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Abstract

The use of M-estimators in generalized linear regression models in high dimen-
sional settings requires risk minimization with hard L¢ constraints. Of the known
methods, the class of projected gradient descent (also known as iterative hard
thresholding THT) methods is known to offer the fastest and most scalable solu-
tions. However, the current state-of-the-art is only able to analyze these methods
in very restrictive settings which do not hold in high dimensional statistical mod-
els. In this work we bridge this gap by providing the first analysis of IHT-style
methods in the high dimensional statistical setting. Our results rely on a general
analysis framework that enables us to analyze several popular hard thresholding
style algorithms (such as HTP, CoSaMP, SP) in the high dimensional regression
setting.

1 Introduction

Modern statistical estimation is routinely faced with real world problems where the number of pa-
rameters p handily outnumbers the number of observations n. In general, consistent estimation of
parameters is not possible in such a situation. Consequently, a rich line of work has focused on
models that satisfy special structural assumptions such as sparsity or low-rank structure. Under
these assumptions, several works (for example, see [1} 2| [3 14} I5]) have established that consistent
estimation is information theoretically possible in the “n < p” regime as well.

The question of efficient estimation, however, is faced with feasibility issues since consistent esti-
mation routines often end-up solving NP-hard problems. Examples include sparse regression which
requires loss minimization with sparsity constraints and low-rank regression which requires dealing
with rank constraints which are not efficiently solvable in general [6]. Interestingly, recent works
have shown that these hardness results can be avoided by assuming certain natural conditions over
the loss function being minimized such as restricted strong convexity/smoothness (RSC/RSS) and
the use of convex relaxations [3|] or greedy methods |1, 18, 9].

Despite this, certain limitations have prevented widespread use of these techniques. Relaxation-
based methods typically suffer from slow rates as they solve non-smooth optimization problems.
Greedy methods are slow in situations with non-negligible sparsity or relatively high rank, owing to
their incremental approach of adding/removing individual support elements. Instead, the methods
that do find practical applications are projected gradient (PGD) methods, also called iterative hard
thresholding (IHT) methods. These methods directly project onto the underlying (non-convex) fea-
sible sets (which can be performed efficiently for several structures such as sparsity and low rank).
However, traditional analyses for convex problems viz. [10] do not apply to these techniques.

An exception to the above is the recent work [[11]] which analyzes PGD with non-convex penalties
such as SCAD, MCP and capped L;. However, they are unable to handle commonly used used
penalties such as Lg or low-rank constraints.



Insufficiency of RIP based Guarantees for M-estimation. PGD/IHT-style methods have been
very popular in literature for sparse recovery and several algortihms including Iterative Hard Thresh-
olding (IHT) [12], GraDeS [I13], Hard Thresholding Pursuit (HTP) [[14], CoSaMP [15], Subspace
Pursuit (SP) [16], and OMPR(¥) [17] have been proposed. However, the analysis of these algorithms
has traditionally assumed the Restricted Isometry property (RIP) or incoherence property. It turns
out that this renders these analyses inaccessible to high-dimensional statistical estimation problems.

All existing results analyzing these methods require the condition number of the loss function, re-
stricted to sparse vectors, to be smaller than a universal constant. The best known such constant is
due to [17] that requires a bound 2, < 0.5 on the RIP constant (or equivalently a bound }f—gz’; <3
on the condition number). In contrast, realistic high dimensional statistical settings, wherein pairs
of variables can be arbitrarily correlated, routinely offer arbitrarily large condition numbers. In par-
ticular if two variates have a covariance matrix like {1 i c 1 I 1 , then the restricted condition
number (on a support set of size just 2) of the sample matrix cannot be brought down below 1/
even with infinitely many samples. Consequently, when ¢ < 1/6, none the existing results for hard
thresholding methods offer any guarantees. Moreover, most of these analyses consider only the least
squares objective. Although recent attempts have been made to extend this to general differentiable
objectives [18,[19]], the results continue to require that the restricted condition number be less than a
universal constant and remain unsatisfactory in a statistical setting.

Overview of Results. Our main contribution in this work is an analysis of PGD/IHT-style methods
in statistical settings. Our bounds are tight, achieve known minmax lower bounds [20], and hold
for arbitrary differentiable, possibly even non-convex, functions. Our results hold even when the
underlying condition number is arbitrarily large and only require the function to satisfy RSC/RSS
conditions. In particular, this reveals that these iterative methods are indeed applicable to statistical
settings, a result that escaped all previous works.

Our first result shows that the PGD/IHT methods achieve global convergence if used with a relaxed
projection step. More formally, if the optimal parameter is s*-sparse and the problem satisfies RSC
and RSS constraints « and L respectively, then PGD methods offer global convergence so long as
they employ projection to an s-sparse set where s > 4(L/a)?s*. This gives convergence rates that
are identical to those of convex relaxation and greedy methods for the Gaussian sparse linear model.

We are able to instantiate our methods to a variety of statistical estimation problems such as sparse
linear regression, generalized linear models and low rank matrix regression. Our results effortlessly
extend to the noisy setting as a corollary and give bounds similar to those of [21] that relies on
solving an L; regularized problem. Our proofs exploit the fact that even though hard-thresholding
is not the prox-operator for any convex prox function, it still provides strong contraction when
projection is performed onto sets of sparsity s > s*. This observation is crucial and allows us to
provide the first unified analysis for hard thresholding based gradient descent algorithms.

2 Problem Setup and Notations

High-dimensional Sparse Estimation. Given data points X = [X1,..., X,|, where X; € RP?,
and the target Y = [Y1,...,Y,]T, where Y; € R, the goal is to compute an s*-sparse 8" s.t.,
0" = arg min 0). 1
ge_rueﬂogs*f( ) (D

Definition 1 (RSC/RSS Properties). A differentiable function f : RP — R is said to satisfy restricted
strong convexity (RSC) (resp. restricted strong smoothness (RSS)) at sparsity level s = s1 + so with
strong convexity constraint os (resp. strong convexity constraint L) if the following holds for all
01,92 S.1. H01||0 < 81 and ||02H0 < 8o:

Qg LG
?\\91 — 625 < f(61) — f(B2) — (61 — 62, Vg f(62)) < ?”01 — 053

The above definitions seamlessly extend to the low-rank matrix regression problem where each data
point is a matrix X; € RP1*P2 with the Ly norm replaced by the rank function.



Algorithm 1 Iterative Hard-thresholding
1: Input: Function f with gradient oracle, sparsity level s, step-size 7

2:0'=0,t=1

3. while not converged do

4 O =P (0" —nVef(0Y)),t=t+1
5: end while

6: Output: 6°

3 Iterative Hard-thresholding Method

We now study the popular iterative hard thresholding method for sparse regression (see Algorithm |I]
for pseudocode). The projection operator Ps(z) can be implemented efficiently in this case by
projecting z onto the set of s-sparse vectors by selecting the s largest elements (in magnitude)
of z. Most analyses of hard thresholding methods use the projection property which implies that
|Ps(z) — 2|3 < ||6 — z||3 for all |6’]o < s. However, we show (see Lemma I} that a much
stronger result holds in case [|0||o < s* and s* < s. This forms a crucial part of all our analyses.
Lemma 1. For any index set I, any z € RI, let @ = P,(z). Then for any 0* € R! such that
[|160*]|0 < s*, we have

1] —s
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16 — 2|3 < 10" — =[5
Our analysis combines the above observation with the RSC/RSS properties of f to provide geometric
convergence rates for the IHT procedure below.

Theorem 1. Ler f have RSC and RSS parameters given by Losi ¢+ (f) = L and ass15+(f) = «

respectively. Let Algorithm |I| be invoked with f, s > 32‘5)2 s* and n = 3% Also let 0% =

forr=0(%. 1og(@)) satisfies:

argming | <s+ f(0). Then, the T-th iterate of Algorithm
1(67) — 1(6%) <.

We note that a result similar to Lemma |l| holds for matrix regression as well which can be used to
show similar guarantees for the IHT method for low-rank matrix regression.

4 High Dimensional Statistical Estimation

We now show how results of the previous section can be instantiated in a variety of statistical esti-
mation problems. Suppose we have a sample of data points Z;.,, and a loss function £(6; Zy.,,) that
depends on a parameter 8 and the sample. Then we can show the following result.

Theorem 2. Let 6 be any s*-sparse vector. Suppose L(6;Z1.,) is differentiable and satis-

fies RSC and RSS at sparsity level s + s* with parameters oy« and Lgy g+ respectively, for
2

s>4 (i;ﬁ) s*. Let 07 be the T-th iterate of Algorithm|l|for T chosen as in Theorem|l|and

be the function value error incurred by Algorithm|[I| Then we have

9 2 * 0: Z1., 2
10— o7, < 2V IVED: 21, ,>|OO+F.
Ostsr Qg5+

Note that the result does not require the loss function to be convex. This fact will be crucially used
later. We now apply the above result to several statistical estimation scenarios.

Sparse Linear Regression. Here Z; = (X;,Y;) € R? x Rand Y; = (0, X;) + & where & ~
N (0, 02) is label noise with least squares as the loss function £(6; Z1.,) = +||Y — X 6||3. Suppose
X1:p, are drawn i.i.d. from a sub-Gaussian distribution with covariance ¥ with 3;; < 1 Vj. [22,
Lemma 6] can be used to obtain high probability RSC and RSS guarantees. Then we can show that

with n > 8¢151og p/omin(X) samples and s = 324x(X)2s*, we have, with high probability,

~ k(X) [s*logp €
0-—-07|y <145 2
H ||2 - O'min(z) ? n + O'min(z)
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Figure 1: A comparison of IHT methods with L1 and greedy methods (FoBa) on sparse noisy linear
regression tasks. shows the variation in running times with increasing dimensionality p. [1(b)
shows the recovery properties of different IHT methods under large condition number (x = 50)
setting as the size of projected set is increased to s > s*.

Projected Sparsity (s)

Noisy and Missing Data. We now look at cases with feature noise as well. More specifically,
assume that we only have access to X,’s that are corrupted versions of X;’s. Two models of noise
are popular in literature [21]] a) (additive noise) X; = X; + W; where W; ~ N (0,2 ), and b)
(missing data) X is a R U {x}-valued matrix obtained by independently, with probability v € [0, 1),
replacing each entry in X with x. For the case of additive noise (missing data can be handled
similarly), Z; = (X'i,Yi) and L£(0; Z1.,) = %OTfH — 476 where I = XTX/TL — Yw and
=X Ty /n are unbiased estimators of ¥ and ¥7 respectively. [21, Lemma 1] can be used to
obtain high probability RSC and RSS guarantees.

Note that £(+; Z1.,) is non-convex but we can still apply Theorembecause RSC, RSS hold. Then,
it is possible to show thatif n > ¢157(p)/0min(3) and s = 196x(%)2s*, then with high probability,

~ k(X)) ., A s*logp €
0 -0z <co——~=-5|@ 2, —=
| l2 < Czomin(E)UH l2y/ — ==+ —k

where cg, c1,co are universal constants, & = \/||EWng + [1Z]12,([[Xwllop + o) and 7(p) =

212 HIZw2,)?
€00min (X) max(%, 1) log p.

5 Discussion

We showed that iterative hard thresholding algorithms can provably minimize arbitrary, possibly
non-convex, differentiable objective functions assuming Restricted Strong Convexity/Smoothness
(RSC/RSM) conditions. Our basic insight was to relax the stringent RIP requirement popular in
literature by running these iterative algorithms with an enlarged support size. Our theoretical results
put hard thresholding methods on par with those based on convex relaxation or greedy algorithms.

The results in this paper, along with full proofs, appear in [23]. In particular, [23] shows that our
results can also be extended to a family of “fully corrective” methods that includes CoSaMP [15],
Subspace Pursuit (SP) [16], and OMPR(Y) [17]. These methods keep the optimization objective
fully minimized over the support of the current iterate. These algorithms have also thus far been
analyzed only under RIP guarantees for the least squares objective. Using our analysis framework
developed in the previous sections, we can arrive at a generic RSC-based analysis for general two-
stage methods for arbitrary loss functions. Our analysis hinges upon a key observation specific to
these methods that bound the error incurred by the hard thresholding step in these methods.

[23] also presents experimental evidence supporting theoretical claims made here (see Figure [I).
In particular, using experiments on ill-conditioned problems, with the condition number as large
as 50, we demonstrate that various IHT-style algorithms such as CoSaMP, HTP and GraDeS offer
remarkably improved performance as the the projected sparsity levels s were increased beyond s*.
Experimental results also demonstrated that IHT-style methods such as HTP and GraDeS were much
more scalable as compared to L, and greedy methods such as FoBa [24]].

In future work, it would be interesting to generalize our algorithms and their analyses to more general
structures. A unified analysis for general structures will probably create interesting connections with
existing unified frameworks such as those based on decomposability [5] and atomic norms [25].
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