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Abstract

In this paper, we analyze the behavior of the well-known alternating direction
method of multipliers (ADMM), for solving a family of nonconvex problems.
Our focus is given to the well-knownconsensusandsharingproblems, both of
which have wide applications in machine learning. We show that in the presence
of nonconvex objective, the classical ADMM is able to reach the set of stationary
solutions for these problems, if the stepsize is chosen large enough. An interest-
ing consequence of our analysis is that the ADMM is convergent for a family of
sharing problems, regardless of the number of blocks or the convexity of the ob-
jective function. Our analysis can be generalized to allow proximal update rules as
well as other flexible block selection rules far beyond the traditional Gauss-Seidel
rule.

1 Introduction

Consider the following linearly constrained (possibly nonsmooth or/and nonconvex) problem with
K blocks of variables{xk}

K
k=1:

min f(x) :=

K
∑

k=1

gk(xk) + ℓ(x1, · · · , xK)

s.t.
K
∑

k=1

Akxk = q, xk ∈ Xk, ∀ k = 1, · · · ,K

(1.1)

whereAk ∈ R
M×Nk andq ∈ R

M ; Xk ∈ R
Nk is a closed convex set;ℓ(·) is a smooth (possibly

nonconvex) function; eachgk(·) can be either a smooth function, or a convex nonsmooth function.
The augmented Lagrangian for problem (1.1) is given by

L(x; y) =

K
∑

k=1

gk(xk) + ℓ(x1, · · · , xK) + 〈y, q −Ax〉+
ρ

2
‖q −Ax‖2, (1.2)

whereρ > 0 is a constant representing the primal step-size.

To solve problem (1.1), consider the popular alternating direction method of multipliers (ADMM)
displayed below:
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Algorithm 0. ADMM for Problem (1.1)

At each iterationt+ 1, update the primal variables:

x
t+1

k
= arg min

xk∈Xk

L(xt+1

1 , · · · , xt+1

k−1, xk, x
t

k+1, · · · , x
t

K ; yt), ∀ k.

Update the dual variable:

y
t+1 = y

t + ρ(q − Ax
t+1).

The ADMM algorithm was originally introduced in early 1970s[1, 2], and has since been studied
extensively [3–6]. Recently it has become popular in big data related problems arising in various
engineering domains; see, e.g., [7–14]. There is a vast literature that applies the ADMM for all sorts
of problems in the form of (1.1). Most of its convergence analysis is done for certain special form
of problem (1.1) — thetwo-block convex separableproblems, whereK = 2, ℓ = 0 andg1, g2 are
both convex. In this case, ADMM is known to converge under very mild conditions; see [6] and [7].
Recent analysis on its rate of convergence can be found in [15–19].

Unlike the convex case, the behavior of the ADMM is rarely analyzed when it is applied to solve
nonconvex problems. Nevertheless, it has been observed by many researchers that the ADMM work-
s very well for various applications involving nonconvex objectives, such as the nonnegative matrix
factorization, phase retrieval, distributed matrix factorization etc.; see [20–29] and the references
therein. However, to the best of our knowledge, existing convergence analysis of ADMM for non-
convex problems is very limited — most of the known global convergence analysis needs to impose
requirements on the sequence generated by the algorithm. Unfortunately these requirements are
nonstandard and overly restrictive. Reference [30] analyzes a family of splitting algorithms (which
includes ADMM as a special case) for certain nonconvex quadratic problem, and shows that they
converge to the stationary solution when certain conditionon the dual stepsize is met.

In this paper, we analyze the convergence of ADMM for two special types of nonconvex problems in
the form of (1.1). Our focus is given to a family of nonconvex consensus and sharing problems, and
show that ADMM converges without any assumptions on the iterates – as long as the problem (1.1)
satisfies certain regularity conditions, and the stepsizeρ is chosen large enough (with computable
bounds), then the algorithm is guaranteed to converge to theset of stationary solutions.

2 The Nonconvex Consensus Problem

Consider the following nonconvex consensus problem

min f(x) :=

K
∑

k=1

gk(x) + h(x) s.t. x ∈ X (2.3)

where eachgk is a smooth but possibly nonconvex functions;h(x) is a convex possibly nonsmooth
function. This problem is related to the convex consensus problem discussed in [7, Section 7], but
with the important difference thatgk can be nonconvex.

In many practical applications, eachgk is handled by a single agent, such as a thread or proces-
sor. This motivates the following consensus formulation. Let us introduce a set of new variables
{xk}

K
k=1, and transform problem (2.3) equivalently to the followinglinearly constrained problem

min
K
∑

k=1

gk(xk) + h(x) s.t. xk = x, ∀ k = 1, · · · ,K, x ∈ X. (2.4)

The augmented Lagrangian function is given by

L({xk}, x; y) =

K
∑

k=1

gk(xk) + h(x) +

K
∑

k=1

〈yk, xk − x〉+

K
∑

k=1

ρk

2
‖xk − x‖2. (2.5)

Problem (2.4) can be solved distributedly by applying the classical ADMM algorithm. The details
are given in the table below.
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Algorithm 1. The Classical ADMM for the Consensus Problem (2.4)

At each iterationt+ 1, compute:

x
t+1 = argmin

x∈X

L({xt

k}, x; y
t).

Each nodek computesxk in parallel, by solving:

x
t+1

k
= argmin

xk

gk(xk) + 〈yt

k, xk − x
t+1〉+

ρk

2
‖xk − x

t+1‖2.

Each nodek updates the dual variable:

y
t+1

k
= y

t

k + ρk
(

x
t+1

k
− x

t+1
)

.

In Algorithm 1, thex update step can be expressed as

xt+1 = proxι(X)+h

[

∑K

k=1 ρkx
t
k +

∑K

k=1 y
t
k

∑K

k=1 ρk

]

(2.6)

where proxp is theproximity operatorof a convex functionp(·) [31, Section 31]. Note thatx can be
viewed as the first block and{xk}

K
k=1 together is the second block. Therefore the two primal blocks

are updated in a sequential (i.e., Gauss-Seidel) manner. Inthis paper we will analyze a more general
version, in which the blocks are updated in aflexiblemanner; see Algorithm 2.

We consider the following two types of variable block updateorder rules: letk = 1, 2, ...,K be
the indices for the primal variable blocksx1, x2, ..., xK andk = 0 be the index for primal variable
blockx, and let Ct ⊆ {0, 1, · · · ,K} denote the set of variables updated in iterationt, then

1. Randomized update rule: At each iterationt + 1 the indices are chosen randomly and
independently from the previous iterations, i.e.,

Pr
(

k ∈ Ct+1 | xt, yt, {xt
k}
)

= pt+1
k ≥ pmin > 0. (2.7)

2. Essentially cyclic (EC) update rule: There exists a given periodT ≥ 1 during which each
index is updated at least once, i.e.,

⋃T

i=1 Ct+i = {0, 1, · · · ,K}, ∀ t.

We call this update rule aperiod-T EC rule.

Algorithm 2. The Flexible ADMM for the Consensus Problem (2.4)

At each iterationt+ 1, pick an index setCt+1 ⊆ {0, · · · ,K}.
If 0 ∈ Ct+1, compute:

x
t+1 = argmin

x∈X

L({xt

k}, x; y
t). (2.8)

Else xt+1 = xt.
If k ∈ Ct+1, nodek computesxk by solving:

x
t+1

k
= argmin

xk

gk(xk) + 〈yt

k, xk − x
t+1〉+

ρk

2
‖xk − x

t+1‖2.

Update the dual variable:

y
t+1

k
= y

t

k + ρk
(

x
t+1

k
− x

t+1
)

.

Else xt+1

k
= xt

k, yt+1

k
= yt

k.

Clearly Algorithm 1 is simply Algorithm 2 with period-1 EC rule. Therefore we will focus on
analyzing Algorithm 2. To this end, we make the following assumption.

Assumption A.

A1. There exists a positive constantLk > 0 such that

‖∇kgk(xk)−∇kgk(zk)‖ ≤ Lk‖xk − zk‖, ∀ xk, zk, ∀ k.

Moreover,h is convex (possible nonsmooth);X is a closed convex set.
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A2. For allk, the stepsizeρk is chosen large enough such that:

1. For allk, thexk subproblem is strongly convex with modulusγk(ρk);
2. For allk, ρkγk(ρk) > 2L2

k andρk ≥ Lk.

A3. f(x) is lower bounded for allx ∈ X .

Clearly, assumption A does not impose any restriction on theiteratesgenerated by the algorith-
m. This is in contrast to the existing analysis of the nonconvex ADMM algorithms, such as those
developed in [20,26,28].

Now we state the first main result of this paper. We briefly mention that the key of the proof is to
use thereduction of the augmented Lagrangianto measure the progress of the algorithm.

Theorem 2.1 Assume that Assumption A is satisfied. Then the following is true for Algorithm 2:

1. limt→∞ ‖xt+1
k −xt+1‖ = 0, ∀, k, deterministically for the EC rule and almost surely (a.s.)

for randomized rule.
2. Let({x∗

k}, x
∗, y∗) denote any limit point of the sequence{{xt+1

k
}, xt+1, yt+1} generated

by Algorithm 2. Then the following statement is true (deterministically for the EC rule and
a.s. for the randomized update rule)

0 = ∇gk(x
∗
k) + y

∗
k, x

∗
k = x

∗
, k = 1, · · · ,K, x

∗ ∈ argmin
x∈X

h(x) +
K
∑

k=1

〈y∗
k, x

∗
k − x〉

That is, any limit point of Algorithm 2 is a stationary solution of problem(2.4).
3. If X is a compact set, then Algorithm 2 converges to the set of stationary solutions of

problem(2.4).

3 The Nonconvex Sharing Problem

Consider the following well-known sharing problem (see, e.g., [7, Section 7.3] for motivation)

min f(x1, · · · , xK) :=

K
∑

k=1

gk(xk) + ℓ

(

K
∑

k=1

Akxk

)

, s.t. xk ∈ Xk, k = 1, · · · ,K (3.9)

wherexk ∈ R
Nk is the variable associated with a given agentk, andAk ∈ R

M×Nk is some data
matrix. The variables are coupled through the functionℓ(·).

To facilitate distributed computation, this problem can beequivalently formulated as:

min

K
∑

k=1

gk(xk) + ℓ (x) s.t.

K
∑

k=1

Akxk = x, xk ∈ Xk, k = 1, · · · ,K. (3.10)

We make the following assumptions.

Assumption B.
B1. There exists a positive constantL > 0 such that

‖∇ℓ(x)−∇ℓ(z)‖ ≤ L‖x− z‖, ∀ x, z.

Moreover,Xk ’s are closed convex sets; eachAk is full column rank,ρmin(A
T
k Ak) > 0.

B2. The stepsizeρ is chosen large enough such that:

(1) eachxk subproblem as well as thex subproblem is strongly convex, with modulus
{γk(ρ)}

K
k=1 andγ(ρ), respectively.

(2) ργ(ρ) > 2L2, and thatρ ≥ L.
B3. f(x1, · · · , xK) is lower bounded for allxk ∈ Xk and allk.
B4. gk is either smooth nonconvex or convex (possibly nonsmooth).For the former case, there

existsLk > 0 such that‖gk(xk)− gk(zk)‖ ≤ Lk‖xk − zk‖, ∀ xk, zk ∈ Xk.

Again one can show that when Assumption B is satisfied, then the a flexible ADMM similar to
Algorithm 2 will converge to the set of stationary solutionsof problem (3.10). To conclude, we
provide a remark on generalizing the flexible ADMM to includeproximal steps.

Remark 3.1 In certain applications it is beneficial to have cheap updates for the subproblems. The
flexible ADMM can be further generalized to the case where thesubproblems are not solved exactly
– only a single proximal update is sufficient for eachxk subproblem.
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