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Abstract

Minimum volume ellipsoids appear in a variety of important statistics and ma-
chine learning problems: anomaly detection, covariance estimation, experiment
design, and control. However, many of these applications involve data corrupted
by outliers. For example, anomaly detection involves simultaneously learning a
representation for typical behavior while excluding a subset of observations as out-
liers. The most popular approaches for fitting ellipsoids with outliers have been
heuristic, e.g. sampling, or iteratively removing influential points and re-fitting the
ellipsoid. We follow a different approach by formulating an optimization problem
to simultaneously label the outliers and fit a minimum volume ellipsoid to the
remaining points. We first consider the combinatorial robust minimum volume
ellipsoid problem and establish its complexity. Next, we explore a natural convex
relaxation for this problem, which as we show, can be dramatically improved by
using a non-convex penalty and an efficient iterative linearization approach. Fi-
nally, we extend it to more general higher-order compact polynomial level sets via
a sum-of-squares (SOS) formulation using semi-definite programming (SDP).

1 Introduction

The minimum volume ellipsoid (MVE) problem asks to find an ellipsoid of minimum volume that
contains a set of given data points in Euclidean space. It has been very popular in a variety of appli-
cations in statistics, optimization, and control due to a simple convex formulation allowing efficient
algorithms [1]. Furthermore, a variety of extensions have been considered: minimum volume ellip-
soid containing a collection of polytopes, a set of other ellipsoids, and more general compact shapes
[2, 3]. This enables a general framework to summarize complex shapes and distributions by simple
ellipsoids.

Many authors have expressed the need for a robust version of the minimum volume ellipsoid [4, 5, 6]
allowing to ignore a fraction of the dataset as outliers and to fit a minimum volume ellipsoid to the
remaining points. The challenge of the robust MVE formulation is that the identity of the outliers is
not known, and one needs to simultaneously identify the outliers and fit a small volume ellipsoid to
the remaining points. Existing approaches to the problem have mostly been heuristic, with the two
most popular ones being ellipsoidal trimming that iteratively removes points falling on the boundary
[7] and subsampling methods [4, 6]. Exact computations based on combinatorial optimization are
available for small to medium datasets [8, 9] but these are not scalable to larger datasets.

We first study the complexity of the robust MVE problem, and show its computational hardness.
We explore a convex relaxation based approach following the rich literature on ¢;-norm relaxations
for sparse approximations. Despite its successes for sparse approximation and compressed sensing,
we show that it has poor performance for the robust MVE problem, and furthermore, that using a



non-convex log-sum penalty vith a fast iterative linearization [10, 11] provides a very effective and
practical way to solve the robust MVE problems.

More generally our goal is to find a concise but flexible description of typical sets of data points
[12, 5, 13, 14]. Ellipsoids can be viewed as level sets of positive-definite quadratic functions, and we
extend the approach to more flexible shapes given by compact level sets of higher order polynomials.
Our approach for optimizing over compact higher-order polynomial level sets is based on sum-of-
squares optimization [15] and minimizes a surrogate for the volume.

2 Minimum volume ellipsoids

The problem of finding the minimum volume ellipsoid that contains a collection of points dates back
to the work in [7]. Suppose that we have a set of vectors {x;}7” in R™. For simplicity assume that
we aim to find a zero-centered ellipsoid defined as {x | x' Mx < 1} where M = 0 is a positive
definite n x n matrix. The volume of this ellipsoid is proportional to the determinant of M !,
leading to a convex formulation for the problem:

min —logdet M  such that xiTMxi <1, i=1,...,m. (D
M >0
A variety of efficient algorithms for solving this problem have been proposed, e.g. [1]. The dual
of the MVE problem is important in the design of experiments, where it can be interpreted as D-
optimal experiment design [16]. A simple multiplicative update algorithm for MVE can be defined
via the dual.

2.1 Robust MVE and its complexity

In many practical applications the data may be corrupted by outliers. We review a combinatorial
formulation for the robust MVE problem which allows to ignore up to a fraction r or k = rm
vectors and find the minimum volume ellipsoid enclosing the remaining vectors:

Ar}fli_ré—logdetM suchthat x/ Mx; <14¢& and ||€]lo <k, i=1,..,m. )
This problem has been described in [4], and an approximate solution based on resampling has been
proposed: A collection of subsets of exactly n + 1 points are used to fit initial minimum volume
ellipsoids containing these subsets. Then each of the small ellipsoids is “inflated” until they contain
n — k points, and the best (smallest volume) among them is chosen as the robust MVE solution.
Another heuristic solution is based on trimming [7]: at each iteration a non-robust minimum volume
ellipsoid is fit, and the points on the boundary are identified as outliers and removed. The procedure
continues until the desired number of outliers is removed and has no guarantees to identify the same
outliers as robust MVE in (2). An exact combinatorial solution [9] can be made more efficient by
branch and bound [8], but these are only practical for relatively small data-sets.

Complexity of the problem In the extended version of this work, we prove the following com-
plexity results about the robust MVE:

Proposition 1 Given a set of m points in R™ with rational coordinates, and two rational numbers
v>0anr € (0,1), it is NP-hard to decide if there exists an ellipsoid of volume < v that covers at
least a fraction r of the points.

In fact, an even stronger statement is true:

Proposition 2 For any ¢, § € (0,1/2), given a set of m points in R™ with rational coordinates and
a rational number v > 0, it is NP-hard to distinguish between the following cases: (i) there exists
an ellipsoid of volume < v that covers a fraction (1 — €) of the points, and (ii) no ellipsoid of volume
< w can cover even a fraction § of the points.

The 0-volume special case asks if there is a subset of points of size k& = rm that lie in a proper
subspace [17]. We proceed to study approximate methods for robust MVE.
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Figure 1: (a) Exact robust MVE solution. (b) The solution path of /; MVE as a function of « does
not include the correct solution for any .

3 Convex formulation for robust MVE and its limitations

Following the rich literature on sparse approximations and sparse learning, we approximate the
difficult sparsity constraint on outliers (number of non-zeros in &) by the /;-norm of £. While the
¢; relaxation can be used to recover exact sparse solutions in certain problems such as sparse linear
regression, we show that it is inappropriate for robust MVE due to the geometry of the ellipsoid,
as we discuss below. We propose a significant performance improvement in Section 4 using non-
convex penalties.

A natural convex relaxation for (2) replaces the count of non-zero elements of the outlier vector £
with the £;-norm !+2. For convenience, we penalize the /; norm in the objective with regularization
parameter « and solve:

]I»r{l;% —logdet M + « Z & 3)
such that x] Mx; <1+¢&;, and & >0Vi

This is a convex formulation (we will refer to it as ¢;-MVE) that can be solved by interior point
methods. Alternatively, the dual can be optimized by first-order projected gradient or proximal
methods. Despite the overwhelming popularity and strong empirical and theoretical results for using
convex relaxations in compressed sensing, sparse log-linear models and related fields [19], the ¢
relaxation is problematic for the robust MVE problem and gives poor results.

Consider a small computational example in Figure 1 with four points on a unit circle and an outlier
at (2,0). The exact robust MVE solution correctly removes the outlier in plot (a). However, plot (b)
demonstrates that the /; MVE approximation fails: one can show that the solution path in (3) does
not contain the correct solution for any «. The intuition is that the effective penalty on each outlier
is different and depends on the geometry of the ellipsoid (i.e. on the eigenvalues of M), and the ¢;
MVE stretches the ellipsoid in the direction of the outlier to reduce the ¢; penalty on the outlier.

4 Robust MVE via reweighted-/; penalties

While the /1 norm has been the most widely used approximation to sparsity, many authors have ob-
served that non-convex approximations can have substantially better empirical performance despite
the lack of guarantees to reach global optima (initial theoretical results have also started to appear
[20]). These non-convex approximations are especially important where the /1 norm is entirely in-
appropriate, e.g. optimization over a probability simplex where the ¢; norm is already constrained
by the problem, structured Total Least Squares [21], and as we discuss here, for robust MVE.

'A very interesting related formulation explores a connection with the conditional value at risk literature in
finance and proposes a convex cVaR-relaxation for robust MVE [18].

2We have also developed an alternative convex formulation based on an SDP relaxation which provides
lower bounds on achievable volume for robust MVE.
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Figure 2: (a) Robust MVE via reweighted-¢; correctly identifies the outliers. (b) A compact higher-
order polynomial level-set obtained via SOS programming provides a more flexible description of a
complex set of points.

Specifically, unlike the ¢y norm, the ¢; norm penalizes large coefficients more than small coeffi-
cients. It has been suggested [10, 11] that if one had access to the magnitudes of the true sparse
solution x*, and used a weighted {1-norm defined as ) w;|z;| for positive weights w; = 3% this

would be equivalent to the {y-norm. In lieu of knowing the true magnitudes, the practical approach
is iterative where one first solves an unweighted ¢; problem, and then iteratively sets the weights
based on the previous solution, w; = ﬁfv'\’ where ¢ is a small positive constant to avoid divi-

sion by zero. This reweighted-¢; approach is equivalent to iterative linearization of the non-convex
log-sum penalty for sparsity. Dramatic empirical performance improvements in terms of recovering
sparse signals are now starting to be supported by emerging theoretical results [22]. We propose to
apply the log-sum penalty using iterative reweighting for the robust MVE problem, which we call
log-MVE. The resulting algorithm is to first initialize w; = 1, and then to iterate:

(i) SOLVE (3) with a weighted ¢;-norm in the objective: —logdet M + o), w;&;

(ii) UPDATE the weights w; = ﬁ

Typically only a very small number of iterations (5 to 10) is required for convergence. Note that

upon reaching a fixed point Y, w;|z;| = . Sfljili‘ ~ ||Z]|p. This avoids the dependence on the
geometry of the ellipsoid that plagues ¢1-MVE. We illustrate the effectiveness of the formulation in
Figure 2 where log-MVE successfully identifies the outliers and learns the MVE for a set of points
in three dimensions. Note that log-MVE also gets the exact MVE solution for the problem in Figure

1 (a). We are exploring conditions under which this recovery is guaranteed.

5 SOS polynomial level sets

In the full version of this work, we extend the methodology presented here from ellipsoids to level
sets of higher degree polynomials. As Figure 2 (b) demonstrates, this could be very useful in sit-
uations where the complex pattern of the data points cannot be captured by a simple shape like an
ellipsoid. The red curve in the Figure is the level set of a degree-6 polynomial function that has
been found via sum of squares optimization [15]. These techniques allow us to place various shape
constraints on the level set; for example compactness as in Figure 2 (b), or convexity, which may be
desired in other situations. Such constraints are not possible using the kernel-ellipsoid formulation
[5]. The full version of our paper also presents extensions where we use polynomial level sets to do
robust coverage, i.e., cover only a specified fraction of the data points.

6 Conclusions

We have considered the robust MVE problem, and commented on its complexity. We first explored
a convex formulation for robust MVE, and found that it suffers from rotational asymmetry of the
penalty. A non-convex log-sum penalty using an iterative linearization approach alleviates this issue
and provides a powerful formulation for robust MVE. We also proposed an extension with level sets
of higher-order polynomials.
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