
∥∥∥2

F
. δ2 log2

(
r′

δ

)
. (4)

The above theorem implies that, for any r′ ≥ r∗ = 1 (including r′ = d), SubGM converges to the true
low-rank solution at a (nearly) dimension-free rate without any explicit regularization or rank constraint
under the Sign-RIP condition. Moreover, our result holds for arbitrarily large values of p, provided that the
number of measurements scales accordingly. Combining Theorem 7 and Theorem 4 leads to an end-to-end
sample complexity guarantee for SubGM with Gaussian measurements.

Corollary 8 Assume that {Ai}mi=1 are standard Gaussian matrices, and that the noise vector s satisfies
Assumption 1. Moreover, suppose that α, ηt, and T are chosen according to Theorem 7. Then, SubGM

satisfies the error bound (4) with an overwhelming probability, provided that m &
dr′ log

(
1

(1−p)δ

)
δ4(1−p)4 .

6. Conclusion

Existing techniques for analyzing low-rank matrix recovery presume and rely on different variants of restricted
isometry property (RIP). However, these notions fail in the robust settings, where a number of measurements
are grossly corrupted with noise. In this work, we propose a robust restricted isometry property, called
Sign-RIP, that addresses this fundamental issue. Based on Sign-RIP, we paint a full picture for the landscape
of robust rank-1 matrix recovery problem, both in the exact and over-parameterized regimes. In the exact
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setting, we show that all the critical points of the robust matrix recovery are close to the true solution, or have
small norm. In the over-parameterized regime, we show that a simple subgradient method converges to the
ground truth.

Although our results on robust matrix recovery is restricted to rank-1 case, the proposed framework is
general, and it paves the way towards a better understanding of the problem in more general settings. In
particular, our developed guarantees for sign-RIP hold for the general rank-r matrices, and hence, can be
potentially used to study the global landscape of more general robust matrix recovery problems in both exact
and over-parameterized regimes.
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APPENDIX
In the appendix, we first provide our pseduo code for subgradient method and our proposed initialization
scheme (Algorithms 1 and 2). Then, we provide extensive numerical experiments to verify our theoretical
results. Finally, we present the detailed proofs of our theoretical results.

Algorithm 1 Subgradient Method

Input: measurement matrices {Ai}mi=1, measurement vector y = [y1, · · · , ym]>, number of iterations T ,
an upper bound on the rank r′, and an initialization matrix B0 ∈ Rd×r′ ;
Output: Solution X̂T = UTU

>
T to (2);

Initialize U0 = B0.
for t ≤ T do

Compute a subgradient Dt ∈ ∂f`1(Ut);
Select the step size ηt;
Set Ut+1 ← Ut − ηtDt;

end for

Algorithm 2 Spectral Initialization

Input: measurement matrices {Ai}mi=1, measurement vector y = [y1, · · · , ym]>, an upper bound on the
rank r′, and an initial scaling factor α;
Output: An initialization matrix B0 ∈ Rd×r′ ;
Calculate C = 1

m

∑m
i=1 Sign(yi)Ai, and its normalized variant X̂ = C/ ‖C‖F ;

Compute the eigenvalue decomposition X̂ = V ΣV >;
Define Σr′

+ as the top r′ × r′ sub-matrix of Σ corresponding to r′ largest eigenvalues of X̂ , whose negative
values are replaced by 0;

Set B0 = αV
(

Σr′
+

)1/2
.

Appendix A. Numerical Experiments

In this section, we provide extensive numerical experiments to verify our theoretical guarantees, and to shed
light on possible future directions. All simulations are run on a desktop computer with an Intel Core i9 3.50
GHz CPU and 128GB RAM. The reported results are for an implementation in Python.

A.1. Relationship between dimension and measurement number

In this experiment, we analyze the relationship between the number of measurements m and dimension d.
Our theoretical result suggests that m & dr′ is enough to ensure the convergence of SubGM. To empirically
verify this, we change d from 10 to 100 and set r′ = d. Moreover, we set the corruption probability to
p = 0.1. Moreover, each element of the noise is generated according to a standard Gaussian distribution. The
step sizes are selected as ηt = η0ρ

t, where η0 = 0.4 and ρ = 0.98. For each group of parameters, we run 5
independent trials and plot the average log-residual for the last iteration in Figure 3. It can be seen that, in
order to ensure the same value for the error, the number of measurements should grow almost linearly with
the dimension, which is in line with our theoretical result.

9



Figure 3: The error with respect to the number of measurements and dimension

A.2. Effect of Different Noise Magnitudes

In this experiment, we certify the robustness of SubGM against large noise values. Our theoretical result
suggests that the convergence of SubGM is independent of the noise magnitude. To verify this, we set the
dimension and the number of measurements to d = 50 and m = 500, respectively. Moreover, we set the
corruption probability to p = 0.1, and select each element of the noise according to a Gaussian distribution
si ∼ N (0, σ2) with varying variance σ2. Finally, we set the step size to ηt = η0ρ

t, where η0 = 0.25, and
ρ = 0.99. Based on Figure 4, it can be seen that increasing variance slightly deteriorates the error. However,
beyond a certain threshold, increasing variance does not have any effect on the error.

Figure 4: Effect of noise variance.

A.3. Effect of Different Types of Noise

In this experiment, we study the effect of different types of noise on the performance of SubGM. In particular,
we choose five different types of distribution for the noise: Gaussian, uniform, Laplace, Cauchy, and
Rademacher. The experiments are designed under the same settings as Subsection A.2. Moreover, for all
types of noise (except for the Cauchy distribution), we set the variance to 100. As can be seen in Figure 5,
SubGM is insensitive to the particular choice of noise.

10



Figure 5: Effect of different types of noise.

A.4. Effect of different step size regimes

Finally, we explore the effect of different step sizes in both noiseless and noisy case under the same settings
as Section A.2. In the noiseless case, we compare four different types of step sizes: 1) ηt = η0ρ

t with
η0 = 0.25, ρ = 0.99; 2) ηt = η0

t with η0 = 2.0; 3) ηt = η0√
t

with η0 = 0.3; and 4) our proposed choice

ηt = η0
1
m

∥∥y −A(UtU
>
t )
∥∥

1
where η0 = 0.25 (see our discussion in Section 5 and Appendix D). As can

be seen in Figure 6a, SubGM converges to the true solution with all of the aforementioned step sizes.
However, our proposed step size leads to the fastest convergence rate. In the noisy case, we compare
the performance of five different step sizes: 1) ηt = η0ρ

t with η0 = 0.45, ρ = 0.98; 2) ηt = η0
t with

η0 = 2.0; 3) ηt = η0√
t

with η0 = 0.3; 4) ηt = η0
1
m

∥∥y −A(UtU
>
t )
∥∥

1
with η0 = 0.25; 5) our proposed

choice ηt = η0
‖Dt‖F

ρt, where Dt ∈ M(UtUt −X∗), η0 = 0.4, and ρ = 0.99. From Figure 6b, it is evident

that the step size ηt = η0
1
m

∥∥y −A(UtU
>
t )
∥∥

1
, which was the best choice in the noiseless case, does not

result in the convergence of SubGM to the true solution in the noisy case. As mentioned before, this is
due to the sensitivity of 1

m

∥∥y −A(UtU
>
t )
∥∥

1
to outliers. Moreover, our proposed step size outperforms its

vanilla counterpart. Finally, the polynomially decaying step size ηt ∝ 1
t performs slightly better than our

proposed step size. Motivated by this interesting observation, we will study the performance of SubGM with
polynomially decaying step sizes in the future.

Appendix B. Proofs for Sign-RIP

In this section, we provide the proofs for Theorem 4. As a first step, we start with the noiseless case, and
show that a weaker version of Theorem 4 can be obtained directly from the so-called `1/`2-RIP condition.

Lemma 9 (`1/`2-RIP, Proposition 1 in [9]) Let r ≥ 1 be given, suppose measurements {Ai}mi=1 have i.i.d.

standard Gaussian entries with m & dr. Then for any 0 < δ <
√

2
π , there exists a universal constant c > 0,

such that with probability of at least 1− e−cmδ2 , we have

sup
X∈Sr

∣∣∣∣∣ 1

m

m∑
i=1

| 〈Ai, X〉 | −
√

2

π
‖X‖F

∣∣∣∣∣ ≤
√

2

π
δ. (5)

Based on the above `1/`2-RIP condition, we proceed to prove a weaker version of Theorem 4.
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(a) noiseless (b) noisy

Figure 6: Effect of different step size regimes.

Proposition 10 Assume that the measurement matrices {Ai}mi=1 have i.i.d. standard Gaussian entries, and

that s = 0. Then, the sign-RIP condition holds with parameters (r, δ), δ ≤
√

2
π and a constant scaling

function ϕ(X) =
√

2
π with probability of at least 1− Ce−cmδ4 , provided that m & d2.

Proof Without loss of generality, we assume that ‖X‖F = 1. For any given 0 < δ ≤
√

2
π and any

D(X) ∈ 1
m

∑m
i=1 Sign(〈Ai, X〉)Ai, we have

sup
X∈Sr

∥∥∥∥∥D(X)−
√

2

π
X

∥∥∥∥∥
2

F

(a)
= sup

X∈Sr
‖D(X)‖2F −

√
8

π

1

m

m∑
i=1

| 〈Ai, X〉 |+
2

π

≤ sup
X∈Sr

‖D(X)‖2F −
√

8

π
inf
X∈Sr

1

m

m∑
i=1

| 〈Ai, X〉 |+
2

π

(b)

≤ sup
X∈Sr

‖D(X)‖2F +

√
8

π

√
2

π
δ −

√
8

π

√
2

π
+

2

π

= sup
X∈Sr

‖D(X)‖2F +
4

π
δ − 2

π

(6)

with probability of at least 1− Ce−cmδ2 . Here, (a) follows from 〈D(X), X〉 = 1
m

∑m
i=1 | 〈Ai, X〉 |, and (b)

uses `1/`2-RIP condition from Lemma 9. Then, recall that for an arbitrary M ∈ Rd×d, we have

‖M‖F = sup
Y ∈S
〈M,Y 〉 . (7)

12



This implies
sup
X∈Sr

‖D(X)‖2F ≤ sup
X,Y ∈S

(〈D(X), Y 〉)2

(c)
= sup

Y ∈S

(
1

m

m∑
i=1

| 〈Ai, Y 〉 |

)2

(d)

≤ 2

π
(1 + δ)2

(e)

≤ 2

π
+

6

π
δ

(8)

with high probability 1− Ce−cmδ2 . Here, (c) uses the fact that for a fixed Y , the supremum over X is taken
exactly at X = Y , (d) uses the `1/`2-RIP condition, and (e) uses the assumption δ ≤ 1.

Combining these two parts, we obtain

sup
X∈S

∥∥∥∥∥D(X)−
√

2

π
X

∥∥∥∥∥
2

F

≤ 10

π
δ (9)

with probability of at least 1− Ce−c′mδ2 . Therefore, upon choosing δ′ =
√

5δ, we obtain

sup
X∈S

∥∥∥∥∥D(X)−
√

2

π
X

∥∥∥∥∥
F

= sup
X,Y ∈S

〈
D(X)−

√
2

π
X, Y

〉
≤
√

2

π
δ′ (10)

with probability of at least 1− Ce−cmδ′4 .

Despite its simplicity, the above analysis has two major drawbacks: (1) its sample complexity scales with
d2, as opposed to dr in Theorem 4, (2) it is not clear how to extend this analysis to the noisy case. To address
these issues and prove Theorem 4, we need a more in-depth analysis of the sign-RIP condition. First, we
provide an intermediate lemma.

Lemma 11 Assume that the measurement matrices {Ai}mi=1 defining the linear operatorA(·) have Gaussian
entries, and that the noise vector s satisfies Assumption 1. Then, for every D ∈M(X), we have

E[D] =

√
2

π

(
1− p+ pE

[
e−s

2
i /(2‖X‖F )

]) X

‖X‖F
(11)

where the expectation is taken with respect to both s and {Ai}mi=1.

Proof To prove this lemma, it is enough to show that for any X,Y ∈ Rd×d, we have

E [Sign (s+ 〈A,X〉) 〈A, Y 〉] =

√
2

π
E
[
e−s

2/2‖X‖2F
]〈 X

‖X‖F
, Y

〉
. (12)

Without loss of generality, we assume that ‖X‖F = ‖Y ‖F = 1 and both X and Y are symmetric. Moreover,
for the symmetric Gaussian matrix Ai, its off-diagonal elements are from N (0, 1/2), and its diagonal
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elements are from N (0, 1). Now let us denote u := 〈A,X〉 , v := 〈A, Y 〉 , ρ := Cov(u, v) = 〈X,Y 〉. Then

E [Sign (s+ 〈A,X〉) 〈A, Y 〉] = E [Sign (s+ u) v]

(a)
= ρE [Sign(u+ s)u]

= ρEs
[∫ ∞
−s

u
1√
2π
e−u

2/2du−
∫ −s
−∞

u
1√
2π
e−u

2/2du

]
= ρEs

[∫ ∞
−s

u
1√
2π
e−u

2/2du+

∫ ∞
s

u
1√
2π
e−u

2/2du

]
= 2ρEs

[∫ ∞
|si|

u
1√
2π
e−u

2/2du

]

=

√
2

π
〈X,Y 〉Es

[∫ ∞
|s|

d
(
−e−u2/2

)]

=

√
2

π
〈X,Y 〉Es

[
e−s

2/2
]
.

(13)

Here (a) uses the fact that v|u, s ∼ N (ρu, 1− ρ2) since s ⊥⊥ u, v. This together with the variational form of
the Frobenius norm implies

E [Sign(s+ 〈A,X〉)A] =

√
2

π
E
[
e−s

2/2‖X‖2F
] X

‖X‖F
, (14)

for any X ∈ Rd×d. On the other hand, it is easy to verify that E [Sign (〈A,X〉)A] =
√

2
π

X
‖X‖F

. The proof
is completed by noting that the size of the noisy measurements is equal to pm.

B.1. Proof of Theorem 4

For the sake of simplicity, we assume that pm is an integer. Moreover, we abuse the notation and use Sign(·)
as a regular function taking an arbitrary value Sign(0) ∈ [−1, 1]. To prove Theorem 4, we first present an
intermediate lemma, which holds for any fixed Y, Y ∈ S.

Lemma 12 There exists a universal constant c, for any δ > 0, we have

P

(∣∣∣∣∣ 1

m

m∑
i=1

Sign(〈Ai, X〉+ si) 〈Ai, Y 〉 −
√

2

π

(
1− p+ pE

[
e−s

2
i /2
])
〈X,Y 〉

∣∣∣∣∣ ≥ δ
)
≤ 2e−cmδ

2
. (15)

Proof [Proof of Lemma 12]
We first show that Sign(〈Ai, X〉 + si) 〈Ai, Y 〉 is a sub-Gaussian random variable. First notice

that 〈Ai, Y 〉 ∼ N (0, 1) since ‖Y ‖F = 1. Moreover, notice that ‖Sign(〈Ai, X〉+ si) 〈Ai, Y 〉‖`2k ≤
‖〈Ai, Y 〉‖`2k for ∀k ∈ N+, where ‖M‖`2k is defined as (E [|M |p])1/p. Therefore, based on equiva-
lent definition of sub-Gaussian random variables (see Definition 33), we obtain that Sign(〈Ai, X〉 +
si) 〈Ai, Y 〉 is also O(1)-sub-Gaussian. Moreover, according to the proof of Lemma 11, we have
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E
[

1
m

∑
i∈S Sign(〈Ai, X〉) 〈Ai, Y 〉

]
=
√

2
π (1− p) 〈X,Y 〉 and E

[
1
m

∑
i∈S Sign(〈Ai, X〉+ si) 〈Ai, Y 〉

]
=√

2
πpE

[
e−s

2
i /2
]
〈X,Y 〉. This together with the standard concentration bound on sub-Gaussian random

variables leads to

P

(∣∣∣∣∣ 1

m

∑
i/∈S

Sign(〈Ai, X〉) 〈Ai, Y 〉 −
√

2

π
(1− p) 〈X,Y 〉

∣∣∣∣∣ ≥ 1

2
δ

)
≤ 2e−cmδ

2/(1−p), (16)

P

(∣∣∣∣∣ 1

m

∑
i∈S

Sign(〈Ai, X〉+ si) 〈Ai, Y 〉 −
√

2

π
pE
[
e−s

2
i /2
]
〈X,Y 〉

∣∣∣∣∣ ≥ 1

2
δ

)
≤ 2e−cmδ

2/p. (17)

which implies

P

(∣∣∣∣∣ 1

m

m∑
i=1

Sign(〈Ai, X〉+ si) 〈Ai, Y 〉 −
√

2

π

(
1− p+ pE

[
e−s

2
i /2
])
〈X,Y 〉

∣∣∣∣∣ ≥ δ
)

≤4e
−cmδ2 min

{
1
p
, 1
1−p

}
≤ 2e−c

′mδ2 .

(18)

Consider an ε-covering Sε,r ⊆ Sr with a property that for every X ∈ Sr, there exists X̄ ∈ Sε,r
that satisfies ‖X − X̄‖F ≤ ε. According to Lemma 30, there exists an ε-covering that satisfies |Sε,r| ≤(

9
ε

)(2d+1)r. For any X̄ ∈ Sε,r, define Br(X̄, ε) = {X ∈ Sr :
∥∥X − X̄∥∥

F
≤ ε}. Then, for any X̄, Ȳ and

X,Y ∈ Br(X̄, ε)×Br(Ȳ , ε), we have∣∣〈X,Y 〉 − 〈X̄, Ȳ 〉∣∣ ≤ ∣∣〈X − X̄, Ȳ 〉∣∣+
∣∣〈X,Y − Ȳ 〉∣∣ ≤ 2ε. (19)
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Based on the defined ε-covering, one can write

sup
X,Y ∈Sr

∣∣∣∣∣ 1

m

m∑
i=1

Sign(〈Ai, X〉+ si) 〈Ai, Y 〉 −
√

2

π

(
1− p+ pE

[
e−s

2
i /2
])
〈X,Y 〉

∣∣∣∣∣
= sup
X̄,Ȳ ∈Sε,r

sup
X∈Br(X̄,ε)
Y ∈Br(Ȳ ,ε)

∣∣∣∣∣ 1

m

m∑
i=1

Sign(〈Ai, X〉+ si) 〈Ai, Y 〉 −
√

2

π

(
1− p+ pE

[
e−s

2
i /2
])
〈X,Y 〉

∣∣∣∣∣
≤ sup
X̄,Ȳ ∈Sε,r

∣∣∣∣∣ 1

m

m∑
i=1

Sign(
〈
Ai, X̄

〉
+ si)

〈
Ai, Ȳ

〉
−
√

2

π

(
1− p+ pE

[
e−s

2
i /2
]) 〈

X̄, Ȳ
〉∣∣∣∣∣︸ ︷︷ ︸

(A)

+ sup
X̄,Ȳ ∈Sε,r

sup
Y ∈Br(Ȳ ,ε)

∣∣∣∣∣ 1

m

m∑
i=1

Sign(
〈
Ai, X̄

〉
+ si) 〈Ai, Y 〉 − Sign(

〈
Ai, X̄

〉
+ si)

〈
Ai, Ȳ

〉∣∣∣∣∣︸ ︷︷ ︸
(B)

+ sup
X̄∈Sε,r,Y ∈Sr

sup
X∈B(X̄,ε)

∣∣∣∣∣ 1

m

m∑
i=1

Sign(
〈
Ai, X̄

〉
+ si) 〈Ai, Y 〉 − Sign(〈Ai, X〉+ si) 〈Ai, Y 〉

∣∣∣∣∣︸ ︷︷ ︸
(C)

+ sup
X̄,Ȳ ∈Sε,r

sup
X∈Br(X̄,ε)
Y ∈Br(Ȳ ,ε)

√
2

π

(
1− p+ pE

[
e−s

2
i /2
]) ∣∣〈X,Y 〉 − 〈X̄, Ȳ 〉∣∣

︸ ︷︷ ︸
≤
√

8
π
ε by (19)

.

(20)

We control the first three terms separately. Based on a union bound and Lemma 12, we have

(A) ≤ δ1 with probability of at least 1− 2 |Sε,r|2 e−cmδ
2
1 . (21)

Moreover, one can write

(B) ≤ sup
Ȳ ∈Sε,r

sup
Y ∈Br(Ȳ ,ε)

1

m

m∑
i=1

|
〈
Ai, Y − Ȳ

〉
|

(a)

≤ ε sup
Z∈S2r

1

m

m∑
i=1

| 〈Ai, Z〉 |

≤
√

2

π
ε(1 + δ2)

(22)

with probability of at least 1− Cec1dr log 1
δ2
−c2mδ22 . Here we used `1/`2 RIP condition from Lemma 9, and

the fact for X,Y with ranks at most r, we have rank(X − Y ) ≤ rank(X) + rank(Y ) ≤ 2r. Next, we
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provide an upper bound for (C). First by Cauchy-Schwartz inequality, we have

(C) ≤ sup
X̄∈Sε,r

sup
X∈Br(X̄,ε)

 1

m

m∑
i=1

(
Sign(

〈
Ai, X̄

〉
+ si)− Sign(〈Ai, X〉+ si)

)2
︸ ︷︷ ︸

(C1)


1
2

sup
Y ∈Sr

(
1

m

m∑
i=1

〈Ai, Y 〉2
) 1

2

.

(23)
The second term in the above inequality can be readily controlled via `2-RIP (see Definition 1):

sup
Y ∈Sr

1

m

m∑
i=1

〈Ai, Y 〉2 ≤ 1 + δ3 (24)

which holds with probability of at least 1− Cec1dr log 1
δ3
−c2mδ23 for any 0 < δ3 < 1. For the remaining part

(C1), first note that if |
〈
Ai, X − X̄

〉
| ≤ |

〈
Ai, X̄ + si

〉
|, then Sign(

〈
Ai, X̄

〉
+ si) = Sign(〈Ai, X〉 + si).

This leads to

sup
X̄∈Sε,r

sup
X∈Br(X̄,ε)

(C1) ≤ sup
X̄,X

4

m

m∑
i=1

1
(
|
〈
Ai, X − X̄

〉
| ≥ |

〈
Ai, X̄

〉
+ si|

)
(a)

≤ sup
X,X̄

4

m

m∑
i=1

1
(
|
〈
Ai, X − X̄

〉
| ≥ t

)
+ 1

(
|
〈
Ai, X̄

〉
+ si| ≤ t

)
≤ sup

Z∈εS2r

4

m

m∑
i=1

1 (| 〈Ai, Z〉 | ≥ t) + sup
X̄

4

m

m∑
i=1

1
(
|
〈
Ai, X̄

〉
+ si| ≤ t

)
(b)

≤ sup
Z∈εS2r

4

m

m∑
i=1

1 (| 〈Ai, Z〉 | ≥ t) + 4E
[
1
(
|
〈
Ai, X̄

〉
+ si| ≤ t

)]
+ δ4

(c)

≤ sup
Z∈εS2r

4

m

m∑
i=1

1 (| 〈Ai, Z〉 | ≥ t) + 4t+ δ4

(25)

which holds with probability of at least 1− C|Sε,r|e−cmδ
2
4 , where t > 0 is an arbitrary scalar. Here, in (a)

we use a simple fact that for two arbitrary random variables A,B and a scalar t ∈ R, the event {A ≥ B} is
included in {A ≥ t} ∪ {B ≤ t}. Moreover, in (b) we use a union bound and Hoeffding’s inequality. Finally,
in (c) we use the anti-concentration inequality conditioned on si. For the first term in the above inequality,
we have the following lemma.

Lemma 13 We have

E

[
sup

Z∈εS2r

4

m

m∑
i=1

1 (| 〈Ai, Z〉 | ≥ t)−P (| 〈Ai, Z〉 | ≥ t)

]
. e−t

2/4ε2

√
dr

m
∨ dr
m
, (26)

moreover, for fixed 0 < δ < 1, we have the following tail bound

P

(∣∣∣∣∣ sup
Z∈εS2r

4

m

m∑
i=1

1 (| 〈Ai, Z〉 | ≥ t)− E

[
sup

Z∈εS2r

4

m

m∑
i=1

1 (| 〈Ai, Z〉 | ≥ t)

]∣∣∣∣∣ > δ

)
≤ 2e−cmδ

2
. (27)
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Proof The tail bound directly follows from Theorem 8.5 in [16]. Here we only give the proof sketch for the
expectation bound. To apply Theorem 8.7 in [16], we only need to upper bound

σ2 := sup
Z∈εS2r

Var(1(| 〈A,Z〉 | > t)). (28)

Note that
σ2 ≤ sup

Z∈εS2r
Var(1(| 〈A,Z〉 | > t))

≤ sup
Z∈εS2r

E[1(| 〈A,Z〉 | > t)]

≤ sup
W∈S

P(| 〈A,W 〉 | > t/ε)

≤2e−t
2/2ε2 ,

(29)

where in the last inequality, we used the tail bound for Gaussian random variables. Therefore, by Theorem
8.7 in [16], we have

E

[
sup

Z∈εS2r

4

m

m∑
i=1

1 (| 〈Ai, Z〉 | ≥ t)−P (| 〈Ai, Z〉 | ≥ t)

]
. σ

√
dr

m
log

1

σ
∨ dr
m

log
1

σ

. e−t
2/4ε2

√
dr

m
∨ dr
m
.

(30)

This completes the proof.

Based on Lemma 13, we have

sup
X̄,X

(C1) . e−t
2/4ε2 + 4t+ δ4 + δ5 (31)

with probability of at least 1− C|Sε,r|e−cmδ
2
4 − Ce−cmδ25 given m & dr. Combining all derived bounds, we

have

sup
X,Y ∈Sr

∣∣∣∣∣ 1

m

m∑
i=1

Sign(〈Ai, X〉+ si) 〈Ai, Y 〉 −
(

1− p+ pE
[
e−s

2
i /2
])
〈X,Y 〉

∣∣∣∣∣
≤δ1 + Cε(1 + δ2) +

√
1 + δ3

√
e−t2/4ε2 + 4t+ δ4 + δ5

(32)

with probability of at least 1−2 |Sε,r|2 e−cmδ
2
1−Ce−cmδ22−Cec1dr log 1

δ3
−c2mδ23−C |Sε,r| e−cmδ

2
4−Ce−cmδ25 .

Upon choosing δ2 = δ3 = 1
2 , δ4 = δ5 = δ2, δ1 = δ, ε = δ3, t = 8δ3

√
log 1

δ , and m & dr(log 1
δ ∨ 1)/δ4, we

have

sup
X,Y ∈S

∣∣∣∣∣ 1

m

m∑
i=1

Sign(〈Ai, X〉+ si) 〈Ai, Y 〉 −
√

2

π

(
1− p+ pE

[
e−s

2
i /2
])
〈X,Y 〉

∣∣∣∣∣ . δ, (33)

with probability of at least 1− Ce−cmδ4 . This leads to

sup
X∈S,D∈M(X)

∥∥∥∥∥D −
√

2

π

(
1− p+ pE

[
e−s

2
i /2
])
X

∥∥∥∥∥
F

. δ (34)
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Finally, note that √
2

π

(
1− p+ pE

[
e−s

2
i /2
])
≥
√

2

π
(1− p). (35)

Therefore, we have

sup
X∈S,D∈M(X)

∥∥∥∥∥D −
√

2

π

(
1− p+ pE

[
e−s

2
i /2
])
X

∥∥∥∥∥
F

.

√
2

π

(
1− p+ pE

[
e−s

2
i /2
])
δ, (36)

with probability of at least 1− Ce−cmδ4 , given m &
dr
(

log( 1
(1−p)δ )∨1

)
(1−p)4δ4 . �

Appendix C. Proof of Theorem 5

Define ∆ = UU> − u∗u∗>. The conditions ‖u∗‖ ≤ 1 and ‖U‖ ≤ R imply that ‖∆‖F ≤ (1 +R2). Since
U is a critical point of (2), we have 0 ∈ ∂f`1(U), or equivalently, QU = 0 for some Q ∈ Q(∆), which in
turn implies that (

Q− ϕ(∆)
∆

‖∆‖F

)
U = −ϕ(∆)

∆U

‖∆‖F
.

Invoking Sign-RIP on the left side, we have

‖∆U‖ ≤ δ‖∆‖‖U‖ ≤ R(1 +R2)δ. (37)

Consider the decomposition U = αu∗ + βu∗⊥, where α = 〈u∗, U〉, u∗⊥ = U−〈u∗,U〉u∗
‖U−〈u∗,U〉u∗‖ , and β =

‖U − 〈u∗, U〉u∗‖. Note that ‖u∗‖ = ‖u∗⊥‖ = 1 and 〈u∗, u∗⊥〉 = 0. Substituting this decomposition in
inequality (37) leads to

‖∆U‖2 = ‖(UU> − u∗u∗>)U‖2

= ‖α(α2 + β2 − 1)u∗ + β(α2 + β2)u∗⊥‖2

= α2(α2 + β2 − 1)2 + β2(α2 + β2)2

≤ R2(1 +R2)2δ2 (38)

The above inequality implies that

α(α2 + β2 − 1) ≤ R(1 +R2)δ and β(α2 + β2) ≤ R(1 +R2)δ

which in turn leads to|α| ≤ (R(1 +R2)δ)1/3︸ ︷︷ ︸
(A)

or |α2 + β2 − 1| ≤ (R(1 +R2)δ)2/3︸ ︷︷ ︸
(B)


and (39)|β| ≤ (R(1 +R2)δ)1/3︸ ︷︷ ︸

(C)

or |α2 + β2| ≤ (R(1 +R2)δ)2/3︸ ︷︷ ︸
(D)


Now, we consider different cases
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- Case 1: Suppose that (A) and (C) holds. This implies that

α2 + β2 ≤ 2(R(1 +R2)δ)2/3 =⇒ ‖U‖2 ≤ 2(R(1 +R2)δ)2/3.

- Case 2: Suppose that (A) and (D) holds. Similar to the previous case, we have

α2 + β2 ≤ (R(1 +R2)δ)2/3 =⇒ ‖U‖2 ≤ (R(1 +R2)δ)2/3.

- Case 3: Suppose that (B) and (D) holds. This implies that 1 − (R(1 + R2)δ)2/3 ≤ α2 + β2 and
α2 + β2 ≤ (R(1 +R2)δ)2/3. However, these inequalities are mutually exclusive if δ < 1

4
√

2R3 .

- Case 4: Suppose that (B) and (C) holds. This implies that

1− 2(R(1 +R2)δ)2/3 ≤ α2 ≤ 1 + (R(1 +R2)δ)2/3 =⇒ |α2 − 1| ≤ 2(R(1 +R2)δ)2/3

which leads to
‖UU> − u∗u∗>‖F ≤

√
5(R(1 +R2)δ)2/3.

In summary, we have shown that for sufficiently small δ, the critical point ‖UU> − u∗u∗>‖F ≤
√

5(R(1 +
R2)δ)2/3 or ‖U‖2 ≤ 2(R(1 + R2)δ)2/3. Our next goal is to show that these bounds can be improved to
‖U‖2 ≤ 2

√
2δ and ‖UU> − u∗u∗>‖F ≤ 2

√
2δ.

Suppose that U is close to 0, i.e., ‖U‖2 ≤ 2(R(1 + R2)δ)2/3 (Cases 1 and 2). We use the following
intermediate lemma:

Lemma 14 Suppose that ‖U‖ ≤ Cδε for some C ≥ 1 and 1 ≥ ε ≥ 1/3. Moreover, suppose that Sign-RIP
holds with δ ≤ 1

4C1/ε . Then, we have ‖U‖ ≤
√

2(C)1/3δ(ε+1)/3.

Proof Since ‖U‖ ≤ Cδε, we have ‖∆U‖2 ≤ 4C2δ2+2ε, provided that δ ≤ 1
(C)1/ε

. A similar argument
to (39) can be used to show that|α| ≤ (2C)1/3δ(1+ε)/3︸ ︷︷ ︸

(A)

or |α2 + β2 − 1| ≤ (2C)2/3δ2(1+ε)/3︸ ︷︷ ︸
(B)


and|β| ≤ (2C)1/3δ(1+ε)/3︸ ︷︷ ︸

(C)

or |α2 + β2| ≤ (2C)2/3δ2(1+ε)/3︸ ︷︷ ︸
(D)


It is easy to verify that (B) is infeasible due to the upper bound on δ. Therefore, we have ‖U‖2 = α2 + β2 ≤
2(2C)2/3δ2(1+ε)/3, which completes the proof.

Upon choosing C0 =
√

2(R(1 +R2))1/3 and ε0 = 1/3, the repeated applications of Lemma 14 implies that

‖U‖ ≤ Ckδεk , where Ck =
√

2C
1/3
k−1, εk =

1 + εk−1

3
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for every k = 1, 2, . . . ,∞, provided that δ ≤ 1

4C
1/εk
k

. It is easy to verify that C∞ = 23/4 and ε∞ = 1/2.

Moreover, the choice of δ ≤ 1
32R(1+R2)

is enough to guarantee δ ≤ 1

4C
1/εk
k

. This in turn implies that

‖U‖2 ≤ 2
√

2δ. A similar approach can be used to show that ‖UU> − u∗u∗>‖F ≤ 2
√

2δ. �
Based on the proof of Theorem 5, we prove Corollary 6.
Proof of Corollary 6. The first part of the corollary is directly implied by Theorem 4 combined with

Theorem 5. To prove the second part, note that, due to Lemma 21, Sign-RIP implies `1/`2-RIP. On the other
hand, Li et al. [9] show that, with the choice of p ≤ 1

2 −
δ√

2/π−δ
, the loss function is α-weakly-sharp [9,

Proposition 2] and τ -weakly-convex [9, Proposition 3], with appropriate choices of α and τ (for simplicity
of presentation, we omit the exact definition of these parameters, and refer the reader to [9]). This implies
that the f`1(U) does not have a critical point other than U = u∗ within a neighborhood of u∗ with radius 2α

τ .
On the other hand, Theorem 5 implies that, with the provided bounds on δ and m, all the critical points of
that are not close to the origin must be within a neighborhood of u∗ with radius 2α

τ . This implies that these
critical points must coincide with true solution, i.e., UU> = u∗u∗>. �

Appendix D. Proofs for Convergence Analysis

Before diving into details, we first provide a sketch of the proof for Theorem 7.

Sketch of the proof for Theorem 7. Suppose that X∗ = u∗u∗> for u∗ ∈ Rd×1. Moreover, without loss
of generality, we assume that ‖u∗‖ = 1. Inspired by [10], we decompose the solution Ut as

Ut = u∗u∗>Ut +
(

1− u∗u∗>
)
Ut := u∗r>t + Et, (40)

where rt = U>t u
∗ is called signal term, and Et = (1 − u∗u∗>)Ut is referred to as error term, which is

the projection of Ut onto the orthogonal complement of the subspace spanned by u∗. Evidently, we have
UtU

>
t = X? if and only if ‖rt‖ = 1 and ‖Et‖F = 0. More generally, our next lemma shows that the error

‖UtUt −X∗‖F can be controlled in terms of ‖Et‖F and ‖rt‖.

Lemma 15 The following inequality holds:∥∥∥UtU>t −X?
∥∥∥2

F
≤
(

1−‖rt‖2
)2

+ 2 ‖Et‖2‖rt‖2 + ‖Et‖4F . (41)

Based on Lemma 15, we provide a high-level idea of our proof technique:

1. (Spectral Initialization) It is shown in Lemma 16 that the proposed initialization scheme (see Algo-
rithm 2) results in ‖r0‖ = α(1±O(

√
δ)) and ‖E0‖ = O(α

√
δ). Therefore, the signal term dominates

the error term at the beginning.

2. It is shown in Lemma 17 that the signal term ‖rt‖2 approaches 1 at a geometric rate. Therefore,
1− ‖rt‖2 converges to zero at a geometric rate.

3. It is proven in Lemma 18 that the error term ‖Et‖F grows at most sublinearly, and its growth rate is
significantly slower than that of the signal term.

4. This discrepancy in the growth rates of the signal and error terms ensures that after a certain number
of iterations T , the signal term ‖rt‖ is sufficiently close to 1, while the error term ‖Et‖F remains
small. Combined with Lemma 15, this establishes the convergence of SubGD with early stopping of
the algorithm.
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In particular, our main proof is based on the following three key lemmas, the proofs of which can be
found in Appendix D of the supplementary material.

Lemma 16 (Spectral Initialization) Suppose that U0 = B0 is chosen by Algorithm 2. Then under the
conditions of Theorem 7 , we have

‖r0‖ = α
√
ϕ0(1±O(

√
δ)), ‖E0‖ = O(α

√
ϕ0

√
δ), ‖E0‖F = O(α

√
ϕ0

4
√
r′
√
δ), (42)

where ϕ0 = ϕ(U0U
>
0 /α

2 −X?) ∈ [
√

2/π(1− p),
√

2/π] is the initial scaling factor.

Given with this lemma, we next show that the signal term grows much faster than the error term.

Lemma 17 (Signal Dynamics) Assume that the measurements satisfy the sign-RIP with parameters (min{r′ + 1, d}, δ)
and a strictly positive and uniformly bounded scaling function ϕ(X). Moreover, suppose that ‖Et‖F ≤
1, ‖rt‖ ≤ 2, δ ≤ 1

2 , and the step size ηt is chosen as (??). Then, we have∥∥∥∥∥rt+1 −

(
1 +

η0ρ
t(1− ‖rt‖2)∥∥UtU>t −X?

∥∥
F

)
rt

∥∥∥∥∥ ≤ 2δη0ρ
t(‖Et‖+ ‖rt‖) +

2η0ρ
t∥∥UtU>t −X?
∥∥
F

‖Et‖2 ‖rt‖

+
2δη0ρ

t∥∥UtU>t −X?
∥∥
F

(1− ‖rt‖2) ‖rt‖ .
(43)

The above lemma shows that, when ‖rt‖ and t are small, the signal term grows geometrically fast. On the
other hand, the growth rate of the error is sublinear, as shown in the following lemma.

Lemma 18 (Error Dynamics) Suppose that the conditions of Proposition 17 are satisfied and η0 . δ .∥∥UtU>t −X∗∥∥F . Then, we have

‖Et+1‖F ≤ ‖Et‖F + 10δη0ρ
t. (44)

Combining the aforementioned lemmas, we establish the global convergence of SubGD for robust rank-1
matrix recovery. �

First, we consider the noiseless scenario with clean measurements. Our proof for the noisy case is built
upon the developed results for the the noiseless scenario. In particular, different from the noisy setting, we
choose the step-size ηt = π

2m

∥∥y −A(UtU
>
t )
∥∥

1
. As will be shown later, this choice of ηt will remain close

to ‖UU> − u∗u∗>‖F due to sign-RIP.

Proofs for the Noiseless Case

D.1. Proof of Lemma 15

Due to (40), one can write ∥∥∥UtU>t −X?
∥∥∥2

F

=
∥∥∥(u?r>t + Et)(rtu

?> + E>t )− u?u?>
∥∥∥2

F

=

∥∥∥∥∥∥∥(‖rt‖2 − 1)u?u?>︸ ︷︷ ︸
(A)

+EtE
>
t︸ ︷︷ ︸

(B)

+Etrtu
?>︸ ︷︷ ︸

(C)

+u?r>t E
>
t︸ ︷︷ ︸

(D)

∥∥∥∥∥∥∥
2

F

.

(45)
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Now, note that ‖A‖2F =
(

1− ‖rt‖2
)2

, and

‖C‖F = ‖D‖F = ‖Etrt‖ ‖u?‖ = ‖Etrt‖ . (46)

On the other hand, u?>Et = u?>(I − u?u?>)Ut = 0, and therefore, 〈A,B〉 = 0. Simi-
larly, 〈A,C〉 = (‖rt‖2 − 1)Tr

(
u?u?>Etrtu

?>) = 0, and 〈A,D〉 = 0 since Tr
(
u?u?>u?r>t E

>
t

)
=

Tr
(
u?u?>UtU

>
t (I − u?u?>)

)
= Tr

(
UtU

>
t (I − u?u?>)u?u?>

)
= 0. Similarly, we have 〈B,C〉 =

0, 〈B,D〉 = 0, 〈C,D〉 = 0. This leads to∥∥∥UtU>t −X?
∥∥∥2

F
=
(

1− ‖rt‖2
)2

+ 2 ‖Etrt‖2 +
∥∥∥EtE>t ∥∥∥2

F

≤
(

1− ‖rt‖2
)2

+ 2 ‖Et‖2 ‖rt‖2 + ‖Et‖4F .
(47)

�

D.2. Error Dynamics

Proposition 19 (Error Dynamics) Assume that the measurements are noiseless and satisfy the sign-RIP

with parameters (min{r′ + 1, d}, δ), and constant scaling function ϕ(X) =
√

2
π . Moreover, suppose that

‖Et‖F ≤ 1, ‖rt‖ ≤ 2, δ ≤ 1
2 , and the step size ηt is chosen as (3) with η0 ≤ 2

45 . Then, we have

‖Et+1‖F ≤ ‖Et‖F + 22δη0. (48)

‖Et+1‖ ≤ ‖Et‖+ 15δη0. (49)

Proof
For simplicity of notation, we define ∆t = UtU

>
t −X∗ throughout the proof. First, we provide a useful

fact, which will be widely used in our subsequent arguments.

Fact 1 Suppose ‖Et‖F ≤ 1, ‖rt‖ ≤ 2, then by Lemma 15, we have ‖∆t‖2F ≤ 1 + 2× 4 + 1 = 10.

We first prove the error dynamics under a general learning rate ηt.

Lemma 20 Suppose that ‖Et‖F ≤ 1, ‖rt‖ ≤ 2, δ ≤ 1
2 , then, the following inequalities hold

‖Et+1‖2F ≤ ‖Et‖
2
F +

√
8

π
ηt

(
−
∥∥EtU>t ∥∥2

F

‖∆t‖F
+ δ

∥∥∥EtU>t ∥∥∥
F

)
+

20

π
η2
t

(
δ2 +

∥∥∥EtU>t ∥∥∥2

F
/ ‖∆t‖2F

)
, (50)

‖Et+1‖ ≤

∥∥∥∥∥I − ηtU
>
t Ut√

π
2 ‖∆t‖F

∥∥∥∥∥ · ‖Et‖+

√
2

π
δηt(‖rt‖+ ‖Et‖). (51)

Proof For simplicity, we denote Mt ∈ 1
m

∑m
i=1 Sign(

〈
Ai, UtU

>
t −X?

〉
)Ai, and M̄t =

√
2
π

∆t
‖∆t‖F

. It is
easy to verify that

Et+1 = Et − ηt(I − u?u?>)MtUt, (52)

Based on the above equation, one can write

‖Et+1‖2F = ‖Et‖2F − 2ηt

〈
Et, (I − u?u?>)MtUt

〉
+ η2

t

∥∥∥(I − u?u?>)MtUt

∥∥∥2

F
. (53)
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Next, we will provide separate upper bounds for the second and third terms in the above equation. First, note
that

〈Et,MtUt〉 =
〈
Mt, EtU

>
t

〉
(a)

≥ 1√
π
2 ‖∆t‖F

〈
∆t, EtU

>
t

〉
−
√

2

π
δ
∥∥∥EtU>t ∥∥∥

F

(b)
=

√
2

π

∥∥EtU>t ∥∥2

F

‖∆t‖F
−
√

2

π
δ
∥∥∥EtU>t ∥∥∥

F
.

(54)

where we used sign-RIP condition in (a), and (b) follows from
〈
UtU

>
t −X?, EtU

>
t

〉
=
〈
EtU

>
t , EtU

>
t

〉
=∥∥EtU>t ∥∥2

F
. On the other hand, we have〈
Et, u

?u?>MtUt

〉
= Tr

(
E>t u

?u?>MtUt

)
= Tr

(
U>t (I − u?u?>)u?u?>MtUt

)
= 0. (55)

Combining (54) and (55) leads to

−2ηt

〈
Et, (I − u?u?>)MtUt

〉
≤ −2ηt

(√
2

π

∥∥EtU>t ∥∥2

F

‖∆t‖F
−
√

2

π
δ
∥∥∥EtU>t ∥∥∥

F

)
(56)

Now, we provide an upper bound for the third term in (53). One can write∥∥∥(I − u?u?>)MtUt

∥∥∥2

F
≤ 2

∥∥∥(I − u?u?>)(Mt − M̄t)Ut

∥∥∥2

F
+ 2

∥∥∥(I − u?u?>)M̄tUt

∥∥∥2

F

(a)

≤ 2
∥∥(Mt − M̄t)Ut

∥∥2

F
+

4

π

∥∥EtU>t Ut∥∥2

F

‖∆t‖2F
(b)

≤ 4

π
δ2 ‖Ut‖2F +

4

π

∥∥∥EtU>t ∥∥∥2

F
‖Ut‖2F / ‖∆t‖2F

(c)

≤ 20

π
δ2 +

20

π

∥∥∥EtU>t ∥∥∥2

F
/ ‖∆t‖2F .

(57)

where we used the contraction of projection and (I − u?u?>)(UtU
>
t −X?)Ut = EtU

>
t Ut in (a). Moreover,

(b) directly follows from the sign-RIP condition. Finally, we used the following fact in (c).

Fact 2 Assuming ‖Et‖F ≤ 1, ‖rt‖ ≤ 2, we have ‖Ut‖2F = ‖rt‖2 + ‖Et‖2F ≤ 12 + 22 = 5.

Finally, combining all the three terms, we finally have:

‖Et+1‖2F ≤ ‖Et‖
2
F +

√
8

π
ηt

(
−
∥∥EtU>t ∥∥2

F

‖∆t‖F
+ δ

∥∥∥EtU>t ∥∥∥
F

)
+

20

π
η2
t

(
δ2 +

∥∥EtU>t ∥∥2

F

‖∆t‖2F

)
. (58)
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Now, we turn to control the spectral norm. First, notice that∥∥∥∥∥(I − u?u?>)MtUt − (I − u?u?>)
∆tUt√
π
2 ‖∆t‖F

∥∥∥∥∥
(a)

≤

∥∥∥∥∥MtUt −
∆tUt√
π
2 ‖∆t‖F

∥∥∥∥∥
≤
∥∥Mt − M̄t

∥∥ · ‖Ut‖
≤
√

2

π
δ ‖Ut‖

≤
√

2

π
δ(‖Et‖+ ‖rt‖).

(59)

Here in (a) we used the contraction of projection. On the other hand, observing that (I − u?u?>)(UtU
>
t −

X?)Ut = EtU
>
t Ut, we have

‖Et+1‖ =
∥∥∥Et − ηt(I − u?u?>)MtUt

∥∥∥
≤
∥∥∥Et − ηt(I − u?u?>)M̄tUt

∥∥∥+ ηt

∥∥∥(I − u?u?>)(Mt − M̄t)Ut

∥∥∥
≤

∥∥∥∥∥Et
(
I − ηtU

>
t Ut√

π
2 ‖∆t‖F

)∥∥∥∥∥+

√
2

π
δηt(‖rt‖+ ‖Et‖)

≤

∥∥∥∥∥I − ηtU
>
t Ut√

π
2 ‖∆t‖F

∥∥∥∥∥ · ‖Et‖+

√
2

π
δηt(‖rt‖+ ‖Et‖),

(60)

which completes the proof.

Before presenting the proof of Proposition 19, we need the following intermediate result

Lemma 21 Suppose that the measurements satisfy sign-RIP with parameters (δ, r) and a constant scaling

function ϕ(X) =
√

2
π . Then, for every X ∈ Sr, we have∣∣∣∣∣ 1

m
‖A(X)‖1 −

√
2

π
‖X‖F

∣∣∣∣∣ ≤
√

2

π
δ (61)

Proof Due to the sign-RIP condition, we have
∥∥∥D −√ 2

πX
∥∥∥
F
≤
√

2
π δ for every X ∈ Sr and D ∈

1
m

∑m
i=1 Sign(〈Ai, X〉)Ai. This implies that√

2

π
δ = sup

Y ∈S

〈
D −

√
2

π
X, Y

〉
≥

〈
D −

√
2

π
X,X

〉
≥ 1

m
‖A(X)‖1 −

√
2

π
‖X‖F . (62)

Similarly, it can be shown that
√

2
π δ ≥ −

1
m ‖A(X)‖1 +

√
2
π ‖X‖F . This completes the proof.

Based on the above lemma, the sign-RIP condition implies the `1/`2-RIP condition. Given Lemmas 20
and 21, we are ready to present the proof of Proposition 19.
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Proof [Proof of Proposition 19] It is enough to show that the choice of ηt = π
2 η0 · 1

m

∑∣∣〈Ai, UtU>t −X?
〉∣∣

in Lemma 20 leads to the desired bounds. Based on Lemma 21 and δ ≤ 1
2 , we have

ηt ≤
√
π

2
η0 ‖∆t‖F (1 + δ) ≤

√
9π

8
η0 ‖∆t‖F . (63)

Similarly, we have the lower bound ηt ≥
√

π
8 η0 ‖∆t‖F . Substituting these inequalities in Lemma 20 leads to

‖Et+1‖2F ≤ ‖Et‖
2
F − η0

∥∥∥EtU>t ∥∥∥2

F
+ 3δη0 ‖∆t‖F

∥∥∥EtU>t ∥∥∥
F

+
45

2
η2

0

(
δ2 ‖∆t‖2F +

∥∥∥EtU>t ∥∥∥2

F

)
(a)

≤ ‖Et‖2F + 3δη0 ‖∆t‖F
∥∥∥EtU>t ∥∥∥

F
+

45

2
δ2η2

0 ‖∆t‖2F
(b)

≤ ‖Et‖2F + 3
√

10δη0 ‖Et‖F ‖Ut‖F + 225δ2η2
0

(c)

≤ ‖Et‖2F + 22δη0 ‖Et‖F + 225δ2η2
0

= (‖Et‖F + 11δη0)2 + 104δ2η2
0.

(64)

where (a) follows from the assumption η0 ≤ 2
45 , (b) follows form Fact 1, and (c) follows from Fact 2.

Therefore, we have
‖Et+1‖F ≤ ‖Et‖F + 11δη0 + 11δη0 = ‖Et‖F + 22δη0. (65)

Similarly,

‖Et+1‖ ≤

∥∥∥∥∥I − ηtU
>
t Ut√

π
2 ‖∆t‖F

∥∥∥∥∥ · ‖Et‖+

√
2

π
δηt(‖rt‖+ ‖Et‖). (66)

Note that ∥∥∥U>t Ut∥∥∥ ≤ ‖Ut‖2 ≤ (‖Et‖+
∥∥∥u?r>t ∥∥∥)2 ≤ (‖Et‖+ ‖rt‖)2 ≤ 9. (67)

which, together with ηt ≤
√

9π
8 η0, implies ∥∥∥∥∥ ηtU

>
t Ut√

π
2 ‖∆t‖F

∥∥∥∥∥ < 1. (68)

Therefore, the first term in the right hand side of the above inequality is upper bounded by ‖Et‖. On the other
hand, the second term in (66) can be bounded as√

2

π
δηt(‖rt‖+ ‖Et‖) ≤

3

2
δη0‖∆t‖F (‖rt‖+ ‖Et‖) ≤ 15δη0 (69)

This completes the proof.
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D.3. Signal Dynamics

Proposition 22 (Signal Dynamics) Under the conditions of Proposition 19, we have∥∥∥rt+1 −
(

1 + η0(1− ‖rt‖2)
)
rt

∥∥∥ ≤ 10η0δ(‖Et‖+ ‖rt‖) + 2η0 ‖Et‖2 ‖rt‖ . (70)

Proof Similarly, we first prove the following lemma which holds for a general choice of ηt.

Lemma 23 Assuming ‖Et‖F ≤ 1, ‖rt‖ ≤ 2, we have∥∥∥∥∥rt+1 −

(
1 +

ηt(1− ‖rt‖2)√
π
2

∥∥UtU>t −X?
∥∥
F

)
rt

∥∥∥∥∥ ≤
√

2

π
ηtδ(‖Et‖+ ‖rt‖)

+
ηt√

π
2

∥∥UtU>t −X?
∥∥
F

‖Et‖2 ‖rt‖ .
(71)

Proof Recalling the notations Mt ∈ 1
m

∑m
i=1 Sign(〈Ai,∆t〉)Ai and M̄t =

√
2
π

∆t
‖∆t‖F

, we have

rt+1 = rt − ηtU>t M>t u?. (72)

Therefore, ∥∥∥∥∥rt+1 − rt + ηt
U>t ∆tu

?√
π
2 ‖∆t‖F

∥∥∥∥∥ ≤ ηt ∥∥∥U>t (Mt − M̄t)
>u?

∥∥∥
≤ ηt ‖Ut‖ ·

∥∥Mt − M̄t

∥∥ · ‖u?‖
≤
√

2

π
ηtδ(‖Et‖+ ‖rt‖),

(73)

where the last inequality follows from the sign-RIP condition. On the other hand, since
U>t

(
UtU

>
t −X?

)
u? = U>t Utrt − rt =

(
rtr
>
t + E>t Et

)
rt − rt =

(
‖rt‖2 − 1

)
rt − E>t Etrt, one can

write ∥∥∥∥∥rt+1 −

(
1 +

ηt(1− ‖rt‖2)√
π
2 ‖∆t‖F

)
rt

∥∥∥∥∥
≤
√

2

π
ηtδ(‖Et‖+ ‖rt‖) +

ηt√
π
2 ‖∆t‖F

∥∥∥E>t Etrt∥∥∥
≤
√

2

π
ηtδ(‖Et‖+ ‖rt‖) +

ηt√
π
2 ‖∆t‖F

‖Et‖2 ‖rt‖ .

(74)

Equipped with this lemma and (63), we write∥∥∥rt+1 −
(

1 + η0(1− ‖rt‖2)
)
rt

∥∥∥ ≤ η0δ(1− ‖rt‖2) ‖rt‖

+ 2η0 ‖∆t‖F δ(‖Et‖+ ‖rt‖)
+ 2η0 ‖Et‖2 ‖rt‖ .

(75)
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Note that the first term is dominated by the second term since ‖∆t‖F ≥ 1− ‖rt‖2 due to (47) and the fact
that ‖∆t‖F ≤

√
10. We finally have∥∥∥rt+1 −

(
1 + η0(1− ‖rt‖2)

)
rt

∥∥∥ ≤ 10η0δ(‖Et‖+ ‖rt‖) + 2η0 ‖Et‖2 ‖rt‖ . (76)

D.4. Convergence Result

Now we can formally state the following convergence theorem for the noiseless setting.

Theorem 24 Assume that the measurements are noiseless and satisfy the sign-RIP condition with parameters

(min{r′ + 1, d}, δ), δ . 1, and constant scaling function ϕ(X) =
√

2
π . Suppose that α �

√
δ/ 4
√
r′ and the

step size ηt is chosen as (3) with η0 . 1. Then, after T � log(r′/δ)
η0

iterations, we have

∥∥∥UTU>T −X?
∥∥∥2

F
. δ2 log2

(
r′

δ

)
. (77)

Proof To start the proof, we first provide the following intermediate lemma on the initial signal and error
terms.

Lemma 25 Suppose that U0 = αB is chosen by Algorithm 2. Then under the conditions of Theorem 24 , we
have

‖r0‖ = α(1±O(
√
δ)), ‖E0‖ = O(α

√
δ), ‖E0‖F = O(α

4
√
r′
√
δ). (78)

Proof For convenience, we list the diagonal elements of Σ in a descending order σ1 ≥ σ2 ≥ · · · ≥ σd.
Moreover, suppose that u1, · · · , ud are the corresponding eigenvectors. For simplicity, we define σ′i =
max{σi, 0}. Due to sign-RIP, we have ∥∥∥∥∥C −

√
2

π
X?

∥∥∥∥∥
F

. δ. (79)

Therefore, we have ∥∥∥X̂ −X?
∥∥∥
F

=

∥∥∥∥ C

‖C‖F
−X?

∥∥∥∥
F

≤
∥∥∥∥√π

2
C −X?

∥∥∥∥
F

+ ‖X?‖F −
√
π

2
‖C‖F

= O(δ),

(80)
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here we use triangle inequality twice. Since span{u1, · · · , ud} = Rd and ‖u?‖ = 1, we can write u? =∑d
i=1 βiui, where

∑d
i=1 β

2
i = 1. Therefore, we have

∥∥∥X̂ −X?
∥∥∥2

F
=

〈
d∑
i=1

σiuiu
>
i − u?u?>,

d∑
i=1

σiuiu
>
i − u?u?>

〉

=

d∑
i=1

σ2 − 2

d∑
i=1

σiβ
2
i + 1

=

d∑
i=1

(
σi − β2

i

)2
+ 1−

d∑
i=1

β4
i . δ

2,

(81)

which implies
d∑
i=1

(
σi − β2

i

)2
= O

(
δ2
)
,

d∑
i=1

β4
i = 1−O

(
δ2
)
. (82)

Without loss of generality, we define βmax = |β1| = max{|βi| : 1 ≤ i ≤ d}. Therefore, we have

1−O
(
δ2
)

=
d∑
i=1

β4
i ≤ β2

max

d∑
i=1

β2
i = β2

max. (83)

Here we use the fact that
∑d

i=1 β
2
i = 1. Moreover, it is easy to see that

∑d
i=2 β

2
i = 1 − β2

max = O
(
δ2
)
.

Therefore, we have

∥∥∥BB> −X?
∥∥∥2

F
=

r′∑
i=1

σ
′2
i −

r′∑
i=1

σ′iβ
2
i + 1

=
r′∑
i=1

(
σ′i − β2

i

)2 − r′∑
i=1

β4
i + 1

= 1− β4
max +O

(
δ2
)

=
(
1 + β2

max

) (
1− β2

max

)
+O

(
δ2
)

= O
(
δ2
)
.

(84)

By Lemma 15, we immediately have(
1−

∥∥∥B>u?∥∥∥2
)2

≤
∥∥∥BB> −X?

∥∥∥2

F
. δ2. (85)

On the other hand, note that ‖r0‖ = α
∥∥B>u?∥∥, which together with the above inequality, implies ‖r0‖ =

α(1±O(
√
δ)). Similarly, we have∥∥∥(I − u?u?>)B

∥∥∥2
= sup
‖x‖≤1

x>(I − u?u?>)BB>(I − u?u?>)x

= sup
‖x‖≤1

x>(I − u?u?>)(BB> −X?)(I − u?u?>)x

≤
∥∥∥BB> −X?

∥∥∥ ≤ ∥∥∥BB> −X?
∥∥∥
F

= O(δ),

(86)
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which leads to ‖E0‖ = O(α
√
δ). As for the Frobenius norm, we have∥∥∥(I − u?u?>)B

∥∥∥2

F
=
〈

(I − u?u?>)B, (I − u?u?>)B
〉

=
〈
I − u?u?>, BB> −X?

〉
=

r′∑
i=1

σ′i −
r′∑
i=1

σ′iβ
2
i

≤ σ′1
(
1− β2

max

)
+

r′∑
i=2

σ′i

=

r′∑
i=2

(
σ′i − β2

i

)
+

r′∑
i=2

β2
i +O

(
δ2
)

≤
√
r′ − 1

√√√√ r′∑
i=2

(
σ′i − β2

i

)2
+ 1− β2

max +O
(
δ2
)

= O
(√

r′δ
)
.

(87)

Therefore, we have ‖E0‖F = O
(
α 4
√
r′
√
δ
)

, which completes the full proof.

Based on the above lemma, the assumptions of Propositions 19 and 22 are valid for the base case. Next,
we control the Frobenius norm of the error term. From Proposition 19, we have

‖Et+1‖F ≤ ‖Et‖F + 22δη0, (88)

which implies

‖ET ‖F = ‖E0‖F +
T∑
t=1

(‖Et‖F − ‖Et−1‖F ) ≤ ‖E0‖F + 22δη0T. (89)

Therefore, since T � log
(

1
δ

)
/η0 and α �

√
δ/ 4
√
r′, we have ‖ET ‖F . δ log r′

δ . Therefore, we have
‖ET ‖ ≤ ‖ET ‖F . δ log r′

δ . This shows that the error term remains small throughout the iterations of
SubGM. Without loss of generality and to simplify our subsequent analysis, we assume that ‖ET ‖ ≤ δ log r′

δ ,
which can be ensured with sufficiently small η0. Next, we control the signal term. Due to Proposition 22, we
have

‖rt+1‖ ≥ (1 + η0(1− ‖rt‖2)) ‖rt‖ − 10η0δ(‖Et‖+ ‖rt‖)− 2η0 ‖Et‖2 ‖rt‖ . (90)

Now, we separate our analysis into two stages. In the first stage, we show that the signal grows at a linear
rate, provided that ‖rt‖ ≤ 1/2. To show this, we first prove that during the whole training process, the signal
term is always larger than the error term.

Lemma 26 Suppose that δ ≤ 1/50. Then, for any 0 ≤ t ≤ T = Θ
(
log 1

α/η0

)
, we have

‖Et‖ ≤ ‖rt‖ . (91)
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Proof We prove this lemma by induction. For the base case, (91) holds since we have ‖r0‖ = α(1 ±
O(
√
δ)), ‖E0‖ = αO(

√
δ). Now, suppose that (91) holds at time t. Based on (66) and (69), we have

‖Et+1‖ ≤ (1 + 5η0δ) ‖Et‖+ 5η0δ ‖rt‖ ≤ (1 + 10η0δ) ‖rt‖ . (92)

On the other hand, due to (90), we have

‖rt+1‖ ≥ (1 + η0(1− ‖rt‖2)) ‖rt‖ − 10η0δ(‖Et‖+ ‖rt‖)− 2η0 ‖Et‖2 ‖rt‖
≥ (1 + η0(1− 3 ‖rt‖2)) ‖rt‖ − 20δη0 ‖rt‖

≥
(

1 +
1

5
η0

)
‖rt‖ .

(93)

Here we used the induction hypothesis ‖Et‖ ≤ ‖rt‖. The above two inequalities, together with δ ≤ 1/50,
imply that ‖Et+1‖ ≤ ‖rt+1‖.

During the proof of the above lemma, we showed that

‖rt+1‖ ≥ (1 + η0/5) ‖rt‖ . (94)

provided that δ ≤ 1/50. Now, assuming that T1 & log 1
α/η0, we have

‖rT1‖ ≥ (1−O(
√
δ))α(1 + η0/5)T1 ≥ 1

2
, (95)

This implies that, after T1 iterations, the signal term will have a norm of at least 1/2. In the second stage, we
assume that 1 ≥ ‖rt‖ ≥ 1/2. One can write

‖rt+1‖ ≥ (1 + η0(1− ‖rt‖2)) ‖rt‖ − 10η0δ(‖Et‖+ ‖rt‖)− 2η0 ‖Et‖2 ‖rt‖

≥ (1 + η0(1− ‖rt‖)) ‖rt‖ − 20η0δ ‖rt‖ − 4η0δ
2 log2 r

′

δ
,

(96)

where we used 1− ‖rt‖2 ≥ 1− ‖rt‖ given ‖rt‖ ≤ 1, and Lemma 26.
For the sake of simplicity, we define xt = 1− ‖rt+T1‖. Hence, (96) can be simplified as

xt+1 ≤ 1− (1− 20η0δ + η0xt)(1− xt) + 4η0δ
2 log2 r

′

δ

≤ (1− η0 + 20η0δ)xt + η0x
2
t + 20η0δ + 4η0δ

2 log2 r
′

δ

≤ (1− 3

4
η0)xt +

1

2
η0xt + 20η0δ

(
1 + δ log2 r

′

δ

)
≤ (1− η0/4)xt + 20η0δ

(
1 + δ log2 r

′

δ

)
,

(97)

Here, we used xt ≤ 1/2 and δ ≤ 1/80. Then, we have

xt+1 − 80δ

(
1 + δ log2 1

δ

)
≤
(

1− η0

4

)(
xt − 80δ

(
1 + δ log2 r

′

δ

))
, (98)
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which implies

xT2 ≤ 80δ

(
1 + δ log2 r

′

δ

)
+

1

2
(1− η0/4)T2 . (99)

Upon choosing T2 & log 1
δ/η0, we have xT2 . δ ∨ δ2 log2 r′

δ , which is equivalent to ‖rT1+T2‖ ≥ 1 −
O
(
δ + δ2 log2 r′

δ

)
.

This completes the proof under the assumption ‖rT1+T2‖ ≤ 1. Now, it remains to show that the error
bound holds even if ‖rT1+T2‖ > 1. To this goal, first we show that T3 = Ω

(
log r′

δ /η0

)
is necessary to

guarantee the convergence of SubGM. In particular, we prove that we need at least T3 = Ω
(

log r′

δ /η0

)
to

ensure ‖rT3‖ ≥ 1
2 . To this goal, suppose that ‖rt‖ ≤ 1/2 for every t ≤ T . Due to Proposition 22, we have

‖rt+1‖ ≤ (1 + η0(1− ‖rt‖2)) ‖rt‖+ 10η0δ(‖Et‖+ ‖rt‖) + 2η0 ‖Et‖2 ‖rt‖ .
(a)

≤ (1 + 20η0δ + η0(1− ‖rt‖2)) ‖rt‖+ 2η0 ‖rt‖2 · ‖rt‖
(b)

≤
(

1 + 20η0δ + η0 +
1

2
η0

)
‖rt‖

≤ (1 + 2η0) ‖rt‖ .

(100)

Here we used Lemma 26 and ‖rt‖ ≤ 1
2 in (a) and (b), respectively. Therefore,

‖rT ‖ ≤ α(1 + 2η0)T . (101)

This shows that we need at least T3 = Ω
(
log 1

α/η0

)
= Ω

(
log r′

δ /η0

)
iterations to guarantee ‖rt‖ ≥ 1/2.

Now, suppose ‖rT1+T2‖ > 1. Without loss of generality, we assume that ‖rT1+T2−1‖ ≤ 1 < ‖rT1+T2‖ (since
T3 and T1+T2 have the same order). Under this assumption, we show that ‖rT1+T2‖ ≤ 1+O

(
δ + δ2 log2 r′

δ

)
.

By Proposition 19, we have

‖rt+1‖ − ‖rt‖ ≤ η0(1− ‖rt‖2) ‖rt‖+ 10η0δ(‖Et‖+ ‖rt‖) + 2η0 ‖Et‖2 ‖rt‖

≤ 6η0(1− ‖rt‖) + 40η0δ + 4η0δ
2 log2 r

′

δ
.

(102)

where we used the Lemma 26 and ‖rt‖ ≤ 2. Then, by our choice of ‖rT1+T2−1‖ and ‖rT1+T2‖, we have

‖rT1+T2‖ − ‖rT1+T2−1‖ ≤ 6η0(1− ‖rT1+T2−1‖) + 40η0δ + 4η0δ
2 log2 r

′

δ

≤ 6η0 (‖rT1+T2‖ − ‖rT1+T2−1‖) + 40η0δ + 4η0δ
2 log2 r

′

δ
.

(103)

Then, since η0 . 1, we have

‖rT1+T2‖ − 1 ≤ ‖rT1+T2‖ − ‖rT1+T2−1‖ . δ ∨ δ2 log2 r
′

δ
. (104)

This implies that |1− ‖rT1+T2‖ | . δ ∨ δ2 log2 r′

δ .
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Finally, these two stages characterize the behavior of rt and its convergence to the true solution. In
particular, with the choice of T = T1 + T2 = O(log r′

δ /η0), and according to Lemma 15, we have∥∥∥UTU>T −X?
∥∥∥2

F
≤ (1− ‖rT ‖2)2 + 2 ‖ET ‖2 ‖rT ‖2 + ‖ET ‖4F

. δ2 + δ4 log4 r
′

δ
+ δ2 log2 r

′

δ
+ δ4 log4 r

′

δ

. δ2 log2 r
′

δ
,

(105)

which completes the proof. �

Proofs for the Noisy Case

For simplicity of notation, we denote ϕt = ϕ(∆t), where ∆t = UtU
>
t −X∗.

D.5. Proof of Proposition 18

Analogous to the proof of Proposition 19, first we provide a general result which holds for arbitrary learning
rates.

Lemma 27 Suppose that ‖Et‖F ≤ 1, ‖rt‖ ≤ 2, δ ≤ 1
2 , then, the following inequalities hold

‖Et+1‖2F ≤ ‖Et‖
2
F + 2ηtϕt

(
−
∥∥EtU>t ∥∥2

F

‖∆t‖F
+ δ

∥∥∥EtU>t ∥∥∥
F

)
+ 10η2

tϕ
2
t

(
δ2 +

∥∥EtU>t ∥∥2

F

‖∆t‖2F

)
, (106)

‖Et+1‖ ≤
∥∥∥∥I − ηtϕtU

>
t Ut

‖∆t‖F

∥∥∥∥ · ‖Et‖+ δηtϕt(‖rt‖+ ‖Et‖). (107)

Proof The proof is similar to that of Lemma 20. The details are omitted for brevity.

Now, we are ready to present the proof of Proposition 18.
Proof [Proof of Proposition 18]

Based on the sign-RIP condition, the step sizes satisfy

ηt =
η0ρ

t

‖D‖F
≤ η0ρ

t

ϕt(1− δ)
≤ 2η0ρ

t

ϕt
, (108)

where D ∈M(UtUt −X∗). For the Frobenius norm, we have

‖Et+1‖2F ≤ ‖Et‖
2
F + 2ηtϕt

(
−
∥∥EtU>t ∥∥2

F

‖∆t‖F
+ δ

∥∥∥EtU>t ∥∥∥
F

)
+ 10η2

tϕ
2
t

(
δ2 +

∥∥EtU>t ∥∥2

F

‖∆t‖2F

)
≤ ‖Et‖2F + 2ηtϕtδ

∥∥∥EtU>t ∥∥∥
F

+ 10δ2η2
tϕ

2
t

≤ ‖Et‖2F + 4δη0ρ
t
∥∥∥EtU>t ∥∥∥

F
+ 20δ2η2

0ρ
2t.

(109)
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where in the second inequality, we used the assumption η0 . δ . ‖∆t‖F , which implies

−2ηtϕt

∥∥EtU>t ∥∥2

F

‖∆t‖F
+ 10η2

tϕ
2
t

∥∥EtU>t ∥∥2

F

‖∆t‖2F
≤ 0 (110)

Furthermore, note that ∥∥∥EtU>t ∥∥∥2

F
=
∥∥∥EtE>t ∥∥∥2

F
+
∥∥∥Etrtu?>∥∥∥2

F

≤ ‖Et‖4F + ‖Et‖2F ‖rt‖
2

≤ (1 + 4) ‖Et‖2F ,

(111)

which implies
‖Et+1‖2F ≤ ‖Et‖

2
F + 20δη0ρ

t ‖Et‖F + 20δ2η2
0ρ

2t

≤
(
‖Et‖F + 10δη0ρ

t
)2
.

(112)

This leads to ‖Et+1‖F ≤ ‖Et‖F + 10δη0ρ
t.

For the spectral norm, since we suppose η0 . δ . ‖∆t‖F , we have
∥∥∥I − ηtϕtU>t Ut

‖∆t‖F

∥∥∥ ≤ 1. Combined
with Lemma 27, this implies that

‖Et+1‖ ≤ ‖Et‖+ δηtϕt(‖rt‖+ ‖Et‖) ≤ ‖Et‖+ 2δη0ρ
t(‖rt‖+ ‖Et‖). (113)

thereby completing the proof.

D.6. Proof of Proposition 17

Similar to the proof of Proposition 22, we first present a general result which holds for arbitrary learning
rates.

Lemma 28 For any learning rate ηt, if ‖Et‖F ≤ 1, ‖rt‖ ≤ 2, then we have∥∥∥∥∥rt+1 −

(
1 +

ϕtηt(1− ‖rt‖2)∥∥UtU>t −X?
∥∥
F

)
rt

∥∥∥∥∥
≤δηtϕt(‖Et‖+ ‖rt‖) +

ϕtηt∥∥UtU>t −X?
∥∥
F

‖Et‖2 ‖rt‖ .
(114)

Proof The proof is similar to that of Lemma 23. The details are omitted for brevity.

Proof [Proof of Proposition 17] Assuming that δ ≤ 1
2 , we have∣∣∣∣ηt − η0

ϕt
ρt
∣∣∣∣ =

∣∣∣∣ η0

‖D‖F
ρt − η0

ϕt
ρt
∣∣∣∣ ≤ δϕtη0ρ

t

(1− δ)ϕ2
t

≤ 2δη0ρ
t

ϕt
. (115)

Combined with Lemma 28, this implies that∥∥∥∥∥rt+1 −

(
1 +

η0ρ
t(1− ‖rt‖2)∥∥UtU>t −X?

∥∥
F

)
rt

∥∥∥∥∥ ≤ 2δη0ρ
t(‖Et‖+ ‖rt‖) +

2η0ρ
t∥∥UtU>t −X?
∥∥
F

‖Et‖2 ‖rt‖

+
2δη0ρ

t∥∥UtU>t −X?
∥∥
F

(1− ‖rt‖2) ‖rt‖ .
(116)

which completes the proof.
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D.7. Proof of Theorem 7

Recall that T = Θ(log 1
α/η0). First, we show that the error term remains small during the iterations of

SubGM. Proposition 18 leads to

‖Et‖ ≤ ‖Et‖F = ‖E0‖F +

t∑
t=1

(‖Et‖F − ‖Et−1‖F ) ≤ 4
√
r′
√
δα+ 10δη0T . δ log

r′

δ
, (117)

provided that ‖∆t‖F ≥ 1−‖rt‖2 & δ. To verify this assumption, we show that ‖∆t‖F ≥ 1−‖rt‖2 & δ log r′

δ
for every t ≤ T̄ , where T̄ & log 1

α/η0. To this goal, first we present a preliminary claim

Claim 1 For every 0 ≤ t ≤ T , we have ‖Et‖ ≤ ‖rt‖.

Proof It follows an argument analogous to the proof of Lemma 26. The details are omitted for brevity.

Based on this claim, we are ready to show that ‖∆t‖F ≥ 1 − ‖rt‖2 & δ log r′

δ for every t ≤ T̄ , where
T̄ & log 1

α/η0.

Claim 2 Suppose that δ ≤ 1/6. Then, for every 0 ≤ t . log 1
α/η0, we have ‖rt‖ ≤ 1

2 .

Proof The statement holds for t = 0 since ‖r0‖ = Θ(α). Now, suppose that ‖rt‖ ≤ 1
2 . Then, we have

‖rt+1‖ ≤
(

1 +
4

3

η0ρ
t

‖∆t‖F
(1− ‖rt‖2)

)
‖rt‖+ 2δη0ρ

t(‖Et‖+ ‖rt‖) +
2η0ρ

t

‖∆t‖F
‖Et‖2 ‖rt‖

(a)

≤
(
1 +O (1) η0ρ

t
)
‖rt‖+ 2δη0ρ

t(‖Et‖+ ‖rt‖)
(b)

≤
(
1 +O(1)η0ρ

t
)
‖rt‖ .

(118)

where in (a) we use the fact that ‖∆t‖F ≥ 1 − ‖rt‖2 ≥ 3/4 and ‖Et‖ . 1; and in (b) we use Claim 1.
Without loss of generality, we assume that ‖rt+1‖ ≤

(
1 + η0ρ

t
)
‖rt‖. Hence, it suffices to show that

‖r0‖
t∏

s=1

(1 + η0ρ
s) = Θ(α)

t∏
s=1

(1 + η0ρ
s) ≤ 1

2
, (119)

for every 0 ≤ t . log 1
α/η0. This is equivalent to

t∑
s=1

log (1 + η0ρ
s) ≤ log

1

2α
. (120)

On the other hand, note that

t∑
s=1

log (1 + η0ρ
s) ≤

t∑
s=1

η0ρ
s ≤ η0

1− ρt

1− ρ
≤ C log

1

α

(
1− ρt

)
. (121)

Therefore, to finish the proof, we need to show that C log 1
α

(
1− ρt

)
≤ log 1

2α , which implies 1 − 1
C +

log 2

C log 1
α

≤ ρT . This can be easily verified for every t . log 1
α/η0, by noting that ρ = 1−Θ(η0/ log 1

α).
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Based on the above claim and upon choosing T̄ � log 1
α/η0, the error term is bounded as (117) for

every t ≤ T̄ . Now, note that the proof is completed if ‖∆t‖F . δ log r′

δ for some T̄ ≤ t ≤ T . Therefore,
suppose that ‖∆t‖F & δ log r′

δ for every T̄ ≤ t ≤ T . This implies that the error bound (117) holds
for every T̄ ≤ t ≤ T . Moreover, we assume that 1 − ‖rt‖2 ≥ 3 ‖Et‖F , since otherwise, we have
1− ‖rt‖2 . δ log(r′/δ), and the proof is completed together with ‖Et‖t ≤ δ log(r′/δ) and Lemma 15. This
leads to

1− ‖rt‖2 ≤ ‖∆t‖F ≤ 1− ‖rt‖2 + ‖Et‖ ‖rt‖+ ‖Et‖2F ≤
13

9
(1− ‖rt‖2). (122)

assuming that ‖rt‖ ≤ 1. Then, according to Proposition 17, we have

‖rt+1‖ ≥
(

1 +
2

3

η0ρ
t

‖∆t‖F
(1− ‖rt‖2)

)
‖rt‖ − 2δη0ρ

t(‖Et‖+ ‖rt‖)−
2η0ρ

t

‖∆t‖F
‖Et‖2 ‖rt‖

(a)

≥
(
1 + Ω(1)η0ρ

t
)
‖rt‖ − 2δη0ρ

t ‖Et‖ .

(123)

where in (a) we used ‖Et‖2 ≤ (1−‖rt‖2)/9, inequality (122), and δ . 1. To proceed, note that ‖Et‖ ≤ ‖rt‖
due to Claim 1. Hence, we have

‖rt+1‖ ≥
(
1 + Ω(1)η0ρ

t
)
‖rt‖ . (124)

for every 0 ≤ t ≤ T . Now, it remains to show that after T = O
(
log
(

1
α

)
/η0

)
iterations, the signal

term approaches 1. Without loss of generality, we assume that ‖rt+1‖ ≥ (1 + η0ρ
t) ‖rt‖, which implies

‖rT ‖ ≥ α
∏T
t=1

(
1 + η0ρ

t
)
. Taking the logarithm of the right hand side leads to

T∑
t=1

log
(
1 + η0ρ

t
)
≥

T∑
t=1

η0ρ
t

1 + η0ρt
≥ η0

2

1− ρT

1− ρ
. (125)

where we used the lower bound log(1 + x) ≥ x
1+x for x ≥ −1. Now, upon defining γ = 1− ρ, we have

η0

2

1− ρT

1− ρ
=
η0

2

1− (1− γ)T

γ

≥ η0

2γ

(
1−

(
1− γT

1 + (T − 1)γ

))
≥ η0

2γ

γT

2
.

(126)

where we used the basic inequality (1 − x)r ≤ 1 − rx
1+(r−1)x for x ∈ [0, 1], r > 1. Now, recalling

T = Θ
(
log 1

α/η0

)
and γ = Θ

(
η0/ log 1

α

)
, we have η0

2γ
γT
2 ≥ log(1/α), which implies that after T =

Θ(log 1
α/η0) iterations, the signal term satisfies ‖rT ‖ ≥ 1. So, the only remaining part is to show that

‖rT ‖ = 1±O(δ log r′

δ ). Recall that, based on the definition of T̄ , we have ‖rT̄ ‖ < 1. Now, we assume that
‖rT−1‖ < 1, and ‖rT ‖ ≥ 1. Note that this assumption is without loss of generality, since T̄ and T have the
same order. Then we have the following claim.

Claim 3 Either 1− δ log r′

δ . ‖rT−1‖2, or ‖rT ‖ . 1 + δ2 log r′

δ .
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Proof Assume that ‖∆T−1‖F ≥ 1− ‖rT−1‖2 & δ log r′

δ . Then, by Proposition 17, we have

‖rT ‖ − ‖rT−1‖ ≤
4

3

η0ρ
T−1(1− ‖rT−1‖2)

‖∆T−1‖F
‖rT−1‖+

2η0ρ
T−1 ‖ET−1‖2

‖∆T−1‖F
‖rT−1‖+O(δη0ρ

T )

.
1

log r′

δ

(1− ‖rT−1‖) + δ2 log
r′

δ

.
1

log r′

δ

(‖rT ‖ − ‖rT−1‖) + δ2 log
r′

δ

(127)

This implies that, for sufficiently small δ, we have ‖rT ‖ − ‖rT−1‖ = O(δ2 log r′

δ ), thereby completing the
proof.

In summary, we showed that 1− δ log r′

δ . ‖rT−1‖2 ≤ 1, or 1 ≤ ‖rT ‖ . 1 + δ2 log r′

δ . On the other hand,
we know that ‖Et‖ . δ log r′

δ for every t ≤ T . This together with Lemma 15 completes the proof. �

Appendix E. Proof of Proposition 2

We divide our analysis into two cases. In the first case, we assume pσ2 = Ω(1). We have

sup
X∈S
‖Q(X)−X‖F = sup

X,Y ∈S

∣∣∣∣∣ 1

m

m∑
i=1

〈Ai, X〉 〈Ai, Y 〉+
1

m

∑
i∈S

si 〈Ai, Y 〉 − 〈X,Y 〉

∣∣∣∣∣
(a)

≥ sup
Y ∈S

∣∣∣∣∣ 1

m

m∑
i=1

〈Ai, Y 〉2 +
1

m

∑
i∈S

si 〈Ai, Y 〉 − 1

∣∣∣∣∣
≥ sup

Y ∈S

∣∣∣∣∣ 1

m

∑
i∈S

si 〈Ai, Y 〉

∣∣∣∣∣− sup
Y ∈S

∣∣∣∣∣ 1

m

m∑
i=1

〈Ai, Y 〉2 − 1

∣∣∣∣∣
(b)
=

∥∥∥∥∥ 1

m

∑
i∈S

siAi

∥∥∥∥∥
F

− sup
Y ∈S

∣∣∣∣∣ 1

m

m∑
i=1

〈Ai, Y 〉2 − 1

∣∣∣∣∣ .

(128)

where in (a) we add a constraint X = Y to the supremum; and in (b) we use the Cauchy-Schwartz inequality
and the variational form of the Frobenius norm. By the `2-RIP for Gaussian measurements (Lemma 31), we
have

sup
X,Y ∈S

∣∣∣∣∣ 1

m

m∑
i=1

〈Ai, X〉 〈Ai, Y 〉+
1

m

∑
i∈S

si 〈Ai, Y 〉 − 〈X,Y 〉

∣∣∣∣∣ ≥
∥∥∥∥∥ 1

m

∑
i∈S

siAi

∥∥∥∥∥
F

− δ1 (129)

with probability of at least 1−Ce−cmδ21 , given m & d2. The expectation and tail bound of
∥∥ 1
m

∑
i∈S siAi

∥∥
F

is provided in the following lemma.

Lemma 29 For any 0 < t < 1, we have

P

(∣∣∣∣∣
∥∥∥∥∥ 1

m

∑
i∈S

siAi

∥∥∥∥∥
F

− E

[∥∥∥∥∥ 1

m

∑
i∈S

siAi

∥∥∥∥∥
F

]∣∣∣∣∣ ≥ t
)
≤ 2e

− Cmt2

pσ2d2 , (130)
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where C is a universal constant. Moreover, the expectation is lower bounded as

E

[∥∥∥∥∥ 1

m

∑
i∈S

siAi

∥∥∥∥∥
F

]
&

√
pσ2d2

m
. (131)

Before providing the proof of Lemma 29, we complete the proof of Proposition 2. Based on the above lemma
and (129), we have

sup
X,Y ∈S

∣∣∣∣∣ 1

m

m∑
i=1

〈Ai, X〉 〈Ai, Y 〉+
1

m

∑
i∈S

si 〈Ai, Y 〉 − 1

∣∣∣∣∣ ≥ C
√
pσ2d2

m
− δ1 − δ2, (132)

with probability of at least 1− Ce−c1mδ21 − e−c2
mδ22
pσ2d2 . Hence, with the proper choice of δ1, δ2, we have

P

(
sup
X∈S
‖Q(X)−X‖F ≥ C

√
pσ2d2

m

)
≥ 1

2
. (133)

Since pσ2 = Ω(1), we can choose C ′ such that

P

(
sup
X∈S
‖Q(X)−X‖F ≥ C

′
√

(1 + pσ2)d2

m

)
≥ 1

2
. (134)

In the second case, we assume that pσ2 = O(1). Making a similar argument, we can show that there
exists a universal constant C such that

P

(
sup
X∈S
‖Q(X)−X‖F ≥ C

√
d2

m

)
≥ 1

2
. (135)

Combining the two cases, the following inequality holds for an arbitrary σ > 0

P

(
sup
X∈S

∥∥M2(X)− M̄2(X)
∥∥
F
≥ C ′

√
(1 + pσ2)d2

m

)
≥ 1

2
. (136)

Which completes the proof of Proposition 2. �
Now, we present the proof for Lemma 29.

Proof [Proof of Lemma 29] For simplicity, we denote B = 1
m

∑
i∈S siAi. First, we prove the lower bound

on the expectation. Note that, conditioned on si, we have Bj,k = 1
m

∑
i∈S siA

i
j,k ∼ N

(
0, 1

m2

∑
i∈S s

2
i

)
.

Then, by invoking Theorem 3.1.1. in [18], we have

E [‖B‖F ] = E [E [‖B‖F ] |si, i ∈ S]

& E

 d
m

√∑
i∈S

s2
i


&
σd

m

√
pm =

√
pσ2d2

m
.

(137)
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Now, we show that ‖B‖F is a sub-exponential random variable. First, for arbitrary indices i, j, k, the

random variable siAij,k is sub-exponential according to Lemma 36 since
∥∥∥siAij,k∥∥∥

ψ1

≤ ‖si‖ψ2

∥∥∥Aij,k∥∥∥
ψ2

=

Θ(σ). This implies that ‖Bj,k‖ψ1
= Θ

(√
pσ2

m

)
. Finally, we have

‖‖B‖F ‖`2k =

∥∥∥∥∥∥
∑
j,k

B2
j,k

∥∥∥∥∥∥
`k

1/2

(a)

≤

∑
j,k

∥∥B2
j,k

∥∥
`k

1/2

= d ‖Bj,k‖`2k .
√
pσ2d2

m
k.

(138)

which implies that ‖B‖F is sub-exponential with sub-exponential norm O

(√
pσ2d2

m

)
due to the equivalent

definition of sub-exponential random variable (see Definition 35). Note that in (a) we used the Minkowski
inequality. Given the lower bound on the expected value, the tail bound directly follows from the tail of
sub-exponential distribution.

Appendix F. Auxiliary Lemmas

F.1. Restricted Isometry Property

Lemma 30 Let Sr = {X ∈ Rd×d : rank(X) ≤ r, ‖X‖F = 1}. Then, there exists an ε-covering Sε,r with

respect to the Frobenius norm satisfying |Sε| ≤
(

9
ε

)(2d+1)r.

Lemma 31 (`2-RIP, Theorem 4.2 in [15]) Fix 0 < δ < 1, suppose that the measurement matrices {Ai}mi=1

have i.i.d. standard Gaussian entries. Then, we have

sup
X∈Sr

∣∣∣∣∣ 1

m

m∑
i=1

〈Ai, X〉2 − ‖X‖2F

∣∣∣∣∣ ≤ δ. (139)

with probability of at least 1− Cec1dr log 1
δ
−c2mδ2 .

F.2. Basic Probability

Lemma 32 (Conditional Gaussian Variable in Bivariate Case) For two Gaussian random variables X ∼
N (µ1, σ

2
1), Y ∼ N (µ2, σ

2
2) with correlation coefficient ρ, we have

X|Y = a ∼ N
(
µ1 +

σ1

σ2
ρ (a− µ2) ,

(
1− ρ2

)
σ2

1

)
. (140)

Definition 33 (Sub-Gaussian random variable) We say a random variable X ∈ R with expectation

E[X] = µ is σ2-sub-Gaussian if for all λ ∈ R, we have E
[
eλ(X−µ)

]
≤ e

λ2σ2

2 . This definition is equivalent
to the following statements
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• (Tail bound) For any t > 0, we have P(|X − µ| ≥ t) ≤ 2e−
t2

2σ2 .

• (Moment bound) For any positive integer p, we have ‖X‖`p = (E [|X|p])1/p . σ
√
p.

Moreover, the sub-Gaussian norm of X is defined as ‖X‖ψ2
:= supp≥1

{
p−1/2 ‖X‖`p

}
.

For sum of independent sub-Gaussian random variables, their sub-Gaussian norm can be bounded via the
following lemma.

Lemma 34 (Proposition 2.6.1 in [18]) Let X1, · · · , Xm be a series independent zero-mean sub-Gaussian
variables, then

∑m
i=1 is sub-Gaussian and∥∥∥∥∥

m∑
i=1

Xi

∥∥∥∥∥
2

ψ2

.
m∑
i=1

‖Xi‖2ψ2
. (141)

Definition 35 (Sub-exponential random variable) A random variableX with expectation µ is sub-exponential

if there exists (µ, α), such that E
[
eλ(X−µ)

]
≤ e

λ2ν2

2 for all |λ| ≤ α. This definition is equivalent to the
following statements:

• (tail bound) There exists a universal constant C, for any t > 0, we have P(|X − µ| ≥ t) ≤ 2e−Ct.

• (moment bound) For any positive integer p, we have ‖X‖`p = (E [|X|p])1/p . p.

Moreover, the sub-exponential norm of X is defined as ‖X‖ψ1
:= supp≥1

{
p−1 ‖X‖Lp

}
.

For sub-Gaussian and sub-exponential random variables, we have the following lemma to illustrate their
relations.

Lemma 36 The following statements hold

• (Lemma 2.7.6 in [18]) A random variable X is sub-Gaussian if and only if X2 is sub-exponential.
Moreover, ‖X‖2ψ2

=
∥∥X2

∥∥
ψ1

.

• (Lemma 2.7.7 in [18]) Let X and Y be sub-Gaussian random variables. Then XY is sub-exponential.
Moreover, ‖XY ‖ψ1

≤ ‖X‖ψ2
‖Y ‖ψ2

.

F.3. Basic Inequalities

Lemma 37 (Bernoulli inequality) The following inequality holds

(1 + x)r ≤ 1 +
rx

1− (r − 1)x
, for x ∈

[
−1,

1

r − 1

)
, r ≥ 1. (142)
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