TenlPS: Inverse Propensity Sampling for Tensor Completion

Tensors

On an order-3 tensor B, for each of the modes n € (3] := {1, 2, 3}:

= size of the n-th mode: I,
= mode-n fibers: fixing every index but the n-th. e.g., mode-1 fiber: B.;

- mode-n unfolding: matrix B, whose columns are mode-n fibers
tensor decomposition: CP, Tucker, tensor-train, ...
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Figure 1: Tucker decomposition with multilinear rank (r1,79,73): B =G x1 Uy X9 Uy x3 Us.

tensor completion
Given a partially observed B, € R IV \we have

- observation pattern Q € RI><xIx. Q; v =1if B, ;. is observed, and 0 otherwise
- observation probability P € RIx>1v; Piiv=P(Q; ;. =1)=P(B, ;. is observed)
missingness types {Pi v}

missing-completely-at-random (MCAR) uniform

missing-not-at-random (MNAR) non-uniform

1-bit matrix completion
Given a binary matrix Y € {0, 1}"™*", predict the parameter matrix M € R""*"

Assumptions:

= M is approximately low rank.
= There exists a link function o: R — |0, 1], such that P(Y;; = 1) = o(M;;) for
(4,7) € [m] x[n].

Low rank surrogates for M: low nuclear norm, low max norm, ...

Our problem formulation: MNAR tensor completion

Input: MNAR data tensor B, € RIx2xxlx
Assumptions:

- true data tensor B € R/*2X*Iv is gpproximately low multilinear rank
- noiseless observation: (B, ;. = By, iy if By . is observed, and 0 otherwise

- unknown parameter tensor A € RI1X/2XXIN has the same rank structure as B

- 1-bit observation: With the observation propensity tensor P € RI>/2xxIv

P(B,,i,...iy is observed) = P; ;... = (A ), in which o: R — [0, 1] is a

non-decreasing link function.
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Algorithm Step 1: propensity recovery

Given a mask tensor (), get a predicted propensity tensor P.

algorithm hyperparameters

proximal-proximal-gradient 7 and v
target rank and step size

Choice 1: convex
Choice 2: nonconvex gradient descent
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Choice 1: convex and provable

© get the square set and square unfolding [5] of Q:

« cg:|[N|]— iN]: a permutation map of the NV orders that satisfies
1y - ~1
{CS (1)7CS <2>7'°-7CS (lSD}:S

- square set of Q € R >IN G .— arg min
SC|N]

= and the square unfolding Q7 := reshape(CSDQ(1>, HnESD In, HnE[N]\SD In)

HnES In — Hne[N]\S In

@ predict parameter A by logistic loss minimization (by proximal-proximal-gradient [6])
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An argmin Z Z —(Qn)ilogo(l;) — 1 — (Qn)i,]log|l —a(I;)],

PeSry =1 j=1

where S, ={T € R+ [T, < 7 /Ting, T e < 7}

AN

© predict propensity: P = o(A)
Choice 2: nonconvex, gradient descent
S UL G (0D

o initialization: G4, U#, .. L (UM

® objective function:

f(SA, {U;Lq}ng[]\[p — Z _Qir“iN log O(-/Zl\il---z'N) — (1 — Qzlw) lOg[l — O-(jl\il'-'i]\f>]7

iin
in which A = G x, U x5+ -« x5 U

® gradient descent updates
o predict propensity: P = o(GM X Ut X9 -+ xn UR)

Algorithm Step 2: tensor completion

Given P and MNAR observations Bobs, get B

© Form an entrywise inverse propensity estimator for data tensor B as
X(CP) — Z(i1,i2,...,iN)€Q ﬁ\);%obs ® 8(1.1, c. ,7;]\[), in which

1.0
= Q:={(i1,...,1N)|Bjy..iy is observed}

« &(i1...,1) is a binary tensor with the same shape as B, with value 1 at the (i1, 9, ...,%5)-th entry

and 0 elsewhere.

® Do Tucker decomposition on X(P), get core tensor W(P) and factor matrices

© Estimate B by @(93) — W((j)) X 1 Q1(§)) X+

AN

- Xy Qn(P).

Theoretical guarantees

- Upper bound for propensity recovery error [1, 3]
Assume that P = o(A). Given a set S C |N], together with the following assumptions:

Al. Ag has bounded nuclear norm: there exists a constant 6 > 0 such that |[Agl[x < 0, /I1n.
A2. Entries of A have bounded absolute value: there exists a constant o > 0 such that [|A|[max < a.
Suppose we run the convex propensity recovery algorithm with thresholds satisfying

: - T - - o’(x)]
T > 0 and 7 > « to obtain an estimate P of P. With L., := SUPy e[y 1] 572 (o (@)
there exists a universal constant C' > 0 such that if Ig 4+ Iqc > C', with probability at

C - L 1D D2 1,1
Tt the propensity estimation error I[N]HCP Pllg < 46L,YT(\/E | \/1570)

« Optimality of the square unfolding for propensity recovery: Instate the same
conditions as the previous lemma on propensity recovery error, and further assume that
there exists a constant ¢ > 0 such that ™ < ¢I,, for every n € [N]. Then S = S
gives the tightest upper bound on the propensity estimation error ||P — P||r among all
unfolding sets S C |N].

least 1

- Tensor completion error on cubical tensors (same size in every mode):

Consider an order-N cubical tensor ‘B with size Iy = --- = Iy = I and multilinear rank
rie = ... = " = < [, and two order-\N cubical tensors P and A with the same

shape as B. Each entry of B is observed with probability from the corresponding entry
of P. Assume I > rNlog I, and there exist constants ¢, & € (0, c0) such that
| A max < @, || Bl|max = 1. Further assume that for each n € | V|, the condition

o1 (BM)
o (BM)
under the conditions of the lemma on convex propensity recovery error, with probability

at least 1 — I, the fixed multilinear rank (r,r,...,7) approximation @(93) computed
from the convex propensity recovery and tensor completion algorithms with thresholds
T > 6 and v > « satisfles

IB(P) — Bllr \/7“10%]
< CN ,
IB][r I

number < K is a constant independent of tensor sizes and dimensions. Then

in which C' depends on k.
Numerics

Convex propensity recovery on a size-8 cubical tensor:

unfolding along one mode (1)

unfolding along one mode (2)

relative error
- - -
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Figure 2: “(1)": setting 7 = 0, v = «; “(2)": setting 7 = 20, v = 2«
MNAR tensor completion on synthetic data:

relative error || B(P) — B¢ /|| B¢

Algorithm time (s) — -
with P with Py  with P»
TenIPS 26 0.110 0.110 0.109
HOSVD w [2] 35 0.120 0116  0.110
SqUnfold 29 0.141 0.138 0.139
RectUnfold 8 0.259 0.256 0.256
LstSq >600 - - -
SO-HOSVD [7]  >600 - : :

MNAR tensor completion on semi-synthetic data:
[O 255]2200><1080><1920

« real video tensor from [4]: B €
= synthetic parameter tensor A = (B — 128)/64

(d) TenIPS, assuming

(c) TenIPS, assuming
MNAR, with estimated P

MNAR, with true P

Thanks!

(b) TenIPS, assuming
MCAR

(a) original

= Chengrun Yang: cy438Qcornell.edu
= Madeleine Udell: udell@cornell.edu

Bibliography
[1] Mark A Davenport, Yaniv Plan, Ewout Van Den Berg, and Mary Wootters. 1-bit matrix completion. Information and Inference: A Journal of the IMA, 3(3):189-223, 2014.
[2] Longxiu Huang and Deanna Needell. Hosvd-based algorithm for weighted tensor completion. arXiv preprint arXiv:2003.08537, 2020.

[3] Wei Ma and George H Chen. Missing not at random in matrix completion: The effectiveness of estimating missingness probabilities under a low nuclear norm assumption. In
Advances in Neural Information Processing Systems, pages 14871-14880, 20109.

[4] Osman Asif Malik and Stephen Becker. Low-rank tucker decomposition of large tensors using tensorsketch. In Advances in Neural Information Processing Systems, pages
10096-10106, 2018.

[5] Cun Mu, Bo Huang, John Wright, and Donald Goldfarb. Square deal: Lower bounds and improved relaxations for tensor recovery. In International conference on machine learning,
pages 73-81, 2014.

[6] Ernest K Ryu and Wotao Yin. Proximal-proximal-gradient method. arXiv preprint arXiv:1708.06908, 2017.

[7] Dong Xia, Ming Yuan, and Cun-Hui Zhang. Statistically optimal and computationally efficient low rank tensor completion from noisy entries. arXiv preprint arXiv:1711.04934,
2017.



