I KAUST

(

;ré% F(x)+ R(z) + H(Lx), (1)

where F', R, H convex functions, F' smooth and
R, H nonsmooth proximable.

We propose a new algorithm, the Primal-—
Dual Davis—Yin (PDDY), to solve (1).
PDDY is obtained as a carefully designed
instance of the Davis—Yin Splitting between
monotone operators.

We establish convergence rates for PDDY,

when the algorithm is implemented with a
Variance Reduced (VR) stochastic gra-
dient of I

In particular: Linear rate for strongly
convex minimization under linear con-
straints (without projecting on the constraints

space).

Primal—-Dual optimality

Let x* be a solution to Problem (1). Under a stan-
dard qualification condition,

0 € VF(x*)+ 0R(z") + L*"OH (Lx™),
i.e., there exists y* € OH (Lx*) such that
0=VF(x")+ 0R(x") + L™y".
Since Lx* € OH™(y*),
0| _ |VF(z*) + 0R(z*)+ L*y*

0| | —rLa + OH* (i)

Monotone operator

VF(z)+0R(z) + Ly
— Lz + 0H*(y)

Then, 0 € M (x*,y*). Moreover, M is a monotone
operator: (M (z,y)—M(z',y'), (x,y)—(2',y')) > 0.
Indeed, M is the sum of a skew symmetric operator

and the subdifferential of F'(x) + R(x) + H*(y).
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Davis—Yin Splitting

Solving Problem (1) is equivalent to solving the inclusion 0 € M (z*, y*). One idea could be to decompose
_|OR(x)| || Ly | |VF(z)
M(x,y) = 0 | Tl OH* (1) o9 | (2)
=A(z,y) =B(zy) =C(z,y)

and apply the Davis—Yin Splitting (DY'S) algorithm |2] which can solve monotone inclusions of the form
0 € (A+ B+ C)(x*, y*), see below. DYS generalizes the standard proximal gradient algorithm and relies on
the computation of the resolvent of B, denoted Jp(z,y) = (I + B) Yz, ).

[n other words, (2',y") = Jp(x,y) is equivalent to (2',y') € (z,y) — B(z',y’), which is intractable in general.
Hence one cannot apply DYS directly:.

Primal-Dual Davis—Yin

The idea is preconditioning: let P a positive definite symmetric matrix. Then 0 € M (2*, y*) is equivalent to
0 € P 'M(x*,y*). Besides, P"'M = P7'A+ P~ !B+ P~!C. Finally P~'A, P~'B, P~1C are monotone
operators under the inner product induced by P. DYS applied to the inclusion 0 € (P~'A + P7'B +
P~1C)(z*, y*) relies on the computation of the resolvent of P~!B.

In other words, (',y') = Jp-1g(x,y) is equivalent to P(z',y’) € P(x,y) — B(x',4y'), which only relies on the
proximity operator of H denoted

| 1
proxyy(x) = arg min H(y) + 5|z — yll’,

ycR?
f 1] | |
/ 0
S R QR

The resulting algorithm is the PDDY algorithm. It inherits the convergence properties of DYS.

Stochastic PDDY algorithm (proposed)
(deterministic version: ¢"*! = VF(2"))

Davis—Yin Algorithm DYS(A, B, (') [2]

1. Input: v’ € Z, v > ( 1 Input: ' e X, "€ Y, v >0, 7>0
2. for k=0,1,2,... do 2 for K =0,1,2,... do
3. 2 = J,p(v") 3.y = prox g (yF + TL(p" — v L*yY"))
UM = T 422 — oF — 4O (M) b ok = pF — LRyt
s oFtl — o 4 gkl ok . sM = prox, p (207 — pb — 4g"+)
6. end for 6: Pttt = p¥ 4 P — gk

7. end for

Other primal—dual algorithms like Condat-Vu I, Condat-Vu II and PD30 can be derived from DYS as
well.
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VR stochastic gradient

Several VR stochastic gradient estimators used in
the literature satisfy the following [3].
There exist o, 5,0 > 0, p € (0,1 and a stochastic

process denoted by (o)k, S.t.,

U (g") = VF(a)

Ui(lg" = VE(@")|]°) < 2aDp(a", %) + Boy

4:/€(O-I%+1> < (1 _ IO)O-I% + 25DF(xk> SL‘*),

where D Bergman divergence of F'.

Assume v small enough and v7||L||* < 1.
D (YY) +

1]

2]

3]

Then, EDp(z" 2*) +
EDpR(s" s*) = O (1/k).
If R strongly convex and H smooth, then

|l — 2** + Elly" — |

converges linearly:.

[t F' strongly convex, R = 0 and H(x) = oo
except at H(b) = 0, Eljlz" — 2*||* + E|ly* —
y*||* converges linearly to zero (z* is the
solution to min F’ s.t. Lz = b). Complexity:
O(k + xlog(1/e)), where K (resp. x) condition
number of F' (resp. L*L).
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