Least-squares regressions via randomized Hessians

Nabil Kahale
ESCP Business School, Paris, France

Abstract

We consider the least-squares regression problem with \(n \) points in dimension \(d \). We analyze a novel approach, based on randomizing the Hessian matrix, to approximately solve this problem. The new algorithm is a variant of the averaged stochastic gradient descent method (SGD) with constant step-size. However, its updating rule relies on the entire response vector, and its convergence properties do not depend on the residuals. Without strong convexity assumptions, it is proven that the algorithm achieves a convergence rate for function values of \(O(1/k) \) after \(k \) iterations, where the constant behind the \(O \) notation does not depend explicitly on the smallest eigenvalue of the Hessian matrix. The algorithm has a preprocessing cost proportional to the input size, and the running time of each iteration is proportional to the dimension. In the strongly-convex case, a restart version of the algorithm yields a convergence rate of \(O(k^{-1}) \) in \(O(ld(n+k)) \) time for arbitrary \(l \geq 2 \), where the constant behind the \(O \) notation depends on \(l \) and on the smallest eigenvalue of the Hessian matrix. Our theoretical results are illustrated with numerical experiments.

1. Introduction

The recent availability of massive volumes of data fosters the need to design computationally efficient algorithms for optimization in high dimensions. In large-scale machine learning, stochastic gradient descent algorithms are among the most effective optimization methods [2]. For general smooth convex functions, averaged SGD achieves the rate of convergence of \(O(1/\sqrt{k}) \) after \(k \) iterations [14]. For strongly-convex functions, i.e. when the smallest eigenvalue of the Hessian matrix is bounded away from 0, the convergence rate after \(k \) iterations is \(O(1/k) \) [14]. Variance-reduced SGD algorithms that optimize the sum of \(n \) convex functions are described in [11, 20, 22], and related accelerated methods are analysed in [13, 15, 21, 23]. These methods enjoy linear convergence (a convergence rate that decreases exponentially with the number of iterations) in the strongly-convex case. For general smooth convex functions, the stochastic average gradient method (SAG) of Schmidt et al. [20] yields a convergence rate of \(O(\sqrt{n}/k) \) after \(k \) iterations.

This paper focuses on the least-squares regression, which often arises in scientific computing and data analysis, and is widely used for inference and prediction. Many of the modern machine learning techniques such as the logistic and ridge regressions, the lasso method and neural networks can be considered as extensions of the least-squares regression technique. Given a non-zero \(n \times d \) matrix \(X \) and an \(n \)-dimensional column vector \(Y \), the least-squares problem consists of minimizing the function \(g(\theta) = (2n)^{-1}||X\theta - Y||^2 \), where \(\theta \) ranges over all \(d \)-dimensional column vectors. An exact solution to this problem can be found in \(O(nd^2) \) time [9]. Rokhlin and Tygert [19] describe a randomized algorithm based on a preconditioning matrix that computes in \(O(d^3 + nd\ln(d/\epsilon)) \) time a vector \(\theta \) that minimizes \(g(\theta) \) to relative precision \(\epsilon \). In the strongly-convex case, variants of SGD described in [8, 11, 20, 22] yield linear convergence rates for least-squares regressions.

In typical high-dimensional machine learning problems, however, explanatory variables are highly

© N. Kahale.
correlated, and so the smallest eigenvalue of the Hessian matrix is very close or equal to 0. For non-
strongly-convex linear regressions, Bach and Moulines [1] show a convergence rate of \(O(1/k) \) after
\(k \) iterations for an averaged SGD algorithm with constant step-size in an on-line setting. Extensions
and a detailed asymptotic analysis of the performance of this algorithm are given in [4]. Pilanci
and Wainwright [17] provide algorithms for constrained least-squares through a random projec-
tion on a lower dimensional space. Dieuleveut et al. [6] study an averaged accelerated regularized
SGD algorithm for least-squares regressions. Mini-batching and tail-averaging SGD algorithms for
least-squares regressions are analyzed in [10]. Pillaud-Vivien et al. [18] show that, for hard linear
regression problems, multiple passes of SGD lead to statistically optimal predictions while a single
pass does not.

This paper studies a novel algorithm based on randomizing the Hessian matrix with averag-
ing (RHA) that minimizes \(g(\theta) \) at an arbitrary precision. Our approach is a variant of SGD, and
each iteration of the algorithm takes \(O(d) \) time. The algorithm has \(O(nd) \) pre-processing cost and
achieves a convergence rate of \(O(1/k) \) after \(k \) iterations in the non-strongly-convex case. It enjoys
the following properties:

1. Our method takes \(O(nd + \bar{L}||\theta^* - \theta_0||^2d^{3/2}/\epsilon) \) time to minimize \(g(\theta) \) with expected error \(\epsilon \),
 where \(\bar{L} := \text{tr}(X^TX)/n \) is the average squared norm of a line of \(X \), \(\theta_0 \) is the starting point,
 and \(\theta^* \) is any \(d \)-dimensional column vector that minimizes \(g \). Thus, the time required by our
 algorithm to minimize \(g(\theta) \) with a given expected error does not depend explicitly on the
 smallest eigenvalue of the Hessian matrix or on the residuals. Note that, for general matrices,
 the time to read the input is of order \(nd \). For \(\epsilon > 0 \), the averaged SGD achieves precision \(\epsilon \) in
 \(O(nd + (\sigma^2d^2 + R^2||\theta^* - \theta_0||^2d)/\epsilon) \) time [1], including the time to read the input, where \(\sigma \)
 and \(R \) are real numbers satisfying certain conditions given in [1]. The smallest valid choice
 for \(\sigma^2 \) ranges between a weighted average of the squared residuals and the maximum squared
 residual. Similarly, the smallest valid choice for \(R^2 \) ranges between \(\bar{L} \) and the maximum
 squared norm of a line of \(X \). Depending on the problem instance, the upper bound on the
time required by our algorithm to achieve precision \(\epsilon \) can be higher or lower than that of the
averaged SGD, even if all lines of \(X \) have the same norm.

2. When \(\theta^* \) is drawn uniformly at random from \(S(\theta_0, \rho) \), where \(S(\theta_0, \rho) = \{ \theta \in \mathbb{R}^{d \times 1} : ||\theta - \theta_0|| = \rho \} \) for \(\rho > 0 \), the time required by our algorithm to minimize \(g(\theta) \) with expected
 error \(\epsilon \) is \(O(nd + \bar{L}\rho^2d/\epsilon) \). Given a target precision \(\epsilon \), this average–case bound on the running
time of our algorithm is never higher (up to absolute constants) than the aforementioned
worst–case bound on the running time of the averaged SGD. We are not aware of an average–
case analysis of the averaged SGD in the above sense. It is well known that the average–case
running time of certain algorithms, such as the quicksort sorting algorithm [3], is lower than
their worst–case running time. Pedregosa and Scieur [16] analyse the average–case behavior
of gradient–based optimization algorithms for random quadratic problems.

3. When the Hessian matrix is invertible, for any \(l \geq 2 \), a restart version of our algorithm
achieves a rate of convergence of \(O(k^{-l}) \) after \(k \) iterations. The restart algorithm can be
simulated without any knowledge on the smallest eigenvalue of the Hessian matrix. The
constant behind the \(O \)-notation depends on \(l \) and on the smallest eigenvalue of the Hessian
matrix.
Our algorithm uses a non-uniform sampling scheme with sampling probabilities determined by the squared norm of each row vector. A similar sampling scheme has been applied by Frieze et al. [7] in the context of low-rank approximations of a matrix, by Strohmer and Vershynin [24] to approximately solve linear systems via an iterative algorithm, and by Défossez and Bach [4] to design an averaged SGD for least-squares regressions. However, while the updating rule of the conventional SGD, of Strohmer and Vershynin [24] and of Défossez and Bach [4] uses a single random coordinate of \(Y \), our updating rule uses a vector that depends on the entire vector \(Y \). Strohmer and Vershynin [24] establish a linear convergence rate for their method in the strongly-convex case. Défossez and Bach [4] analyse the asymptotic properties (as the number of iterations goes to infinity) of their algorithm, but do not study its performance after a finite number of iterations. Kahalé [12] uses a recursion similar to our updating rule to approximately simulate high-dimensional Gaussian vectors with a given covariance matrix.

Section 2 describes our method and its properties. Section 3 gives numerical experiments. Omitted proofs will appear in the final version of the paper. The running time refers to the number of arithmetic operations.

2. The algorithm description and properties

For \(1 \leq i \leq n \), let \(e_i \) be the \(n \)-dimensional column vector whose \(i \)-th component is 1 and remaining components are 0, and let

\[
p_i = \frac{||X^T e_i||^2}{\text{tr}(X^T X)}, \tag{1}
\]

Note that the numerator in (1) is the sum of the squared entries of the \(i \)-th line of \(X \), while the denominator is the sum of squared entries of \(X \). Thus the \(p_i \)'s sum up to 1. Let \((i(k) : k \geq 0) \) be independent integral random variables on \(\{1, \ldots, n\} \) such that, for \(1 \leq j \leq n \),

\[
\Pr(i(k) = j) = p_j.
\]

Given an initial \(d \)-dimensional column vector \(\theta_0 \) and a real number \(\alpha \in (0, 1] \), define the sequence of \(d \)-dimensional column vectors \((\theta_k : k \geq 0) \) via the recursion

\[
\theta_{k+1} = \theta_k - \alpha((u_k^T (\theta_k - \theta_0))u_k - c) \tag{2}
\]

for \(k \geq 0 \), where \(u_k = ||X^T e_{i(k)}||^{-1}(X^T e_{i(k)}) \) and \(c = \text{tr}(X^T X)^{-1}X^T (y - X\theta_0) \). For \(k \geq 1 \), let

\[
\bar{\theta}_k = \frac{\theta_0 + \cdots + \theta_{k-1}}{k}.
\]

Theorem 1 shows that \(E(g(\bar{\theta}_k)) \) converges to the minimum of the function \(g \) at a rate of \(O(1/k) \).

Theorem 1 For \(k \geq 1 \), we have

\[
E(g(\bar{\theta}_k)) - g(\theta^*) \leq \frac{5\alpha^{-1} + 4\alpha d L \|	heta^* - \theta_0\|^2}{2k}.
\]

If \(\alpha = 1/\sqrt{d} \), Theorem 1 implies that

\[
E(g(\bar{\theta}_k)) - g(\theta^*) \leq \frac{9\sqrt{d}}{2} L \|	heta^* - \theta_0\|^2.
\]

(3)
As $X^T e_i$ is the i-th column of X^T for $1 \leq i \leq n$, the total time to calculate c and the p_i’s is $O(nd)$. After an initial preprocessing cost of $O(n)$, the random variable $i(k)$ can be simulated in constant time using the alias method [5, Section III.4]. Thus the cost of each iteration is $O(d)$. Setting $\alpha = 1/\sqrt{d}$, the total time for our algorithm to minimize $g(\theta)$ with expected error ϵ is $O(nd + L\|\theta^* - \theta_0\|^2d^{3/2}/\epsilon)$.

When $\alpha = 1$ and θ^* is drawn uniformly at random from $S(\theta_0, \rho)$, Theorem 2 below gives a bound on the average convergence rate for $E(g(\bar{\theta}_k))$ that improves upon (3) by a factor of order \sqrt{d}.

Theorem 2 Assume that θ^* is drawn uniformly at random from $S(\theta_0, \rho)$. Set $\alpha = 1$. Then, for $k \geq 1$, we have

$$E(g(\bar{\theta}_k)) - g(\theta^*) \leq 5\bar{L}\frac{\rho^2}{k}.$$

In particular, if $\alpha = 1$ and θ^* is drawn uniformly at random from $S(0, \rho)$, the total time for our algorithm to minimize $g(\theta)$ with expected error ϵ is $O(nd + \bar{L}\rho^2d/\epsilon)$.

2.1. The restart algorithm

Theorems 1 and 2 are valid even when $X^T X$ is not invertible. Assume now that $X^T X$ is invertible and denote by μ the smallest eigenvalue of $n^{-1}X^T X$. By the well-known equality

$$g(\theta) - g(\theta^*) \geq \frac{\mu}{2}\|\theta - \theta^*\|^2,$$

Theorem 1 implies that

$$E(g(\bar{\theta}_k)) - g(\theta^*) \leq (5\alpha^{-1} + 4\alpha d)\frac{\bar{L}}{\mu k}(g(\theta_0) - g(\theta^*)).$$

Given $k \geq 1$, let T_k be the random operator that maps any d-dimensional column vector θ_0 to $\bar{\theta}_k$. For $l \geq 1$, denote by T_k^l the random operator on the set of d-dimensional column vectors obtained by composing l times the operator T_k. It can be shown by induction on l that, for any d-dimensional column vector θ,

$$E(g(T_k^l(\theta))) - g(\theta^*) \leq ((5\alpha^{-1} + 4\alpha d)\frac{\bar{L}}{\mu k})^l(g(\theta) - g(\theta^*)).$$

$T_k^l(\theta)$ can be calculated from θ in $O(ld(n + k))$ time. This implies that $E(g(T_k^l(\theta_0))) - g(\theta^*)$ is of order k^{-l} as k goes to infinity, for any fixed $l \geq 2$. Observe that $T_k^l(\theta)$ can be simulated without the explicit knowledge of μ.

3. Numerical experiments

Our numerical experiments are conducted on the sonar\(^1\), madelon\(^1\) and sido0\(^2\) binary data sets, whose characteristics are summarized in Table 1. The variables were centered, a constant variable was added to each data set, and all variables were normalized. We have implemented the following methods using the null vector as starting point:

Table 1: Data sets used in the simulations

<table>
<thead>
<tr>
<th>Data set</th>
<th>Variables</th>
<th>Data Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>sonar</td>
<td>60</td>
<td>208</td>
</tr>
<tr>
<td>madelon</td>
<td>500</td>
<td>2000</td>
</tr>
<tr>
<td>sido0</td>
<td>4932</td>
<td>12678</td>
</tr>
</tbody>
</table>

Figure 1: Convergence on the sonar, madelon and sido0 datasets

- the averaged SGD algorithm based on [1].
- the averaged SGD algorithm with non-uniform probabilities based on [4].
- the SAG algorithm with non-uniform probabilities, where the lines are sampled according to the p_i’s, and the output is the vector among the final iterate and the average of iterates that minimizes g.
- the RHA method with level l that calculates $T_k^l(0)$, for $l \in \{1, 2, 4\}$. We set $\alpha = 1$ in our experiments because smaller values of α did not increase the performance of our method for moderate values of k.

The results are reported in Figure 1. The running time is measured by the number of gradient computations, that is k for the averaged SGD and SAG methods and $l(n+k)$ for the RHA algorithm, where k is the number of iterations.
References

