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Yi Ma YIMA@EECS.BERKELEY.EDU
University of California, Berkeley

Nicolas Le Roux‡ NICOLAS@LE-ROUX.NAME
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Abstract
We study the stochastic bilinear minimax optimization problem, presenting an analysis of the same-
sample Stochastic ExtraGradient (SEG) method with constant step size, and presenting variations of
the method that yield favorable convergence. In sharp contrasts with the basic SEG method whose
last iterate only contracts to a fixed neighborhood of the Nash equilibrium, SEG augmented with
iteration averaging provably converges to the Nash equilibrium under the same standard settings, and
such a rate is further improved by incorporating a scheduled restarting procedure. In the interpolation
setting where noise vanishes at the Nash equilibrium, we achieve an optimal convergence rate up
to tight constants. We present numerical experiments that validate our theoretical findings and
demonstrate the effectiveness of the SEG method when equipped with iteration averaging and
restarting.

1. Introduction

The minimax optimization framework provides solution concepts useful in game theory [33], statis-
tics [4] and online learning [7, 9]. It has recently been prominent in the deep learning community due
to its application to generative modeling [17] and robust prediction [29]. There remains, however,
a gap between minimax characterizations of solutions and algorithmic frameworks that provably
converge to such solutions in practice.

In standard single-objective machine learning applications, a popular optimization algorithm is
the stochastic gradient descent (SGD, or one of its variants), where the full gradient is formulated
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as an expectation over the data-generating mechanism. In general minimax optimization prob-
lems, however, naive use of SGD leads to pathological behavior due to the presence of rotational
dynamics [5, 16].

One way to overcome these rotations is to use gradient-based methods specifically designed
for the minimax setting (or more generally for the multi-player game setting). A key example of
such methods is the celebrated extragradient method. Originally introduced by [24], it addresses
general minimax optimization problems and yields optimal convergence guarantees in the batch
setting [3]. In the stochastic setting, however, it has only been analyzed in special cases, such as the
constrained case [23], the bounded-noise case [20], and the interpolatory case [45]. In the current
paper, we study the general stochastic bilinear minimax optimization problem, also known as the
bilinear saddle-point problem,

min
x

max
y

x>Eξ[Bξ]y + x>Eξ[gx
ξ ] + Eξ[(gy

ξ )>]y , (1)

where the index ξ denotes the randomness associated with stochastic sampling. Following standard
practice we assume that the expected coupling matrix B = E[Bξ] is nonsingular, and that the
intercept vectors gx

ξ and gy
ξ have zero mean: E[gx

ξ ] = 0n and E[gy
ξ ] = 0m. Thus the Nash

equilibrium point is [x∗;y∗] = [0n;0m]. Such assumptions are standard in the literature on bilinear
optimization [see, e.g., 31, 45].

In this work, we present theoretical results in the general setting of bilinear minimax games for
a version of the Stochastic ExtraGradient (SEG) method that incorporates iteration averaging and
scheduled restarting. The introduction of stochasticity in the matrix Bξ together with an unbounded
domain presents technical challenges that have been a major stumbling block in earlier work. Here
we show how to surmount these challenges. In fact, convergence results with this type of noise,
referred to as multiplicative noise [cf. 13], are a key novelty of our analysis. Formally, we introduce
the following SEG method composed of an extrapolation step (half-iterates) and an update step:

xt−1/2 = xt−1 − ηt
[
Bξ,tyt−1 + gx

ξ,t

]
yt−1/2 = yt−1 + ηt

[
B>ξ,txt−1 + gy

ξ,t

] , and
xt = xt−1 − ηt

[
Bξ,tyt−1/2 + gx

ξ,t

]
yt = yt−1 + ηt

[
B>ξ,txt−1/2 + gy

ξ,t

] . (2)

Here and throughout we adopt a same-sample-and-step-size notation in which the extrapolation
and extragradient steps share the same stochastic sample [14, 31] and step size ηt; i.e., the updates
in Eq. (2) use the same samples of Bξ, gx

ξ and gy
ξ . Note that there exist counterexamples [see, e.g.,

10, Theorem 1] where the SEG iteration [23] persistently diverges when using independent samples.
The same-sample stochastic extra gradient (SEG) method, which has been widely studied in recent
literature [14, 31], aims to address this issue. In practice, for the bilinear game problems we consider
in this paper as well as other application problems, including generative adversarial networks and
adversarial training, it is easy to perform the same-sample SEG updates: in most machine learning
applications one can re-use a sample without significant extra cost.

Main contributions. We provide an in-depth study of SEG on bilinear games and we show that,
unlike in the minimization-only setting, in the minimax optimization setting the last-iterate SEG
algorithm with the same sample and step sizes cannot converge in general even when the step sizes
are diminishing to zero [Theorems 6 and 7]. This motivates our study of averaging and restarting in
order to obtain meaningful convergence rates:
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(i) We prove that in the bilinear game setting, under mild assumptions, iteration averaging
allows SEG to converge at the rate of 1/

√
K [Theorem 3], K being the number of samples

the algorithm has processed. This rate is statistically optimal up to a constant multiplier.
Additionally, we can further boost the convergence rate when we combine iteration averaging
with scheduled restarting [Theorem 4] when the lower bound of the smallest eigenvalue in the
coupling matrix is known to the system. In this case, exponential forgetting of the initialization
and an optimal statistical rate are achieved.

(ii) In the special case of the interpolation setting, we are able to show that SEG with iteration
averaging and scheduled restarting achieves an accelerated rate of convergence, faster than
(last-iterate) SEG [Theorem 5], reducing the dependence of the rate on the condition number
to a dependence on its square root. We achieve state-of-the-art rates comparable to the full
batch optimal rate [3], with access only to a stochastic estimate of the gradient, improving
upon Vaswani et al. [45].

(iii) We provide the first convergence result on SEG with unbounded noise. The only existing result
of which we are aware of for the unbounded noise setting is the work of Vaswani et al. [45]
in the interpolation setting. Our theoretical results are further validated by experiments on
synthetic data.

Organization. The remainder of this paper is organized as follows. §2 details the basic setup and
assumptions for our main results. §3 presents our convergence results for SEG with averaging and
restarting. §4 concludes our paper. All technical analyses along with auxiliary results are relegated
to later sections in the supplementary materials, as well as experiments that validate our theory.

Notation. Throughout this paper we use the following notation. For two real symmetric ma-
trices, B1,B2, we denote B1 � B2 when v>B1v ≤ v>B2v holds for all vectors v. Let
λmax(B) (resp. λmin(B)) be the largest (resp. smallest) eigenvalue of a generic (real symmet-
ric) matrix B. Let ‖B‖op denotes the operator norm of B. Let Ft be the filtration generated by the
stochastic samples, Bξ,s,gξ,s, s = 1, . . . , t, in the bilinear game. Let max(a, b) or a ∨ b denote the
maximum value of a, b ∈ R, and let min(a; b) or a ∧ b denote the minimum. For two real sequences,
(an) and (bn), we write an = O(bn) to mean that |an| ≤ Cbn for a positive, numerical constant
C, for all n ≥ 1, and let an = Õ(bn) mean that |an| ≤ Cbn where C hides a logarithmic factor in
relevant parameters. We also denote M̂ξ ≡ B>ξ Bξ and Mξ ≡ BξB

>
ξ for brevity, each being positive

semi-definite for each realization of ξ. Finally, let [n] = {1, . . . , n} for n being a natural number.

2. Setup for our Main Results

In this section, we introduce the basic setup and assumptions needed for our statement of the conver-
gence of the stochastic extragradient (SEG) algorithm. We first make the following assumptions on
Bξ. Let us recall that M̂ ≡ EξM̂ξ ≡ Eξ[B>ξ Bξ] and M ≡ EξMξ ≡ Eξ[BξB

>
ξ ].

Assumption 1 (Assumption on Bξ) Denote B = Eξ[Bξ] for B ∈ Rn×m and impose the following
regularity conditions: λmax(B>B) > 0 and λmin(M) ∧ λmin(M̂) > 0. We assume that there exist
σB, σB,2 ∈ [0,∞) such that

max
(
‖Eξ[(Bξ −B)>(Bξ −B)]‖op; ‖Eξ

[
(Bξ −B)(Bξ −B)>

]
‖op
)
≤ σ2

B (3)
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and
max

(
‖Eξ[B>ξ Bξ − M̂]2‖op; ‖Eξ[BξB

>
ξ −M]2‖op

)
≤ σ2

B,2. (4)

The assumption of n ≥ m (i.e. B is tall) is without loss of generality; we can convert the SEG iterates
with a wide coupling matrix to that of its transpose. Note also σB = 0 corresponds to the nonrandom
Bξ = B case. The stochasticity introduced in Bξ allows us to conclude the first convergence result
under the unbounded noise condition.1 Next we impose an assumption on the intercept vector gξ.

Assumption 2 (Assumption on gξ) There exists a σg ∈ [0,∞) such that

Eξ
[
‖gx

ξ ‖2 + ‖gy
ξ ‖2
]
≤ σ2

g <∞.

Furthermore, we let Eξ[gx
ξ ] = 0n, Eξ[gy

ξ ] = 0m and assume independence between the stochastic
matrix Bξ and the vector [gx

ξ ;gy
ξ ].

We remark that the independence assumption in Assumption 2 significantly simplifies our analysis.2

In particular, it ensures E[Bξg
y
ξ ] = 0n and E[B>ξ g

x
ξ ] = 0m, so the Nash equilibrium is the

equilibrium point that the last-iterate SEG oscillates around. The independence structure of Bξ and
[gx
ξ ;gy

ξ ] in Assumption 2 is crucial for our analysis, which is satisfied in certain statistical models.
Specially, when one of the Bξ and [gx

ξ ;gy
ξ ] is nonrandom this is always satisfied. Our analysis can

be further generalized to more relaxed assumptions on zero correlation between [gx
ξ ;gy

ξ ] and the
first three moments of Bξ , with a second-moment condition similar to Eξ[‖Bξg

y
ξ ‖2 + ‖B>ξ gx

ξ ‖2] ≤
C(λmax(M) ∨ λmax(M̂))σ2

g. We defer the full development of this extension to future work. With
Assumptions 1 and 2 at hand, we are ready to state our main results on the convergence of SEG
variants.

3. SEG with Averaging and Restarting

Recall that in contrast to SGD theory in convex optimization, the last iterate of SEG does not converge
to an arbitrarily small neighborhood of the Nash equilibrium even for the case of a converging step
size [20]. We accordingly turn to an analysis of the averaged iterate of xt and yt, t = 0, 1, . . . ,K,
denoted as

xK ≡
1

K + 1

K∑
t=0

xt, yK ≡
1

K + 1

K∑
t=0

yt. (5)

For simplicity we focus on the case in which Bξ,B are square matrices. Let us define ηM as follows,
which is the maximal step size that the SEG algorithm analysis takes:

ηM ≡
1√

λmax

(
M−1/2[EξM2

ξ ]M
−1/2

)
∨ λmax

(
M̂−1/2[EξM̂2

ξ ]M̂
−1/2

) . (6)

1As a comparison, Hsieh et al. [20] only provides a proof for the bounded noise case.
2In practice, such independence can be approximately achieved via the following decoupling argument: we formulate

the random Jacobian-vector product and the random intercept using two independent random samples, separately. Note an
approximate knowledge of the Nash equilibrium is required in this decoupling argument.

4



STOCHASTIC EXTRAGRADIENT FOR BILINEAR GAMES USING RESTARTED ITERATION AVERAGING

We introduce the following variants:

η̂M(α) ≡ ηM√
2
∧ αλmin(BB>)

2σ2
B

√
λmax(B>B)

, and η̄M(α) ≡ ηM ∧
αλmin(BB>)

2σ2
B

√
λmax(B>B)

, (7)

which reduce to 1/
√

2λmax(B>B) and 1/
√
λmax(B>B) when Bξ is nonrandom. We state our first

main result on SEG with iteration averaging, Theorem 3:

Theorem 3 (SEG Averaged Iterate) Let Assumptions 1 and 2 hold with n = m. Prescribing an
α ∈ (0, 1), when the step size η is chosen as η̂M(α) as defined in Eq. (7), we have for all K ≥ 1 the
following convergence bound for the averaged iterate:

E
[
‖xK‖2 + ‖yK‖2

]
≤ 16 + 8κζ

(1− α)η̂M(α)2λmin(BB>)
· ‖x0‖2 + ‖y0‖2

(K + 1)2
+

18 + 12κζ
(1− α)λmin(BB>)

· σ2
g

K + 1
,

(8)

where κζ ≡
σ2
B+η̂M(α)2σ2

B,2

λmin(M)∧λmin(M̂)
denotes an effective noise condition number of problem Eq. (1).

Measured by the Euclidean metric, Theorem 3 indicates an O(1/
√
K) leading-order convergence

rate for the averaged iterate of SEG in the general stochastic setting, which is known to be statistically
optimal up to a constant multiplier. Nevertheless, the iteration slowly forgets initial conditions at a
polynomial rate, and this result can be improved if we utilize a restarting scheme and take advantage
of the knowledge of the smallest eigenvalue of BB>. Indeed, in the following result, we boost the
convergence rate shown in Eq. (8), when the smallest eigenvalue λmin(BB>) is available to the
system, via a novel restarting procedure at specific times. The rationale behind this analysis is akin
to that used in boosting sublinear convergence in convex optimization to linear convergence when
the designer has (an estimate of) the strong convexity parameter.

We now develop this argument in detail. We continue to assume the case of square matrices
Bξ,B. In Algorithm 1 we run SEG with averaging and restart the iteration at chosen timestamps,
{Ti}i∈[Epoch−1] ⊆ [K], initializing at the averaged iterate of the previous epoch. The principle behind
our choice of parameters in this algorithm is that we trigger the restarting when the expected squared
Euclidean metric E

[
‖xK‖2 + ‖yK‖2

]
decreases by a factor of 1/e2, and we halt the restarting

procedure once the last iterate reaches stationarity in squared Euclidean metric in the sense of
Theorem 6:3

‖x0‖2 + ‖y0‖2 ≈
3σ2

g

λmin(M) ∧ λmin(M̂)
.

Given these choices, summarized in Algorithm 1, we obtain the following theorem:

Theorem 4 (SEG with Averaging and Restarting) Let Assumptions 1 and 2 hold with n = m.
For any prescribed α ∈ (0, 1), choose the step size η̂M(α) as in Eq. (7) and assume a proper
restarting schedule. For all K ≥ Kcomplexity + 1 we have the following convergence bound for the
output x̂K , ŷK of Algorithm 1:

E
[
‖x̂K‖2 + ‖ŷK‖2

]
≤
[

1 +
O(σ2

B + η̂M(α)2σ2
B,2)

λmin(M) ∧ λmin(M̂)︸ ︷︷ ︸
higher-order termO(κζ)

]
· 18σ2

g

(1− α)λmin(BB>)
· 1

K −Kcomplexity + 1
, (9)

3The choice of the discount factor 1/e2 is to be consistent with our optimal choice in the interpolation setting, where
in the σB = 0 case the total complexity is minimized to e

√
λmax(B>B)/λmin(BB>).
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Algorithm 1 Iteration Averaged SEG with Scheduled Restarting
Require: Initialization x0, step sizes ηt, total number of iterates K, restarting timestamps
{Ti}i∈[Epoch−1] ⊆ [K] with the total number of epoches Epoch ≥ 1, time index s ← 0

1: for t = 1, 2, . . . ,K do
2: s← s+ 1
3: Update xt, yt via Eq. (2)
4: Update x̂t, ŷt via

x̂t ←
s− 1

s
x̂t−1 +

1

s
xt and ŷt ←

s− 1

s
ŷt−1 +

1

s
yt

5: if t ∈ {Ti}i∈[Epoch−1] then
6: Overload xt ← x̂t, yt ← ŷt, and set s← 0 //restarting procedure is triggered
7: end if
8: end for
9: Output: x̂K , ŷK

where Kcomplexity is the fixed burn-in complexity defined as

logarithmic factor
1
e

√
(1− α)η̂M(α)2λmin(BB>)−O

(
η̂M(α)3/2(λmin(BB>))1/4

√
σ2
B + η̂M(α)2σ2

B,2

) . (10)

Here we not only achieve the optimal O(1/
√
K) convergence rate for the averaged iterate, but the

proper restarting schedule allows us to achieve a convergence rate bound for iteration-averaged SEG
in Eq. (9) that forgets the initialization at an exponential rate instead of the polynomial rate that is
obtained without restarting [cf. Theorem 4].

Finally, we consider the interpolation setting, where the noise vanishes at the Nash equilibrium.
That is, gx

ξ = 0n and gy
ξ = 0m, which is also equivalent to σg = 0 in Assumption 2. In that setting,

we prove that SEG with iteration averaging achieves an accelerated linear convergence rate. Set the
(constant) interval length of restarting timestamps Kthres(α) as

2

1
e

√
(1− α)η̄M(α)2λmin(BB>)−O

(
η̄M(α)3/2(λmin(BB>))1/4

√
σ2
B + η̄M(α)2σ2

B,2

) . (11)

We present an analysis of this algorithm in the following theorem, which can be seen as a corollary
of Theorem 4 but benefits from a refined analysis where tight constant prefactor sits in each term of
the bound:

Theorem 5 (Interpolation Setting) Let Assumptions 1 and 2 hold with n = m and σg = 0. For
any prescribed α ∈ (0, 1) choosing the step size η = η̄M(α) as in Eq. (7) and the restarting
timestamps Ti = i ·Kthres(α) whereKthres(α) was defined as in Eq. (11), we conclude for allK ≥ 1
that is divisible by Kthres(α) the following convergence rate for the output x̂K , ŷK of Algorithm 1:

E
[
‖x̂K‖2 + ‖ŷK‖2

]
≤ e−Ke

√
(1−α)η̄M(α)2λmin(BB>)+C(α)

[
‖x0‖2 + ‖y0‖2

]
, (12)
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where C(α) is defined as

C(α) = O
(
Kη̄M(α)3/2(λmin(BB>))1/4

√
σ2
B + η̄M(α)2σ2

B,2

)
.

The idea behind Theorem 5 is, in plain words, to trigger restarting whenever the last-iterate SEG
has travelled through a full cycle, giving insights on the design of Kthres(α) in the restarting
mechanism. Compared with Eq. (13) in Theorem 6 with σg equal to zero, the contraction rate

(in terms of its exponent) to the Nash equilibrium −η2
M
4 ·

(
λmin(M) ∧ λmin(M̂)

)
improves to

−1
e

√
(1− α)η̄M(α)2λmin(BB>) plus higher-order moment terms involving Bξ. It is worth men-

tioning that Algorithm 1 achieves this accelerated convergence rate in Eq. (12) via simple restarting
and does not require an explicit Polyak- or Nesterov-type momentum update rule [36]. In the case of
nonrandom Bξ , this rate matches the lower bound [21, 46], and the only algorithm that achieves this
optimal rate to our best knowledge is Azizian et al. [3] without an explicit 1/e-prefactor on the right
hand of Eq. (12).

We end this section with some remarks. For the results in this section, we can forgo fully
optimizing the prefactor over α and simply set a step size η as in Eq. (7). Both the analyses of
Theorems 3 and 4 adopt a step size of ηM/

√
2, capped by some α-dependent threshold, due to the

fact that our analysis relies heavily on the last-iterate convergence to stationarity. In the meantime,
Theorem 5 does not rely on such an argument and accommodates the larger (thresholded) ηM as the
step size. Lastly, we emphasize that the knowledge of λmin(BB>) is required for the algorithm to
achieve the accelerated rate. Considerations regarding such knowledge are related to the topic of
adaptivity of stochastic gradient algorithms [see, e.g., 25].

4. Conclusions

We have presented an analysis of the classical Stochastic ExtraGradient (SEG) method for stochastic
bilinear minimax optimization. Despite that the last iterate only contracts to a fixed neighborhood
of the Nash equilibrium and the diameter of the neighborhood is independent of the step size, we
show that SEG accompanied by iteration averaging converges to Nash equilibria at a sublinear rate.
Moreover, the forgetting of the initialization is optimal when we use a scheduled restarting procedure
in both the general and interpolation settings. Numerical experiments further validate this use of
iteration averaging and restarting in the SEG setting.

Further directions for research include justification of the optimality of our convergence result,
improvement of the convergence of SEG for nonlinear convex-concave optimization problems with
relaxed assumptions, and connection to the Hamiltonian viewpoint for bilinear minimax optimization.
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