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Abstract

We consider the problem of multi-objective maximization of monotone submod-
ular functions subject to cardinality constraint, one formulation of which is
max|A|=k mini∈{1,...,m} fi(A). Krause et al. (2008) showed that when the number of func-
tions m grows as the cardinality k i.e., m = Ω(k), the problem is inapproximable (unless
P = NP ). For the more general case of matroid constraint, Chekuri et al. (2010) gave a
randomized (1− 1/e)− ε approximation for constant m. The runtime (number of queries
to function oracle) scales exponentially as nm/ε

3

. We give the first polynomial time asymp-
totically constant factor approximations for m = o( k

log3 k
): (i) A randomized (1 − 1/e)

algorithm based on Chekuri et al. (2010). (ii) A faster and more practical Õ(n/δ3) time,
randomized (1 − 1/e)2 − δ approximation based on Multiplicative-Weight-Updates. Fi-
nally, we characterize the variation in optimal solution value as a function of the cardinality
k, leading to a derandomized approximation for constant m.

1 Introduction

Optimization problems with submodular objective functions have received a lot of interest due to several
applications where instances of these problems arise naturally. The problem of maximizing a monotone
submodular function 1 on ground set N , subject to a cardinality constraint, written as:

P0 := max
A⊆N,|A|≤k

f(A),

has been very well studied. Nemhauser et al.[14, 13] showed that the greedy algorithm gives a guarantee
of (1 − 1/e) and this is best possible in the value-oracle model. Later, Feige [6] showed this is also the
best possible approximation under standard complexity assumptions. Further, Badanidiyuru and Vondrák [2]
found a faster algorithm for P0 that improved the quadratic query complexity of the classical greedy algorithm
to nearly linear complexity, by trading off on the approximation guarantee. For the more general problem
maxA∈I f(A), where I is the collection of independent sets of a matroid; Calinescu et al. [3], obtained a
(1−1/e) approximation by (approximately) optimizing the multilinear extension of the submodular function,
followed by suitable rounding. Based on this framework, tremendous progress has been made over the last
decade for a variety of different settings [3, 19, 7, 20, 21, 4, 5].

Krause et.al. [10] argue that in several practical applications where instances of P0 arise naturally, it is often
the case that the objective is uncertain. In such cases one often wishes to select a set robust against the
worst-case objective function. This motivated them to consider the following:

P1 = max
A⊆N,|A|≤k

min
i∈{1,2,...,m}

fi(A),

where fi(.) is monotone submodular for every i. They show that the problem is inapproximable unless
P = NP . This is only whenm = Ω(k). However, there are several applications [9, 11, 10] of the formulation
where the number of functionsm is a design choice. Further, Chekuri et.al [4] gave a randomized (1−1/e)−ε
approximation for the more general case of matroid constraint, when m is constant. The runtime scales as
nm/ε

3

. Incidentally, they consider a different but equivalent formulation of the problem that stems from an
influential paper by Papadimitriou and Yannakakis [17], on multi-objective optimization of linear functions
(more on this in Section 2). Recently [15] showed that the greedy algorithm can be generalized to achieve

1 A set function f : 2N → R on the ground set N is submodular if: f(A+a)−f(A) ≤ f(B+a)−f(B) for all B ⊆
A ⊆ N and a ∈ N \A. The function is monotone if f(B) ≤ f(A) for all B ⊆ A.
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a deterministic 1 − 1/e − ε approximation for the special case of bi-objective maximization subject to a
cardinality constraint. This still leaves open the question of whether the problem is approximable when
m = o(k).

Our main contributions: We focus on the cardinality constraint case and show that the problem is approx-
imable up to a factor of (1−1/e− ε)(1− m

kε3 ) which for k →∞, m = o
(

k
log3 k

)
and ε = min{ 1

8 lnm ,
4
√

m
k }

tends to 1 − 1/e. This implies a very sharp threshold, since the problem cannot be approximated to within
any polynomial factor for m = Ω(k) [10]. However, the runtime is O(n5).

Further, using MWU we give a fast O( nδ3 logm log n
δ ) time (1− 1/e)2(1−m/kε3)− ε− δ approximation.

Under the same asymptotic conditions as above, the guarantee simplifies to (1− 1/e)2 − δ.

Finally, we give an upper bound on the increase in optimal solution value as a function of cardinality k and
essentially resolve a conjecture posed in [16], leading to a deterministic 1−1/e−ε approximation for constant
m (all other results are randomized).

2 Preliminaries

We introduce some notation followed by a brief overview of the algorithm in Chekuri et.al. [4], simplified to
the case of cardinality constraint. Recall, we use N to denote the ground set of n elements and monotone
submodular functions fi(.), i ∈ {1, . . . ,m}. For real vectors x, we use the short hand |x| to denote the `1
norm. The marginal increase in function value when set X is combined with set A is f(X|A) = f(A∪X)−
f(A). Next, the multilinear extension of a set function f(.) over x = {x1, . . . , xn} ∈ [0, 1]n is defined as,
F (x) =

∑
S⊆N f(S)

∏
i∈S xi

∏
j 6∈S(1 − xj). While evaluating the exact value of this function is naturally

hard, estimates from sampling oracles suffice for usage in optimization algorithms [2, 4, 3].

In another variant of the problem P1, which was introduced in [4], we are given a set of m positive values Vi
and we wish to find a set S∗ of size k, such that fi(S∗) ≥ Vi, ∀i ∈ {1, . . . ,m} or certify that no S∗ exists.
We call this variant P2. Since P2 is clearly computationally hard, one must consider approximations instead.
This involves efficiently finding a set S such that fi(S) ≥ αVi for all i and some factor α, or certifying
that there is no set S∗ such that fi(S∗) ≥ Vi, ∀i. The two formulations P1 and P2 are equivalent. Simply
observe that w.l.o.g. we can assume Vi = 1,∀i (since we can consider functions fi(.)/Vi instead). Finally,
for cardinality k, we denote an optimal solution to P1/P2 using S∗k and letOPTk denote the optimal solution
value for formulation P1.

We now review the algorithm by Chekuri et.al [4] which is based on P2. It has three stages,

Stage 1: Intuitively, the purpose of this stage is to guess a small initial set of size at most m/ε3. Call this set
S1, then the desired property of S1 is that for every element e ∈ N\S1, fi(e|S1) < ε3Vi for every i. This is
necessary for the rounding in Stage 3 to work. In particular, due to a matroid constraint in [4], it is not clear if
one can do better that trying all initial sets of size ≤ m/ε3. This stage is thus the bottleneck that contributes
the nm/ε

3

term to runtime.

Stage 2: Given an initial set S1, this stage works with ground set N\S1, cardinality parameter k1 = k− |S1|
and outputs a point x with |x| = k1 and Fi(x|S) ≥ (1− 1/e)fi(S

∗
k |S1). It has runtime O(n5) [2, 8, 3].

Stage 3: Given that S1 was suitably chosen i.e. for every e ∈ N\S1, fi(e|S1) < ε3Vi for every i, and
ε < 1/8γ lnm. This stage decomposes the fractional solution x into convex combination of sets of size k1.
Then rounds it to a set S2 of size k1 such that w.p. at least 1/mγ−1, fi(S2|S1) ≥ (1− ε)Fi(x|S1) for every
i. The result is easily converted to one w.h.p. by standard repetition. The final output is S1 ∪ S2.

3 Main Results

3.1 A (1− 1/e) algorithm for m = o
(

k
log3 k

)
We replace the enumeration in Stage 1 with a single starting set, obtained by scanning once over the ground
set.

New Stage 1: Start with S1 = ∅ and pass over all elements once, updating S1 whenever an element is chosen
to be added. For each element e, add it to S1 if for some i, fi(e|S1) ≥ ε3Vi. We mention without proof
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that the process adds at most m/ε3 elements (at most 1/ε3 for any one function) and when the subroutine
terminates, for every remaining element e ∈ N\S1, fi(e|S1) < ε3Vi,∀i.
The idea here is that in case of cardinality constraint we can choose any small starting set such that the
remaining elements have marginal values ≤ ε3Vi, whereas for a matroid constraint an arbitrary set satisfying
the property doesn’t suffice. We also need to make a minor modification to Stage 2 but we omit that detail
here. The rounding process in Stage 3 remains unchanged.
Theorem 1. For ε = min{ 1

8 lnm ,
4
√

m
k }, with constant probability the algorithm outputs a (1 − 1/e)(1 −

ε)(1−m/kε3) approximate solution. Asymptotically, 1− 1/e approximate for m = o
(

k
log3 k

)
.

Owing to the limitation posed by theO(n5) runtime of Stage 2, we next introduce a simple and fast algorithm.
The speedup however comes at the cost of an extra factor of (1− 1/e) in the approximation guarantee.

3.2 A fast (1− 1/e)2 − ε algorithm for m = o
(

k
log3 k

)
Let S1 be the output of the New Stage 1 discussed above. We replace Stage 2 with a fast MWU based
subroutine that runs for T = O( lnm

δ2 ) rounds (for suitably chosen δ) and solves an instance of P0 in each
round. The currently fastest algorithm for P0, in [12], has runtime O(n log 1/δ) and an expected guarantee
of (1− 1/e− δ). However, the slightly slower, but still nearly linear time O(nδ log n

δ ) thresholding algorithm
in [2], has the usual deterministic guarantee. Either of these would lead to a runtime of T × Õ(n/δ) = Õ( nδ3 )

which is a vast improvement over O(n5).

Consider some algorithm A for P0 with guarantee α, and let A(f, k) denote its output given monotone
submodular function f and cardinality constraint k as input. Note that α can be as large as 1− 1/e, and also
k1 = k − |S1| as before.

Stage 2: MWU

1: Initialize T = 2 lnm
δ2 , λ1i = 1/m, f̃i(.) = fi(.|S1)

Vi−fi(S1)

2: while 1 ≤ t ≤ T do
3: gt(.) =

∑m
i=1 λ

t
if̃i(.)

4: Xt = A(g, k1)

5: mt
i = f̃i(X

t)− α
6: λt+1

i = λti(1− δmt
i)

7: t = t+ 1
8: Output: x2 = 1

T

∑T
t=1X

t

Observe that the “experts" in this instance of MWU are the normalized functions f̃i(.). In the Plotkin-
Shmoys-Tardos (PST) framework, each round involves solving an LP with a convex combination of linear
constraints (the experts). Here we solve an instance of P0 for the monotone submodular function given by a
convex combination of the experts f̃i. Further in the PST framework, the convex combination of solutions
obtained over all rounds is approximately feasible due to linearity. Here the non-linearity leads to a loss in
guarantee. The point x2 is rounded to a set S2 in Stage 3 (which remains unchanged). The final output is
S1 ∪ S2. We summarize the result on approximation guarantee in the following lemmas.

Lemma 2.
∑

t f̃i(X
t)

T ≥ α(1−m/kε3)− δ.

Lemma 3. F̃i(x2) ≥ (1− 1/e)
∑T

t=1 f̃i(X
t)

T

Theorem 4. For ε = min{ 1
8 lnm ,

4
√

m
k }, the algorithm makes O( nδ3 logm log n

δ ) queries, and with constant
probability, outputs a feasible (1−1/e)2(1− m

kε3 )(1−ε)−δ approximate set. Asymptotically, (1−1/e)2−δ
approximate for m = o

(
k

log3 k

)
.

Proof. (Sketch) Using the algorithm in [2] as A, we have α = (1− 1/e)(1− δ′) with runtime O( nδ′ log n
δ′ ).

Recall that S2 is the set obtained by rounding x2. It follows from Lemmas 2 and 3 and the definition of f̃i,
that fi(S2|S1) ≥ [(1−1/e)2(1−m/kε3)(1−ε)−δ](Vi−fi(S1)),∀i. Hence fi(S1∪S2) ≥ [(1−1/e)2(1−
m/kε3)(1− ε)−δ]Vi,∀i as claimed. Stage 2 takes timeO((nδ log n

δ )× logm
δ2 ) = O( nδ3 logm log n

δ ). Finally,
it can be shown that this is indeed the dominant term in the overall runtime.
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3.3 Variation in optimal solution value as k increases

Consider the problem P0 with cardinality constraint k. Given an optimal solution, S∗k with value OPTk
for the problem, it is known that for arbitrary k′ ≤ k, there is a subset Sk′ ⊆ S∗k of size k′, such that
f(Sk′) ≥ k′

k OPTk.

This raises a natural question: Can we generalize this bound on variation of optimal solution value with
varying k, for multi-objective maximization? A priori, this isn’t obvious even for modular functions. We
claim the following,

Theorem 5. Given that there exists a set S∗k such that fi(S∗k) ≥ Vi,∀i and ε < 1
8 lnm . For every k′ ∈

[m/ε3, k], there exists Sk′ ⊆ S∗k of size k′, such that,

fi(Sk′) ≥ (1− ε)
(k′ −m/ε3
k −m/ε3

)
Vi,∀i.

Observe that for k′ � m/ε3, we have fi(Sk′) ' (1 − ε)k
′

k Vi,∀i. Previously, a stronger result was known
from [16] but only for m = 2. It was also conjectured in [16] that a similar result could be shown for
larger m, and that such a bound would lead to a deterministic (1 − 1/e) − ε approximation for the multi-
objective maximization problem, whenm is constant. Our result indeed suffices to obtain such a deterministic
algorithm with runtime scaling as nm/ε

4

. Note that all previous algorithms, including the ones presented here
are randomized.

Theorem 6. For k′ = m
ε4 , choosing k′-tuples greedily w.r.t. h(.) = mini fi(.) yields approximation guarantee

(1− 1/e)(1− 2ε) while making nm/ε
4

queries.

4 Conclusion and Open Problems

In summary, we consider the problem of multi-objective maximization of monotone submodular functions
subject to a cardinality constraint, when m = o

(
k

log3 k

)
. No polynomial time constant factor approximations

or strong inapproximability results were known for the problem, though it was known that the problem is
inapproximable when m = Ω(k) and admitted a nearly 1 − 1/e approximation for constant m. We showed
that when m = o

(
k

log3 k

)
, one can indeed approach the best possible guarantee of 1 − 1/e and further also

gave a nearly-linear time (1−1/e)2 approximation for the same. Finally, we also established a natural bound
on how the optimal solution value increases with increasing cardinality k of the set.

A natural question of course is whether one can achieve approximations right up tom = o(k). Additionally, it
also of interest to ask if there are fast algorithms with guarantee closer to 1−1/e, in contrast to the guarantee
of (1− 1/e)2 shown here. Further, most of the ideas, and all results here, are for the case of uniform matroid
(cardinality constraint). It is unclear if similar results can also be shown for a general matroid constraint.
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