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Abstract

In this paper, we analyze the behavior of the well-knownraling direction
method of multipliers (ADMM), for solving a family of nonceex problems.
Our focus is given to the well-knowoonsensusnd sharing problems, both of
which have wide applications in machine learning. We shat iththe presence
of nonconvex objective, the classical ADMM is able to reduh et of stationary
solutions for these problems, if the stepsize is chosemlampugh. An interest-
ing consequence of our analysis is that the ADMM is converfmra family of
sharing problems, regardless of the number of blocks ordheexity of the ob-
jective function. Our analysis can be generalized to allosxpnal update rules as
well as other flexible block selection rules far beyond tladitional Gauss-Seidel
rule.

1 Introduction

Consider the following linearly constrained (possibly agmooth or/and nonconvex) problem with
K blocks of variablegxz } £,

K
min  f(z):= Y gr(xx) + a1, -, 2K)
k=1
« (LD
s.t. ZAkl’k:q,fEkEXk,Vk:L’”,K
k=1

whereA;, € RM*Ne andg € RM; X, € RM is a closed convex sef{-) is a smooth (possibly
nonconvex) function; eachy(-) can be either a smooth function, or a convex nonsmooth fmcti
The augmented Lagrangian for problem (1.1) is given by

M=

k=1
wherep > 0 is a constant representing the primal step-size.

To solve problem (1.1), consider the popular alternatimgadion method of multipliers (ADMM)
displayed below:
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Algorithm 0. ADMM for Problem (1.1)

At each iteratiort + 1, update the primal variables:

mffl = arg min L(:ci“, e 7:cfill7 mh:c}iﬂ, s ahe yt)7 V k.
zpeXy,

Update the dual variable:

Y =y' +p(g — Az'TH).

The ADMM algorithm was originally introduced in early 197[1s 2], and has since been studied
extensively [3—6]. Recently it has become popular in bigadatated problems arising in various
engineering domains; see, e.g., [7-14]. There is a vasifitee that applies the ADMM for all sorts
of problems in the form of (1.1). Most of its convergence gaialis done for certain special form
of problem (1.1) — th@wo-block convex separabfgoblems, wherd( = 2, ¢ = 0 andg;, go are
both convex. In this case, ADMM is known to converge undeyweild conditions; see [6] and [7].
Recent analysis on its rate of convergence can be found #1H]5

Unlike the convex case, the behavior of the ADMM is rarelylgped when it is applied to solve
nonconvex problems. Nevertheless, it has been observedby researchers that the ADMM work-
s very well for various applications involving nonconvejeatiives, such as the nonnegative matrix
factorization, phase retrieval, distributed matrix faization etc.; see [20-29] and the references
therein. However, to the best of our knowledge, existingveogence analysis of ADMM for non-
convex problems is very limited — most of the known globalwengence analysis needs to impose
requirements on the sequence generated by the algorithrfortUmately these requirements are
nonstandard and overly restrictive. Reference [30] amalyzfamily of splitting algorithms (which
includes ADMM as a special case) for certain nonconvex catadproblem, and shows that they
converge to the stationary solution when certain condiiethe dual stepsize is met.

In this paper, we analyze the convergence of ADMM for two sdégpes of nonconvex problemsin
the form of (1.1). Our focus is given to a family of nonconvexsensus and sharing problems, and
show that ADMM converges without any assumptions on theiéer— as long as the problem (1.1)
satisfies certain regularity conditions, and the stepgimechosen large enough (with computable
bounds), then the algorithm is guaranteed to converge teethef stationary solutions.

2 The Nonconvex Consensus Problem

Consider the following nonconvex consensus problem

min  f(x ng st. reX (2.3)

where eacly;, is a smooth but possibly nonconvex functiohér) is a convex possibly nonsmooth
function. This problem is related to the convex consensablpm discussed in [7, Section 7], but
with the important difference that. can be nonconvex.

In many practical applications, eagh is handled by a single agent, such as a thread or proces-
sor. This motivates the following consensus formulatioet us introduce a set of new variables
{xxH< |, and transform problem (2.3) equivalently to the followlimgarly constrained problem

> gklwx) +h(z) st ap=x,Vk=1,---, K, z€X. (2.4)
The augmented Lagrangian function is given by

K
L({zk}, z;y) ng (k) + h(z +Z Yk, T — X) ; %ka — |2 (2.5)

Problem (2.4) can be solved distributedly by applying ttessical ADMM algorithm. The details
are given in the table below.



Algorithm 1. The Classical ADMM for the Consensus Problem (2.4)
At each iteratiort + 1, compute:

t+1 . t ot
@ = argmin L({zk}, 239).
Each nodé: computese;, in parallel, by solving:
2! = argmin gi (o) + (yhs 2 — 2 + Bl — 2P
'k

Each nodé: updates the dual variable:

W =k (e -2

In Algorithm 1, thex update step can be expressed as

K K
Zk:l pkx}; + Zk:l yi
K
Zk:1 Pk

where proy is theproximity operatorof a convex functiomn(-) [31, Section 31]. Note that can be
viewed as the first block andr;, } £ | together is the second block. Therefore the two primal lBock
are updated in a sequential (i.e., Gauss-Seidel) manntisipaper we will analyze a more general
version, in which the blocks are updated ifiexiblemanner; see Algorithm 2.

L = ProX, x4

(2.6)

We consider the following two types of variable block updatder rules: lett = 1,2,..., K be
the indices for the primal variable blocks, z-, ..., zx andk = 0 be the index for primal variable
blockz, and letC* C {0,1,---, K} denote the set of variables updated in iteraticthen

1. Randomized update ruleAt each iterationt + 1 the indices are chosen randomly and
independently from the previous iterations, i.e.,

Pr(ke C"™' |2’y {z}}) = pi™ = pmin > 0. (2.7)

2. Essentially cyclic (EC) update ruldhere exists a given peridll > 1 during which each
index is updated at least once, @thl ¢t =1{0,1,--- K}, Vt.
We call this update rule period-I" EC rule.

Algorithm 2. The Flexible ADMM for the Consensus Problem (2.4)

At each iteratiort 4 1, pick an index seC* ™" C {0,--- , K}.
If0 e C'™', compute:
't = argmi}rg L{z}}, ;Y. (2.8)
TE

Else i+t = at.
If ke C'™!, nodek computese, by solving:

2" = argmin gi (@x) + (v, 2r — 2" 7) + Zflon — P
'k
Update the dual variable:

v =yt (e -2

t4+1 t 41 ¢
Elsexit = o, yi ' =y

Clearly Algorithm 1 is simply Algorithm 2 with period-1 EC ket Therefore we will focus on
analyzing Algorithm 2. To this end, we make the followinguasption.

Assumption A.
Al. There exists a positive constaly > 0 such that
IVigr(@x) — Vige(2e)l| < Lillox — zkll, ¥ o5, 21, V k.

Moreover,h is convex (possible nonsmoothy; is a closed convex set.



A2. For allk, the stepsize;, is chosen large enough such that:
1. For allk, thex), subproblem is strongly convex with moduhys(px);
2. Forallk, pryi(pr) > 2L% andpy, > L.

A3. f(z) is lower bounded for alt € X.

Clearly, assumption A does not impose any restriction onitdratesgenerated by the algorith-
m. This is in contrast to the existing analysis of the nonexr&DMM algorithms, such as those
developed in [20, 26, 28].

Now we state the first main result of this paper. We briefly noenthat the key of the proof is to
use thereduction of the augmented LagrangisBmmeasure the progress of the algorithm.

Theorem 2.1 Assume that Assumption A is satisfied. Then the followingesfor Algorithm 2:

1. limy oo [|l2bT =21 = 0, V, k, deterministically for the EC rule and almost surely (a.s.)

for randomized rule.

2. Let({z}},z*,y*) denote any limit point of the sequengr} ™}, z**!, y**1} generated
by Algorlthm 2 Then the following statement is true (detarsncally for the EC rule and
a.s. for the randomized update rule)

0:ng(;c;;)—|—yz7 w}t:w*7 ](3217"'7K7 ¥ Eargg{éi}r(l h($)+z<yz7$2—$>

That is, any limit point of Algorithm 2 is a stationary soluti of problen(_2.4)

3. If X is a compact set, then Algorithm 2 converges to the set abstat solutions of
problem(2.4).

3 TheNonconvex Sharing Problem

Consider the following well-known sharing problem (seg, g7, Section 7.3] for motivation)
K K
min  f(x1, -+ ,2K) = ng(:ck) + ¢ <Z Ak:ck> , 8. € X, k=1,--- | K (3.9
k=1 k=1

wherez;, € R+ is the variable associated with a given agenand A, € RM*Nx is some data
matrix. The variables are coupled through the functioh

To facilitate distributed computation, this problem careljeivalently formulated as:

ng :ck —‘r( ZAkmk—m, rr € X, k=1,--- | K. (310)
k=1
We make the followmg assumptions.

Assumption B.
B1. There exists a positive constdnt> 0 such that
[VE(z) — VE(2)|| < Ll|lz — z]|, YV, 2.
Moreover, X,'s are closed convex sets; eadh is full column rankpmm(A Ag) >
B2. The stepsize is chosen large enough such that:
(1) eachxy subproblem as well as the subproblem is strongly convex, with modulus
{7k(p) Y, andv(p), respectively.
(2) py(p) > 2L? and thap > L.

B3. f(x1, -+ ,xk) IS lower bounded for alt, € X, and allk.
B4. gi is eithér sSmooth nonconvex or convex (possibly nonsmoéitn the former case, there

existsLy > 0 such that|gr(zx) — gk (z) || < Lillzk — 2k, V @k, 2k € Xk.

Again one can show that when Assumption B is satisfied, thematfiexible ADMM similar to
Algorithm 2 will converge to the set of stationary solutiocofsproblem (3.10). To conclude, we
provide a remark on generalizing the flexible ADMM to inclygteximal steps.

Remark 3.1 In certain applications it is beneficial to have cheap upddte the subproblems. The
flexible ADMM can be further generalized to the case wheretigroblems are not solved exactly
—only a single proximal update is sufficient for eaghsubproblem.
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