Error Compensated Loopless SVRG for Distributed Optimization

Xun Qian¹ Hanze Dong ² Peter Richtárik¹ Tong Zhang²

¹KAUST ²Hong Kong University of Science and Technology

The Problem

$$\min_{x \in \mathbb{R}^d} P(x) := \frac{1}{n} \sum_{\tau=1}^n f^{(\tau)}(x) + \psi(x), \tag{1}$$

where $f(x) := \frac{1}{n} \sum_{\tau} f^{(\tau)}(x)$ is an average of n smooth convex functions $f^{(\tau)}$ distributed over n nodes, and ψ is a proper closed convex function. On each node, $f^{(\tau)}(x)$ is an average of m smooth convex functions

$$f^{(\tau)}(x) = \frac{1}{m} \sum_{i=1}^{m} f_i^{(\tau)}(x).$$

Algorithm

ullet $\operatorname{prox}_{\gamma\psi}(x) := \operatorname{arg\,min}\left\{ \frac{1}{2} \|x-y\|^2 + \gamma\psi(y) \right\}$

Algorithm 1: Error compensated Loopless SVRG (EC-LSVRG)

 $x^0 = w^0 \in \mathbb{R}^d$; $e^0_\tau = 0 \in \mathbb{R}^d$; $u^0 = 1 \in \mathbb{R}$; params: stepsize $\eta > 0$; probability $p \in (0, 1]$.

for k = 1, 2, do

for $\tau = 1, ..., n \ do$

Sample i_k^{τ} uniformly and independently in [m] on each node

Send y_{τ}^{k} and u_{τ}^{k+1} to the other nodes. Send $\nabla f^{(\tau)}(w^{k})$ to the other nodes if $u^{k}=1$

Receive y_{τ}^{k} and u_{τ}^{k+1} from the other nodes. Receive $\nabla f^{(\tau)}(w^{k})$ from the other nodes if $u^{k}=1$

end

$$y^{k} = \frac{1}{n} \sum_{\tau=1}^{n} y_{\tau}^{k}, \quad u^{k+1} = \sum_{\tau=1}^{n} u_{\tau}^{k+1},$$

$$x^{k+0.5} = x^{k} - (y^{k} + \eta \nabla f(w^{k})),$$

$$x^{k+1} = \text{prox}_{\eta \psi}(x^{k+0.5}), \quad w^{k+1} = \begin{cases} x^{k} & \text{if } u^{k+1} = 1\\ w^{k} & \text{otherwise} \end{cases}$$

 \mathbf{end}

Gradient Compression Methods

• $Q: \mathbb{R}^d \to \mathbb{R}^d$ is a contraction compressor if there is a $0 < \delta \le 1$ such that for all $x \in \mathbb{R}^d$,

$$\mathbb{E}||x - Q(x)||^2 \le (1 - \delta)||x||^2. \tag{2}$$

- \tilde{Q} is an *unbiased compressor* if there is $\omega \geq 0$ such that $\mathbb{E}[\tilde{Q}(x)] = x$ and $\mathbb{E}\|\tilde{Q}(x)\|^2 \leq (\omega + 1)\|x\|^2$ (3) for all $x \in \mathbb{R}^d$.
- $\frac{1}{\omega+1}\tilde{Q}$ is a contraction compressor with $\delta = \frac{1}{\omega+1}$.

Assumptions

Assumption 1: $\mathbb{E}[Q(x)] = \delta x$.

Assumption 2: For $x_{\tau} = \eta g_{\tau}^k + e_{\tau}^k \in \mathbb{R}^d$, $\tau = 1, ..., n$ and $k \geq 0$ in Algorithm 1, we have $\mathbb{E}[Q(x_{\tau})] = Q(x_{\tau})$, and $\left\|\sum_{\tau=1}^n (Q(x_{\tau}) - x_{\tau})\right\|^2 \leq (1 - \delta) \left\|\sum_{\tau=1}^n x_{\tau}\right\|^2$.

Assumption 3: $f_i^{(\tau)}$ is L-smooth, $f^{(\tau)}$ is \bar{L} -smooth, f is L_f -smooth, and ψ is μ -strongly convex. $L_f \geq \mu$.

Assumption 4: $f_i^{(\tau)}$ is L-smooth, $f^{(\tau)}$ is \bar{L} -smooth, f is L_f -smooth and f is μ -strongly convex.

Composite Case

Convergence Result

Assume the compressor Q in Algorithm 1 is a contraction compressor and Assumption 3 holds. Let $w_k = \left(1 - \min\left\{\frac{\mu\eta}{3}, \frac{\delta}{4}, \frac{p}{2}\right\}\right)^{-k}$, $W_k = \sum_{i=0}^k w_i$, and $\bar{x}^k = \frac{1}{W_k} \sum_{i=0}^k w_i x^i$. If $\eta \leq \frac{\delta^2}{135(1-\delta)(\bar{L}+L\delta)+53L_f\delta^2+53L\delta^2/n}$, then we have $\mathbb{E}[P(\bar{x}^k) - P(x^*)] \leq$

$$\frac{\frac{\mu}{2}\|x^0 - x^*\|^2 + \frac{1}{2}(P(x^0) - P(x^*))}{1 - (1 - \min\{\frac{\mu\eta}{3}, \frac{\delta}{4}, \frac{p}{2}\})^{k+1}} \left(1 - \min\{\frac{\mu\eta}{3}, \frac{\delta}{4}, \frac{p}{2}\}\right)^k.$$

In particular, if we choose

$$\eta = \frac{\delta^2}{135(1-\delta)(\bar{L}+L\delta)+53L_f\delta^2+53L\delta^2/n},$$

then $\mathbb{E}[P(\bar{x}^k) - P(x^*)] \le \epsilon$, with $\epsilon \le \frac{\mu}{2} ||x^0 - x^*||^2 + \frac{1}{2}(P(x^0) - P(x^*))$, as long as

$$k \ge O\left(\left(\frac{1}{\delta} + \frac{1}{p} + \frac{(1-\delta)\bar{L}}{\delta^2\mu} + \frac{(1-\delta)L}{\delta\mu} + \frac{L_f}{\mu} + \frac{L}{n\mu}\right) \ln\frac{1}{\epsilon}\right).$$

Convergence Result

Assume the compressor Q also satisfies Assumption 1 or Assumption 2. If

$$\eta \leq \frac{\delta^2}{(1-\delta)(269L_f + 1100\bar{L}/n + 1503L\delta/n) + 53L_f\delta^2 + 53L\delta^2/n},$$

then we have $\mathbb{E}[P(\bar{x}^k) - P(x^*)] \leq$

$$\frac{\frac{\mu}{2}\|x^0 - x^*\|^2 + \frac{1}{2}(P(x^0) - P(x^*))}{1 - (1 - \min\{\frac{\mu\eta}{3}, \frac{\delta}{4}, \frac{p}{2}\})^{k+1}} \left(1 - \min\{\frac{\mu\eta}{3}, \frac{\delta}{4}, \frac{p}{2}\}\right)^k.$$

In particular, if we choose

 $\eta = \frac{\delta^2}{(1-\delta)(269L_f + 1100\bar{L}/n + 1503L\delta/n) + 53L_f\delta^2 + 53L\delta^2/n},$

then $\mathbb{E}[P(\bar{x}^k) - P(x^*)] \le \epsilon$, with $\epsilon \le \frac{\mu}{2} ||x^0 - x^*||^2 + \frac{1}{2}(P(x^0) - P(x^*))$, as long as

$$k \ge O\left(\left(\frac{1}{\delta} + \frac{1}{p} + \frac{(1-\delta)L_f}{\delta^2\mu} + \frac{(1-\delta)L}{n\delta\mu} + \frac{L_f}{\mu} + \frac{L}{n\mu}\right)\ln\frac{1}{\epsilon}\right).$$

Smooth Case $(\psi \equiv 0)$

Convergence Result

Assume the compressor Q in Algorithm 1 is a contraction compressor and Assumption 4 holds. Let $w_k = \left(1 - \min\left\{\frac{\mu\eta}{2}, \frac{\delta}{4}, \frac{p}{2}\right\}\right)^{-k}$, $W_k = \sum_{i=0}^k w_i$, and $\bar{x}^k = \frac{1}{W_k} \sum_{i=0}^k w_i x^i$. If

$$\eta \leq \min \left\{ \frac{1}{4L_f + 24L/n}, \frac{\delta}{51\sqrt{(1-\delta)L_fL}}, \frac{\sqrt{\delta}}{51\sqrt{(1-\delta)L_fL}} \right\},$$

then we have $\mathbb{E}[f(\bar{x}^k) - f(x^*)] \le$

$$\frac{9\mu\|x^0-x^*\|^2+9(f(x^0)-f(x^*))}{1-(1-\min\{\frac{\mu\eta}{2},\frac{\delta}{4},\frac{p}{2}\})^{k+1}}\left(1-\min\{\frac{\mu\eta}{2},\frac{\delta}{4},\frac{p}{2}\}\right)^k.$$

In particular, if we choose

$$\eta = \min \left\{ \frac{1}{4L_f + 24L/n}, \frac{\delta}{51\sqrt{(1-\delta)L_fL}}, \frac{\sqrt{\delta}}{51\sqrt{(1-\delta)L_fL}} \right\},$$

then $\mathbb{E}[f(\bar{x}^k) - f(x^*)] \le \epsilon$ with $\epsilon \le 9\mu \|x^0 - x^*\|^2 + 9f(x^0) - f(x^*)$, as long as $k \ge$

$$O\left(\left(\frac{1}{\delta} + \frac{1}{p} + \frac{\sqrt{(1-\delta)L_fL}}{\mu\delta} + \frac{\sqrt{(1-\delta)L_fL}}{\mu\sqrt{\delta}} + \frac{L_f}{\mu} + \frac{L}{n\mu}\right) \ln\frac{1}{\epsilon}\right).$$

Convergence Result

Assume the compressor Q also satisfies Assumption 1 or Assumption 2. If

$$\eta \le \min \left\{ \frac{1}{4L_f + 32L/n}, \frac{\delta}{84\sqrt{1-\delta}L_f}, \frac{\sqrt{n\delta}}{138\sqrt{(1-\delta)L_fL}}, \frac{\sqrt{n\delta}}{118\sqrt{(1-\delta)L_fL}} \right\}$$

then we have $\mathbb{E}[f(\bar{x}^k) - f(x^*)] \le$

$$\frac{12\mu\|x^0-x^*\|^2+12(f(x^0)-f(x^*))}{1-(1-\min\{\frac{\mu\eta}{2},\frac{\delta}{4},\frac{p}{2}\})^{k+1}}\left(1-\min\left\{\frac{\mu\eta}{2},\frac{\delta}{4},\frac{p}{2}\right\}\right)^k.$$

In particular, if we choose

$$\eta = \min \left\{ \frac{1}{4L_f + 32L/n}, \frac{\delta}{84\sqrt{1-\delta}L_f}, \frac{\sqrt{n\delta}}{138\sqrt{(1-\delta)L_fL}}, \frac{\sqrt{n\delta}}{118\sqrt{(1-\delta)L_fL}} \right\}$$
then $\mathbb{E}[f(\bar{x}^k) - f(x^*)] \le \epsilon$ with $\epsilon \le 12\mu \|x^0 - x^*\|^2 + 12(f(x^0) - f(x^*))$ as long as

$$k \ge O\left(\left(\frac{1}{\delta} + \frac{1}{p} + \frac{\sqrt{(1-\delta)}L_f}{\mu\delta} + \frac{L_f}{\mu} + \frac{L}{n\mu}\right) \ln \frac{1}{\epsilon}\right).$$

Optimal Choice of p

Denote the iteration complexity as $O\left(\left(\frac{1}{p} + a\right) \ln \frac{1}{\epsilon}\right)$, where a is independent of p. To minimize the total expected communication cost, the optimal choice of p is

$$O\left(\min\left\{r(Q), \frac{1}{a}\right\}\right) \le p \le O\left(\max\left\{r(Q), \frac{1}{a}\right\}\right).$$

Communication Cost

Denote Δ_1 as the communication cost of the uncompressed vector $x \in \mathbb{R}^d$. Let

$$r(Q) := \sup_{x \in \mathbb{R}^d} \left\{ \mathbb{E} \left[\frac{\text{communication cost of } Q(x)}{\Delta_1} \right] \right\}.$$

Assume $L_f = \bar{L} = L$ and $\Delta_1 r(Q) \ge O(1)$. Choose p = O(r(Q)).

• Composite case:

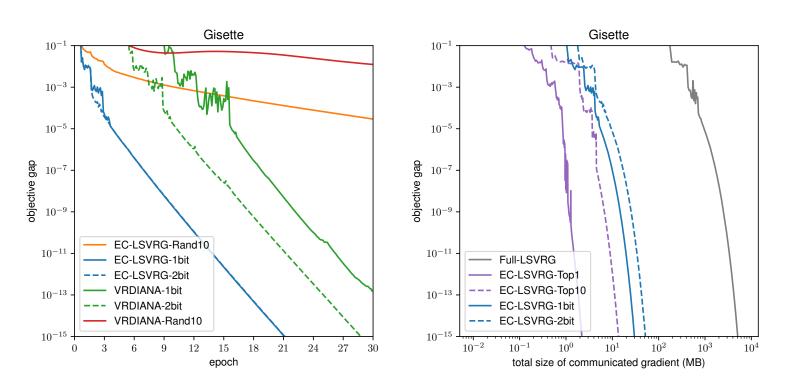
$$O\left(\Delta_1\left(\frac{r(Q)}{\delta}+1+\left(r(Q)+\frac{(1-\delta)r(Q)}{\delta^2}\right)\frac{L}{\mu}\right)\ln\frac{1}{\epsilon}\right).$$

• Smooth case:

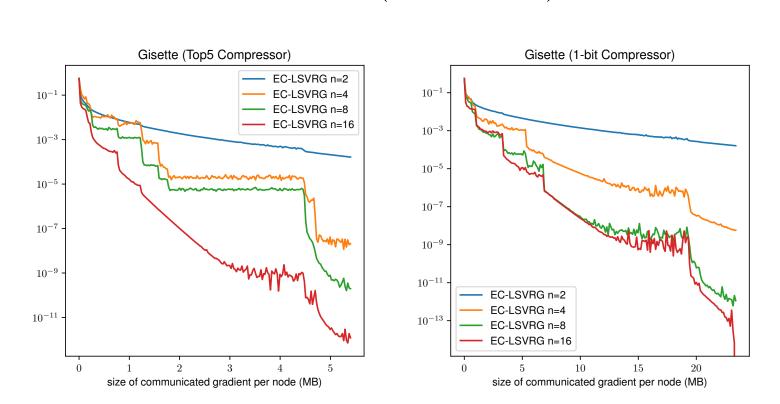
$$O\left(\Delta_1\left(\frac{r(Q)}{\delta}+1+\left(r(Q)+\frac{\sqrt{(1-\delta)}r(Q)}{\delta}\right)\frac{L}{\mu}\right)\ln\frac{1}{\epsilon}\right).$$

Numerical Results

1. Compare to compressed algorithm $(p = \frac{1}{mn})$



2. Distributed Experiment $(p = 10^{-4})$



References

[1] S. Horváth, D. Kovalev, K. Mishchenko, S. Stich, and P. Richtárik.

Stochastic distributed learning with gradient quantization and variance reduction.

arXiv: 1904.05115, 2019.

[2] Xun Qian, Zheng Qu, and Peter Richtárik. L-svrg and l-katyusha with arbitrary sampling. arXiv preprint arXiv:1906.01481, 2019.

