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Abstract

We consider composite function minimization problems where only a stochastic
estimate of the gradient of the smooth term is available, and in particular regular-
ized online learning. We derive novel finite sample bounds for the natural exten-
sion of the classical proximal gradient algorithm. Our approach allows to avoid
averaging, a feature which is critical when considering sparsity based methods.
Moreover, our results match those obtained by the stochastic extension of accel-
erated methods, hence suggesting that there is no advantage considering these
variants in a stochastic setting.

1 Stochastic proximal gradient algorithm for composite optimization and
learning

We consider the following general class of minimization problems

min
w∈H

L(w) +R(w), (1)

under the assumptions

• L : H → R is a differentiable convex function with β-Lipshcitz continuous gradient, i.e.
for every v and w inH, ‖∇L(v)− L(w)‖ ≤ β‖v − w‖

• R : H → R ∪ {+∞} is a lower semicontinuous convex function (possibly nonsmooth)

• Problem 1 has at least one solution.

This class of optimization problems arises naturally in regularization schemes where one component
is a data fitting term and the other a regularizer, see for example [6, 16]. To solve Problem 1, first
order methods have recently been widely applied. In particular, proximal gradient algorithms (a.k.a.
forward-backward splitting algorithms) and their accelerated variants have received considerable
attention (see [8, 19, 3] and references therein). These algorithms are easy to implement and suitable
for solving high dimensional problems thanks to the low memory requirement of each iteration.
Interestingly, proximal splitting algorithms separate the contribution of each component at every
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iteration: the proximity operator defined by the non smooth term is applied to a gradient descent step
for the smooth term. Therefore, each iteration requires the computation of the proximity operator of
R, that is

proxR : H → H, proxR(w) = argmin
v∈H

R(v) +
1

2
‖w − v‖2. (2)

Throughout this paper, we assume implicitly that the closed-form expression of the proximity op-
erator of R is available, or that it can be cheaply computed. On the other hand, we suppose that
the gradient is intractable, so that in the algorithm the gradient of L is replaced by a stochastic ap-
proximation. This latter situation is particularly relevant in statistical learning, where we have to
minimize an expected objective function from random samples. In this context, iterative algorithms,
where only one gradient estimate is used in each step, are often referred to as online learning al-
gorithms. More generally, the situation where only stochastic gradient estimates are available is
important in stochastic optimization, where iterative algorithms can be seen as a form of stochastic
approximation.

More precisely, we study the following stochastic proximal gradient (SPG) algorithm.

SPG Algorithm. Let (γn)n∈N∗ be a strictly positive sequence, let (λn)n∈N∗ be a sequence in [0, 1],
and let (Gn)n∈N∗ be a H-valued random process such that (∀n ∈ N∗) E[‖Gn‖2] < +∞. Fix w1 a
H-valued integrable vector with E[‖w1‖2] < +∞ and set

(∀n ∈ N∗)
⌊
un = proxγnR(wn − γnGn)
wn+1 = (1− λn)wn + λnun.

(3)

The following conditions will be considered for the filtration (An)n∈N∗ withAn = σ(w1, . . . , wn).

(A1) For every n ∈ N∗, E [Gn|An] = ∇L(wn).
(A2) For every n ∈ N∗, there exists σ ∈ ]0,+∞[ such that

E
[
‖Gn −∇L(wn)‖2|An

]
≤ σ2(1 + ‖∇L(wn)‖2) (4)

(A3) There exists ε ∈ ]0,+∞[ such that (∀n ∈ N∗) 0 < γn ≤
1− ε

β(1 + 2σ2)

(A4) For any solution w of Problem 1 assume that∑
n∈N∗

λnγn = +∞ and
∑
n∈N∗

λnγ
2
n < +∞. (5)

Condition (A1) means that, at each iteration n, Gn is an unbiased estimate of the gradient of the
smooth term. Condition (A2) is weaker than typical conditions used in the analysis of stochastic
(sub)gradient algorithms, namely boundedness of the sequence (E[‖Gn‖2|An])n∈N∗ (see [17]) or
even boundedness of (‖Gn‖2)n∈N∗ (see [10]). We note that this last requirement on the entire space
is not compatible with the assumption of strong convexity, because the gradient is necessarily not
uniformly bounded, therefore the use of the more general condition (A2) is needed in this case.
Conditions such as (A3) and (A4) are, respectively, widely used in the deterministic setting and in
stochastic optimization. Assumption (A3) is more restrictive that the one usually assumed in the
deterministic setting, that is (∀n ∈ N∗) γn ≤ (2 − ε)/β. We also note that when (λn)n∈N∗ is
bounded away from zero, (A4) implies (A3) for n large enough. Finally, in our case, the step-size
is required to converge to zero, while it is typically bounded away from zero in the study of deter-
ministic proximal forward-backward splitting algorithm [8]. Viceversa, we allow for nonvanishing
errors, while in the deterministic setting summability of (‖Gn −∇L(wn)‖)n∈N∗ is required.

We next describe two settings particularly relevant in machine learning, in which SPG algorithm can
be applied. Consider two measurable spaces X and Y and assume there is a probability measure ρ
on X × Y . The measure ρ is fixed but known only through a training set z = (xn, yn)1≤n≤m ∈
(X × Y)m of samples i.i.d with respect to ρ. Consider a loss function ` : Y × Y → [0,+∞[ and
a hypothesis space H of functions from X to Y , e.g. a reproducing kernel Hilbert space. Assume
that, for every (x, y) ∈ X × Y , `(y, ·) is a convex differentiable function with Lipschitz continuous
gradient, examples being the squared or the logistic loss. Let R be convex, proper, and lower
semicontinuous.
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Example 1 (Minimization of the (regularized) Risk). A key problem in this context is

minimize
w∈H

∫
X×Y

`(y, w(x)) dρ+R(w). (6)

For every x ∈ X , let evx : H → Y defined as evx(w) = w(x) be the evaluation functional. By
setting (∀n ∈ N∗) Gn = ev∗xn

∇`(yn, ·)(wn(xn)) and An = σ((x1, y1), . . . , (xn, yn)), then (A1)
holds. If assumption (A2) is satisfied, SPG algorithm can be applied for suitable choices of the
step-size and the relaxation parameters (λn)1≤n≤m}. Note that only m steps of the algorithm can
be taken.
Example 2 (Minimization of the empirical risk). The minimization of the regularized empirical
risk

minimize
w∈H

1

m

m∑
i=1

`(yi, w(xi)) +R(w), (7)

is often a key step to build a learning algorithm. This problem is a special case of Problem 1 with
L(w) =

∑m
i=1 `(yi, w(xi)), and is especially of interest whenm is very large and we know the exact

gradient of each component in the sum. For every n ∈ N∗ the stochastic estimate of the gradient of
L is then defined as

(∀n ∈ N) Gn = ev∗xi(n)
∇`(yi(n), ·)(wn(xi(n))), (8)

where (i(n))n∈N∗ is a random process of independent random variables uniformly distributed on
{1, . . . ,m}, see [4, 5]. Clearly (A1) holds. If (A2) holds, SPG can be applied.

For loss functions which are twice differentiable in their second argument, it easy to see that the the
maximum eigenvalue of the Hessian is a Lipschitz constant of the gradient. The term R can be seen
as a regularizer/penalty encoding some prior information about the learning problem. Examples of
convex, non-differentiable penalties include sparsity inducing penalties such as the `1 norm, as well
as more complex structured sparsity penalties [16]. Stronger convexity properties can be obtained
considering an elastic net penalty [9], that is adding a small strongly convex term to the sparsity
inducing penalty. Clearly, the latter term would not be necessary if the risk in Problem 6 (or the
empirical risk in (7)) is strongly convex. However, this latter requirement depends on the probabil-
ity measure ρ and is typically not satisfied when considering high (possibly infinite) dimensional
settings.

2 Theoretical and empirical analysis

In this section, we denote by w a solution of Problem 1 and provide a of convergence for E[‖wn −
w‖2]. This result follows from nonasymptotic bounds to the nonsmooth case the bound obtained in
[2, Theorem 1] for stochastic gradient descent. The following assumption is considered throughout
this section.
Assumption 1. The function L is µ-strongly convex and R is ν-strongly convex, for some µ ∈
[0,+∞[ and ν ∈ [0,+∞[, with µ+ ν > 0.

Note that, we do not assume both L and R to be strongly convex, indeed the constants µ and ν can
be zero, but require that only one of the two is. This implies that Problem 1 has a unique solution,
say w.
Theorem 1. Assume that conditions (A1), (A2), (A3) and Assumption 1 are satisfied. Suppose that
there exists λ ∈ ]0,+∞[ such that infn∈N∗ λn ≥ λ. Let c1 ∈ ]0,+∞[ and let θ ∈ ]0, 1]. Suppose
that, for every n ∈ N, γn = c1n

−θ. Set c =
(
2c1λ(ν + µε)

)
/(1 + ν)2 and let n0 be the smallest

integer such that n0 > 1, and max{c, c1}n0−θ ≤ 1. Then, for every n ≥ 2n0,

E[‖wn − w‖2] =
{
O(n−θ) if θ ∈ ]0, 1[,
O(n−c) +O(n−1) if θ = 1.

(9)

Thus, if θ = 1 and c1 is chosen such that c > 1, then E[‖wn − w‖2] = O(n−1). More precisely,
if θ = 1, λn = 1 = λ for every n ∈ N∗, and c1 = (1 + ν)2/

(
λ(ν + µε)

)
> 2, then c = 2,

n0 = max{2, c1}, and

E[‖wn − w‖2] ≤
n20E[‖wn0

− w‖2]
(n+ 1)2

+
8σ2(1 + ‖∇L(w)‖)(1 + ν)4

λ2 (µε+ ν)
2 (10)
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We note that a recent technical report [1] also analyzes a stochastic proximal gradient method (with-
out the relaxation step) and its accelerated variant. Almost sure convergence of the iterates (without
averaging) is proved under uniqueness of the minimizer, but under assumptions different from ours:
continuity of the objective function– thus excluding constrained smooth optimization– and bounded-
ness of the iterates. Convergence rates for the iterates without averaging are derived, but only for the
accelerated method. Finally, we note that convergence of the iterates of stochastic proximal gradi-
ent has been recently obtained from the analysis of convergence of stochastic fixed point algorithms
presented in the recent preprint [7]. However, this latter results is derived from summability assump-
tions on the errors of the stochastic estimates which are usually not satisfied in the machine learning
setting. The FOBOS algorithm in [10] is the closest approach to the one we consider, the main
two differences being 1) we consider an additional relaxation step which may lead to accelerations,
and especially 2) we do not consider averaging of the iterates. This latter point is important, since
averaging can have a detrimental effect. Indeed, non-smooth problems often arise in applications
where sparsity of the solution is of interest, and it is easy to see that averaging prevent the solution
to be sparse [15, 22]. Moreover, as noted in [20] and [21], averaging can have a negative impact on
the convergence rate in the strongly convex case. Indeed, in this paper we improve the error bound
in [10] in this latter case. The best rate of convergence O(1/n) is obtained for γn = c1/n. There
are other stochastic first order methods achieving the same rate of convergence for the iterates in the
strongly convex case, see e.g. [1, 12, 11, 13, 22, 15]. Indeed, the rate we obtain is the rate that can
be obtained by the optimal (in the sense of [18]) convergence rate on the function values. Among
the mentioned methods those in [1, 11, 15] belong to the class of accelerated proximal gradient
methods. Our result shows that, in the strongly convex case, the rate of convergence of the iterates
is the same in the accelerated and non accelerated case. In addition, if sparsity is the main interest,
we highlight that many of the algorithms discussed above (e.g. [1, 11, 12, 22]) involve some form of
averaging or linear combination which prevent sparsity of the iterates, as it is discussed in [15]. Our
result shows that in this case averaging is not needed, since the iterates themselves are convergent.

Next, we compare also numercally the proposed method with other state-of-the-art stochastic first
order methods: an accelerated stochastic proximal gradient method, called SAGE [14] and the FO-
BOS algorithm [10]. We consider a regression problem with random design: for a suitably chosen
finite dictionary of real valued functions (φk)1≤k≤p defined on an interval, the labels are computed
using a noise-corrupted regression function, namely

(∀i ∈ {1, . . . , N}) yi =

p∑
k=1

wkφk(xi) + εi, (11)

where (wk)1≤k≤p ∈ Rp and εi is an additive noise εi ∼ N (0, 0.3). We considered two dictionaries
(polynomial and trigonometric). On the regression problem with the polynomial dictionary, SAGE
is performing the best, while on the trigonometric dictionary, SPG is the fastest. FOBOS shows a
more regular behavior but slower convergence rate. Convergence of the iterations is displayed in
Figure 1. We addressed also the problem of sparsity. Starting from an original signal with 1024
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Figure 1: The convergence of the iterations to the optimal solution with polynomial dictionary (left)
and with trigonometric dictionary (right).

components having 993 zero components, after few iteratons both SAGE ans SPG generate sparse
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iterations (937 zero components), while the averaging procedure in FOBOS generated a vector with
an increasing number of nonzero components, which was 438 after the last iteration.
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