Error Compensated Loopless SVRG for Distributed Optimization

The Problem

where f(z) := 1%, f(z) is an average of n smooth

convex functions f7) distributed over n nodes, and 1 is
a proper closed convex function. On each node, f m(x)
is an average of m smooth convex functions
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Algorithm

® prox., () := argmin {3[lz — y||* +y¢(y)}

Algorithm 1: Error compensated Loopless SVRG
(EC-LSVRG)

7V = w' € R egzOERd;uozléR;pamms:
stepsize n > 0; probability p € (0, 1].
for k=1,2,... do
for r=1,...,ndo
Sample 77 uniformly and independently in [m| on
each node
= V@) = VI W) k= Qngk + e,

el =ef gt —yF, Wl =0forr=2,..,n,

e 1 with probability p

YT 0 with probability 1 — p
Send * and u*™! to the other nodes. Send
V f7)(w¥) to the other nodes if u* = 1

Receive y* and u*™! from the other nodes. Receive

V 7 (w¥) from the other nodes if u* = 1
end

Y= iy, utt =t

ph 00 = b — (Y + Y f(wh),

ki ot if

w — .
’ w® otherwise

k+1 1
k+1 k+0.5) _

" = prox, (@

end

Gradient Compression Methods

o) : RY— R%is a contraction compressor if there is a
0 < 0 < 1 such that for all z &€ Rd

Q)| < (1= d)|=|” (2)

o () is an unbiased compressor if there is w > 0 such that
Q)] =2 and E|Q@)|I" < (w+Dfz*  (3)
for all x € R

1 A - : : 1
+1Q is a contraction compressor with 0 = -
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Assumptions

Assumption 1: E|Q(z)| = dx.

Assumption 2: For x, = ng* + et e R, 7 =1,...,n

and k£ > 0 in Algorithm 1, we have E[Q(x;)]
2 2

and é(@(xT)—xT) < (1-20) ;g;

Assumption 3: f, s L- smooth, ) is L-smooth, f is
L -smooth, and v 1s ,u—strongly convex. L > L.

Assumption 4: f is L-smooth, f7) is L-smooth, f is
L y-smooth and [ is p-strongly convex.
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Composite Case

Convergence Result

Assume the compressor () in Algorithm 1 is a con-
traction compressor and Assumptlon 3 holds. Let
Wy = (1 — min {’g”,%,g}) Wi =% Jw;, and 7
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we have
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In particular, if we choose
_ 0’
1 = 135(1=0)(L1L0)+53L ;024 53L6%/n’
B[P(z") — P(2*)] < e, with e < &]ja’ — 2*||* +
0
as lo

)
(P(z”) — P(x¥)),
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Convergence Result

Assume the compressor () also satisfies Assumption 1

or Assumption 2. If
52
" S [1=0)(269L,+1100L /ot 1503L8 /) 153L ;0753107

then we have E[P(z") — P(x*)] <

Lo —a*|*+5(P(a")— P(z*)) (1 — min {2,

1—(1— mm{/m,ig jias e

In particular, it we choose
_ 0
1 = 1=8)(269L ;1 1100L /nt 1503L3 /n)+ 53L ;024 53L6%/n’
z*)] < €, with € < £||z° — z*[|* +
P(x*)), as long as
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Smooth Case (¢ = 0)

Convergence Result

Assume the compressor () in Algorithm 1 is a con-

traction compressor and Assumption 4 holds. Let

Wy = (1 — min {“277,%,]27})

1 <k
T 220 w;z'. If

Wy = 3wy, and 7F =

: 1 ) Vo
7 < min {4Lf+24L/nv 514/ (1=0)LsL’ 51\/(15)LfL} ’
then we have E[f(z%) — f(2*)] <
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In particular, it we choose

o 1 5
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then IE f(z")] < e with € < 9ul|z’ — x*||* +
9f(x") — f(x*), as long as k >
| ) In )
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Convergence Result

Assume the compressor () also satisfies Assumption 1
or Assumption 2. If

n < min L 0 Vo ynd
= 4Ly +32L /10 84v/1-6L " 1384 /(1-0)LsL’ 118+ /(1—6)LsL

then we have E[f(z%) — f(2*)] <
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In particular, it we choose

1N = min ! 0 Ynd ynd
AL+32L/n0 84/ 1-0L¢ 1384 /(1-0)LsL’ 1184/ (1—6)L¢L

then E[f(z") — f(2*)] < € with € < 12u||2° — z*||* +
12(f(z") — f(x*)) as long as
) [n %) .

Optimal Choice of p

Denote the iteration complexity as O ((]% + a) In %), where
a is independent of p. To minimize the total expected
communication cost, the optimal choice of p is

0 <mm {T(Q), %}) <p<O (max {r(@), é}) |

Communication Cost

Denote Ay as the communication cost of the uncompressed
vector x € R?. Let

(@)= sup (B |G oL Q)|
reRA |
Assume Ly = L = L and Ar(Q) > O(1). Choose p =
O(r(Q)).

e Composite case:

O (A (" +1+ (r(Q)

e Smooth case:
O <A1 (’“(?) -1 (r(Q) | <1§>T(Q>> ﬁ) 1n§>.

Numerical Results
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1. Compare to compressed algorithm (p = %)

2. Distributed Experiment (p = 10_4)

Gisette (Top5 Compressor) Gisette (1-bit Compressor)

11111

References

1] S. Horvath, D. Kovalev, K. Mishchenko, S. Stich, and P. Richtarik.

Stochastic distributed learning with gradient quantization and
variance reduction.

arXiv: 1904.05115, 2019.

2] Xun Qian, Zheng Qu, and Peter Richtérik.
L-svrg and l-katyusha with arbitrary sampling.
arXiw preprint arXiw:1906.01481, 2019.




