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Abstract

We provide guarantees for learning latent variable models emphasizing on the
overcomplete regime, where the dimensionality of the latent space can exceed the
observed dimensionality. In particular, we consider spherical Gaussian mixtures
and multiview mixtures models. Our algorithm is based on method of moments,
and employs a tensor decomposition method for learning. In the semi-supervised
setting, we exploit the label or prior information to get a rough estimate of the
model parameters, and then refine it using the tensor method on unlabeled sam-
ples. We establish learning guarantees when the number of components scales
as k = o(dp/2), where d is the observed dimension, and p is the order of the
observed moment employed in the tensor method. In the unsupervised setting,
a simple initialization algorithm based on SVD of the tensor slices is proposed,
and the guarantees are provided under the stricter condition that k ≤ Cd (where
constant C can be larger than 1). We also provide tight sample complexity bounds
through novel covering arguments.

Keywords: Unsupervised and semi-supervised learning, latent variable models, overcomplete
representations, tensor decomposition.

1 Introduction

Tensor decompositions have been recently popular for unsupervised learning of a wide range of
latent variable models (LVMs) such as topic models, Gaussian mixtures, independent component
analysis, network community models, and so on [1, 2, 3]. It involves decomposition of a certain
low order multivariate moment tensor (typically up to fourth order), and is guaranteed to provide a
consistent estimate of the model parameters. In practice, the tensor decomposition techniques have
been effective in a number of applications such as blind source separation [4], computer vision [5],
topic modeling [6], and community detection [7].

The state of art for guaranteed tensor decomposition involves two steps: converting the input tensor
to an orthogonal symmetric form, and then solving the orthogonal decomposition through tensor
eigen decomposition [1, 8, 9]. While having efficient guarantees, this approach is unable to learn
overcomplete representations, where the latent dimensionality exceeds the observed dimensionality.
This is especially limiting given the recent popularity of overcomplete feature learning in many
domains, e.g. [10, 11].

In this paper, we establish guarantees for learning overcomplete LVMs, assuming incoherent com-
ponents, which can be viewed as a soft orthogonality constraint. Incoherent representations have
been extensively considered, e.g., in compressed sensing [12] and sparse coding [13, 14]. They pro-
vide flexible modeling, and are robust to noise [11]. Moreover, when we have randomly constructed
(multiview) features [15], the moment tensors have incoherent components, as assumed here.
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Summary of results: In this paper, we provide semi-supervised and unsupervised learning guaran-
tees for LVMs such as spherical Gaussian mixtures and multiview mixtures model1. We employ a
tensor decomposition algorithm, which basically performs alternating asymmetric power updates on
the input tensor modes. Under the semi-supervised setting, we establish that highly overcomplete
models can be learned efficiently through tensor decomposition methods. The moment tensors are
constructed using unlabeled samples, and the labeled samples are used to provide a rough initial-
ization to the tensor decomposition algorithm. In the unsupervised setting, we propose a simple
initialization strategy for the tensor method, and require stricter conditions on the extent of over-
completeness for guaranteed learning. We also provide tight sample complexity bounds.

We now summarize the results for learning spherical Gaussian mixtures. Let k be the number
of Gaussian mixtures (hidden dimension), and d be the observed dimensionality. In the semi-
supervised setting, we prove guaranteed learning when k = o(dp/2), where p is the order of observed
moment employed for tensor decomposition. We prove that in the “low” variance regime (where the
expected radius of spherical Gaussian is of the same order as that of the Gaussian mean), having an
extremely small number of labeled samples for each mixture is sufficient (scaling as polylog(d, k)
independent of the final precision). This is far less than the number of unlabeled samples required.
Note that in most applications, labeled samples are expensive/hard to obtain, while many more un-
labeled samples are easily available, e.g., see [16, 17]. Furthermore, the sample complexity bounds
for unlabeled samples is derived, which scales as Ω̃(k).

We also provide unsupervised learning guarantees when no label is available. Here, the initialization
is obtained by performing a rank-1 SVD on the random slices of the moment tensor. This imposes
additional conditions on rank and sample complexity. We prove that when k ≤ Cd (for arbitrary
constant C > 1), the model parameters can be learned using a polynomial number of initializations
(which depends on C as kC

2

) and sample complexity scales as Ω̃(kd). This is an improvement over
existing results since we do not have dependence on the condition number of the component means
and in addition, we can handle overcomplete models.

Notations: Let [n] denote the set {1, 2, . . . , n}, and ‖v‖ denote the `2 norm of vector v. We also
use Õ and Ω̃ to hide polylog factors in asymptotic notations O and Ω, respectively.

2 Tensor Decomposition Algorithm

We propose the tensor 2 decomposition method in Algorithm 1. The main step in (1) basically
performs alternating asymmetric power updates 3 on different tensor modes. Notice that the updates
alternate among different modes of the tensor which can be viewed as a rank-1 form of the standard
alternating least squares (ALS) method. Notice that in learning LVMs, the input tensor T is the
higher order observed moment.

3 Learning Spherical Gaussian Mixtures

In this section, we exploit Algorithm 1 for learning spherical Gaussian mixtures, and provide sample
complexity guarantees. Consider a mixture of k different Gaussian distributions with spherical
covariances. Let wj , j ∈ [k] denote the proportion for choosing each mixture. For each Gaussian
component j ∈ [k], aj ∈ Rd is the mean, and ζ2

i I is the spherical covariance. For simplicity, we
restrict to the case where all the components have the same spherical variance, i.e., ζ2

1 = ζ2
2 = · · · =

ζ2
k = ζ2. The generalization is discussed in Hsu and Kakade [18]. In addition, in order to generalize

the learning result to the overcomplete setting, we assume that variance parameter ζ2 is known. The

1According to limited space, the results for spherical Gaussian mixtures are provided in this 4-page draft.
For other latent variable models including multiview mixtures, Independent Component Analysis (ICA) and
sparse coding see Appendix B.

2See Appendix D for detailed tensor preliminaries and notations.
3We view a tensor T ∈ Rd×d×d as a multilinear form. For vectors v, w ∈ Rd, we have T (I, v, w) :=∑
j,l∈[d] vjwlT (:, j, l) ∈ Rd as the multilinear combination of tensor fibers. Note that the proposed asymmet-

ric form of the algorithm is particularly useful for learning multiview mixtures model which involves asymmet-
ric tensor decomposition.
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Algorithm 1 Tensor decomposition via alternating asymmetric power updates

Input: Tensor T ∈ Rd×d×d, number of initializations L, number of iterations N .
Output: Estimates for the components of tensor T =

∑
j∈[k] wjaj ⊗ bj ⊗ cj .

for τ = 1 to L do
Initialize unit vectors â(0)

τ ∈ Rd, b̂(0)
τ ∈ Rd, and ĉ(0)

τ ∈ Rd as
• Semi-supervised setting: label information is exploited.
• Unsupervised setting: SVD-based technique in Procedure 3 when k ≤ Cd.

for t = 0 to N − 1 do
Asymmetric power updates:

â(t+1)
τ =

T
(
I, b̂

(t)
τ , ĉ

(t)
τ

)
∥∥∥T (I, b̂(t)τ , ĉ

(t)
τ

)∥∥∥ , b̂(t+1)
τ =

T
(
â
(t)
τ , I, ĉ

(t)
τ

)
∥∥∥T (â(t)

τ , I, ĉ
(t)
τ

)∥∥∥ , ĉ(t+1)
τ =

T
(
â
(t)
τ , b̂

(t)
τ , I

)
∥∥∥T (â(t)

τ , b̂
(t)
τ , I

)∥∥∥ . (1)

end for
weight estimation: ŵτ = T

(
â

(N)
τ , b̂

(N)
τ , ĉ

(N)
τ

)
.

end for
Cluster set

{(
ŵτ , â

(N)
τ , b̂

(N)
τ , ĉ

(N)
τ

)
, τ ∈ [L]

}
into k clusters as in Procedure 2.

return the center member of these k clusters as estimates (ŵj , âj , b̂j , ĉj), j ∈ [k].

Procedure 2 Clustering process

Input: Tensor T ∈ Rd×d×d, set of 4-tuples
{

(ŵτ , âτ , b̂τ , ĉτ ), τ ∈ [L]
}

, parameter ε.
for i = 1 to k do

Among the remaining 4-tuples, choose â, b̂, ĉ which correspond to the largest |T (â, b̂, ĉ)|.
Do N more iterations of alternating updates in (1) starting from â, b̂, ĉ.
Let the output of iterations denoted by (â, b̂, ĉ) be the center of cluster i.
Remove all the tuples with max{|〈âτ , â〉|, |〈b̂τ , b̂〉|, |〈ĉτ , ĉ〉|} > ε/2.

end for
return the k cluster centers.

following lemma shows that the problem of estimating parameters of this mixture model can be
formulated as a tensor decomposition problem.
Lemma 1 (Hsu and Kakade 18). If

M3 := E[x⊗ x⊗ x]− ζ2
∑
i∈[d]

(E[x]⊗ ei ⊗ ei + ei ⊗ E[x]⊗ ei + ei ⊗ ei ⊗ E[x]) , (2)

then M3 =
∑
j∈[k] wjaj ⊗ aj ⊗ aj .

Without loss of generality, we assume that the mean vectors aj , j ∈ [k] have unit `2 norm, since we
can always rescale them, and adjust the weights appropriately. Also, for simplicity we assume aj ∈
Rd, j ∈ [k], are uniformly i.i.d. drawn from the unit d-dimensional sphere Sd−1 (see Remark 1).
In this work, we focus on learning in the challenging overcomplete regime where the number of
components/mixtures is larger than observed dimension. Precisely, we assume k ≥ Ω(d). Note that
the results can be easily adapted to the highly undercomplete regime when k ≤ o(d).

For brevity, we consider the low variance regime where the expected radius of spherical Gaussian
is bounded by a constant, i.e., ζ2d = O(1). Note that since means aj , j ∈ [k], have unit norm, low
variance regime imposes that the expected norm of spherical radius is in the same order of norm
of means (model parameters). Since wj’s are the mixture probabilities, for brevity we consider
wj = Θ(1/k), j ∈ [k].

Semi-supervised learning: In the semi-supervised setting, label information is exploited to build
good initialization vectors for tensor decomposition Algorithm 1 as follows. For the Spherical Gaus-
sian mixtures, let x(l)

j , j ∈ [k], l ∈ [mj ], denote m =
∑
j∈[k]mj samples of vectors corresponding

to different mixtures, where the samples with subscript j are from mixture j. Then for any j ∈ [k],
we have the empirical estimate of Gaussian means as âj := 1

mj

∑
l∈[mj ] x

(l)
j .
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Procedure 3 SVD-based initialization when k ≤ Cd for arbitrary constant C

Input: Tensor T ∈ Rd×d×d.
Draw a random standard Gaussian vector θ ∼ N (0, Id).
Compute u1 and v1 as the top left and right singular vectors of T (I, I, θ) ∈ Rd×d.
â(0) ← u1, b̂(0) ← v1, and initialize ĉ(0) by update formula in (1).
return

(
â(0), b̂(0), ĉ(0)

)
.

Given n unlabeled samples, let

εT := Õ
(√

k/n
)

+ Õ
(√

k/d
)

(3)

denote the recovery error. We first provide the settings of Algorithm 1 which include input tensor
T , number of iterations N and the initialization setting.

Settings of Algorithm 1 in Theorem 1: Given n unlabeled samples x(i) ∈ Rd, i ∈ [n], consider the
empirical estimate of 3rd order moment in (2) as the input to Algorithm 1 (with symmetric updates).
Let the number of iterations N = Θ (log (1/εT )). Use the empirical estimates using labeled data as
initialization.
Theorem 1 (Semi-supervised learning of spherical Gaussian mixtures). Assume the Algorithm set-
tings mentioned above hold. Suppose the number of labeled samples with label j ∈ [k], denoted
by mj , and the number of unlabeled samples n satisfy mj ≥ Ω̃ (1) , n ≥ Ω̃ (k) . If rank condition
Ω(d) ≤ k ≤ o(d3/2) holds, then Algorithm 1 outputs estimates ŵj , âj , satisfying w.h.p. 4

min
z∈{−1,1}

‖zâj − aj‖ ≤ εT , |ŵj − wj | ≤ O(εT /k), j ∈ [k]. (4)

Note that the number of labeled samples required is much smaller than the number of unlabeled
samples, i.e.,

∑
j∈[k]mj � n. Thus, we provide efficient learning guarantees for overcomplete

spherical Gaussian mixtures in the semi-supervised setting under a small number of labeled samples.

The recovery error εT involves two terms. One arises due to empirical estimation of 3rd order
moment (given by Õ

(√
k/n

)
) and is inevitable. The other term is due to non-orthogonality of

columns of factor matrices (given by Õ
(√
k/d
)
) which is an approximation error in recovery of the

tensor components. Note that the latter goes to zero for large enough d since we have k ≤ o(d3/2).
Remark 1 (Random assumption). In the above learning result, we assume that the mixture com-
ponents are uniformly i.i.d. drawn from unit d-dimensional sphere Sd−1. This is a reasonable
assumption for continuous models including the spherical Gaussian mixtures model described here.
But, it is not appropriate for discrete models where the non-negativity assumptions on the entries of
factor matrices are required. Moreover, the random assumption is provided for simplicity, while the
original conditions for the guarantees of Algorithm 1 are deterministic.

Unsupervised learning: In the unsupervised setting, there is no label information available to build
the initialization vectors. Here, the initialization is performed by doing rank-1 SVD on random
slices of the moment tensor proposed in Procedure 3. The settings and conditions for unsupervised
learning are stated as follows:

Settings of Algorithm 1 in Theorem 2: Consider the same settings as in Theorem 1 for the input
tensor and the number of iterationsN . But, the initialization in each run of Algorithm 1 is performed
by SVD-based technique in Procedure 3, with the number of initializations as L ≥ kΩ(k2/d2).

Theorem 2 (Unsupervised learning of spherical Gaussian mixtures). Assume the Algorithm settings
mentioned above hold. Suppose the number of unlabeled samples n satisfies n ≥ Ω̃

(
k2
)
. If rank

condition k = Θ(d) holds, then the same guarantees as in Theorem 1 are satisfied. See (4).

An algorithm for learning mixture of spherical Gaussians in the undercomplete setting is provided
in [18], which is a moment-based technique combined with a whitening step. When k = d, the
sample complexity in [18] scales as n ≥ Ω̃(d3). But, our tight tensor concentration analysis leads
to the better sample complexity of n ≥ Ω̃(d2).

4Note that recovery of components is up to sign. This is because a third order tensor is unchanged if the
sign along one of the modes is fixed and the signs along the other two modes are flipped.
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