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Abstract

In this paper, we design and analyze a new zeroth-order online algorithm, the zeroth-order
online alternating direction method of multipliers (ZOO-ADMM). We prove that ZOO-
ADMM has a convergence rate of O(

√
m/
√
T ), where m is the number of optimization

variables, and T is the number of iterations. Compared to the first-order gradient-based
online algorithm, ZOO-ADMM requires

√
m times more iterations, however, it enjoys dual

advantages of being gradient-free operation and employing the ADMM to accommodate
complex structured regularizers.

1 Introduction

Online convex optimization (OCO) performs sequential inference in a data-driven adaptive fashion, and has
found a wide range of applications [1, 2, 3]. Several OCO algorithms have been proposed for regularized
optimization, e.g., composite mirror descent, namely, proximal stochastic gradient descent [4], regularized dual
averaging [5], and adaptive gradient descent [6]. However, the complexity of the aforementioned algorithms is
dominated by the computation of the proximal operation with respect to the regularizers [7]. An alternative is
to use online alternating direction method of multipliers (O-ADMM) [8, 9, 10]. Different from the algorithms
in [4, 5, 6], the ADMM framework offers the possibility of splitting the optimization problem into a sequence
of easily-solved subproblems. It was shown in [8, 9, 10] that the online variant of ADMM has convergence
rate of O(1/

√
T ) for convex loss functions and O(log T/T ) for strongly convex loss functions, where T is

the number of iterations.

One limitation of existing O-ADMM algorithms is the need to compute and repeatedly evaluate the gradient
of the loss function over the iterations. In many practical scenarios, an explicit expression for the gradient is
difficult to obtain. Examples are bandit optimization [11], simulation-based optimization problems [12, 13],
and adversarial black-box machine learning models [14]. Moreover, in some high dimensional settings,
acquiring the gradient information may be difficult, e.g., involving matrix inversion [15]. This motivates the
development of gradient-free (zeroth-order) optimization algorithms.

Zeroth-order optimization approximates the full gradient via a randomized gradient estimate [11, 16, 17, 18,
19, 20]. For example, in [11, 19], zeroth-order algorithms were developed for bandit convex optimization
with multi-point bandit feedback. In [16], a zeroth-order gradient descent algorithm was proposed that has
O(m/

√
T ) convergence rate, where m is the number of variables in the objective function. This slowdown in

convergence rate was improved to O(
√
m/
√
T ) in [17]. Its optimality was further proved in [18] under the

framework of mirror descent algorithms.

Contributions: Different from the aforementioned zeroth-order algorithms, we design a new zeroth-order
online ADMM (called ZOO-ADMM) algorithm, which enjoys advantages of gradient-free computation as
well as ADMM. We prove that ZOO-ADMM yields a O(

√
m/
√
T ) convergence rate for smooth+nonsmooth

composite objective functions, which is at least as fast as existing zeroth-order algorithms in [17, 18, 19].
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2 Preliminaries and Problem Formulation

We consider the following regularized loss minimization problem over a time horizon of length T :

minimize
x∈X ,y∈Y

1

T

T∑
t=1

f(x;wt) + φ(y) subject to Ax+By = c, (1)

where x ∈ Rm and y ∈ Rd are optimization variables, X and Y are closed convex sets, f(·;wt) is a
convex and smooth cost/loss function parameterized by wt at time t, φ is a convex regularization function
(possibly nonsmooth), and A ∈ Rl×m, B ∈ Rl×d, and c ∈ Rl are constraint coefficients associated with a
system of l linear constraints. In problem (1), the use of time-varying cost functions {f(x;wt)}Tt=1 captures
environmental uncertainties that may exist in the online setting [1, 21]. One interpretation of {f(x;wt)}Tt=1
is the empirical approximation to the stochastic objective function Ew∼P [f(x;w)]. Here P is an empirical
distribution with density

∑
t δ(w,wt), where {wt}Tt=1 is a set of i.i.d. samples, and δ(·,wt) is the Dirac delta

function at wt. We also note that when Y = X , l = m, A = Im, B = −Im, c = 0m, the variable y and the
linear constraint in (1) can be eliminated, leading to a standard OCO formulation. Here Im denotes the m×m
identity matrix, and 0m is the m× 1 vector of all zeros.

To solve (1), a widely-used algorithm was developed by [8], which combines online proximal gradient descent
and ADMM in the following form:

xt+1 = argmin
x∈X

{
gTt x− λTt (Ax+Byt − c) +

ρ

2
‖Ax+Byt − c‖22 +

1

2ηt
‖x− xt‖2Gt

}
, (2)

yt+1 = argmin
y∈Y

{
φ(y)− λTt (Axt+1 +By − c) +

ρ

2
‖Axt+1 +By − c‖22

}
, (3)

λt+1 = λt − ρ(Axt+1 +Byt+1 − c), (4)
where t is the iteration number (possibly the same as the time step), gt is the gradient of the cost function
f(x;wt) at xt, namely, gt = ∇xf(x;wt)|x=xt

, λt is the Lagrangian multiplier (also known as the dual
variable), ρ is a positive weight to penalize the augmented term associated with the equality constraint
of (1), ‖ · ‖2 denotes the `2 norm, ηt is a non-increasing sequence of positive step sizes, and ‖x− xt‖2Gt

=

(x− xt)
TGt(x− xt) is a Bregman divergence generated by the strongly convex function (1/2)xTGtx with

a known symmetric positive definite coefficient matrix Gt.

To avoid explicit gradient calculations in (2), we adopt a randomized gradient estimator to estimate the gradient
of a smooth cost function [16, 17, 18, 19]. The gradient estimate of f(w;wt) is given by

ĝt =
f(xt + βtzt;wt)− f(xt;wt)

βt
zt, (5)

where zt ∈ Rm is a random vector drawn independently at each t from a distribution z ∼ µ with Eµ[zzT ] = I,
and {βt} is a non-increasing sequence of small positive smoothing constants. The rationale behind the
estimator (5) is that ĝt becomes an unbiased estimator of gt when the smoothing parameter βt approaches
zero [18].

This zeroth-order extension of O-ADMM (ZOO-ADMM) involves a modification of step (2) by replacing gt
with ĝt:

xt+1 = argmin
x∈X

{
ĝTt x− λTt (Ax+Byt − c) +

ρ

2
‖Ax+Byt − c‖22 +

1

2ηt
‖x− xt‖2Gt

}
. (6)

In (6), we can specify the matrix Gt in such a way as to cancel the term ‖Ax‖22. This technique has been used
in the linearized ADMM algorithms [7, 22] to avoid matrix inversions. Defining Gt = αI− ρηtATA, the
update rule (6) simplifies to a projection operator

xt+1 = argmin
x∈X

{
‖x− ω‖22

}
; ω :=

[ηt
α

(
−gt +AT (λt − ρAxt − ρByt + ρc)

)
+ xt

]
, (7)

where α > 0 is a parameter such that Gt � I, and X � Y means X−Y is positive semidefinite.

To evaluate the convergence behavior of ZOO-ADMM, we will derive its expected average regret [1]

RegretT (xt,yt) :=E

[
1

T

T∑
t=1

(f(xt;wt) + φ(yt))−
1

T

T∑
t=1

(f(x∗;wt) + φ(y∗))

]
, (8)

where (x∗,y∗) denotes the best batch offline solution. Note that the alternating structure in ZOO-ADMM
requires a different regret analysis compared to existing zeroth-order algorithms [16, 17, 18].
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Algorithm 1 ZOO-ADMM for solving problem (1)
1: Input: x1 ∈ X , y1 ∈ Y , λ1 = 0, ρ > 0, step sizes {ηt}, smoothing constants {βt}, distribution µ, and
α ≥ ρηtλmax(A

TA)+1 so that Gt � I, where λmax(·) denotes the maximum eigenvalue of a symmetric
matrix

2: for t = 1, 2, . . . , T do
3: sample zt ∼ µ to generate ĝt using (5)
4: update xt+1 via (7) under ĝt and (xt,yt,λt)
5: update yt+1 via (3) under (xt+1,λt)
6: update λt+1 via (4) under (xt+1,yt+1,λt)
7: if B is invertible then
8: compute y′t+1 := B−1(c−Axt+1)
9: else

10: compute x′t+1 := A−1(c−Byt+1)
11: end if
12: end for
13: output: {xt,y′t} or {x′t,yt}.

3 ZOO-ADMM and Convergence Analysis

Algorithm 1 summarizes the procedures of the proposed ZOO-ADMM for solving problem (1). We next
present the convergence analysis of ZOO-ADMM under the following assumptions:
• Assumption A: In problem (1), X and Y are bounded with finite diameter R, and at least one of A and B is
invertible.

• Assumption B: f(·;wt) is convex and Lipschitz continuous with
√
E[‖∇xf(x;wt)‖22] ≤ L1 for all t and

x ∈ X .

• Assumption C: f(·;wt) is Lg(wt)-smooth with Lg =
√

E[(Lg(wt)2)].

• Assumption D: φ is convex and L2-Lipschitz continuous with ‖∂φ(y)‖2 ≤ L2 for all y ∈ Y , where ∂φ(y)
denotes the subgradient of φ.

• Assumption E: In (5), given z ∼ µ, the quantity M(µ) :=
√

E[‖z‖62] is finite, and there is a function
s : N→ R+ satisfying E[‖〈a, z〉z‖22] ≤ s(m)‖a‖22 for all a ∈ Rm, where 〈·, ·〉 denotes the inner product of
two vectors.

We remark that Assumptions A-D are standard for stochastic gradient-based and ADMM-type methods
[1, 8, 21, 23]. Assumption E places moment constraints on the distribution µ that will allow us to derive
the necessary concentration bounds for our convergence analysis. If µ is uniform on the surface of the
Euclidean-ball of radius

√
m, we have M(µ) = m1.5 and s(m) = m. And if µ = N (0, Im×m), we have

M(µ) ≈ m1.5 and s(m) ≈ m [18]. For ease of representation, we restrict attention to the case that s(m) = m
in the rest of the paper.

Theorem 1 Suppose B is invertible in problem (1). For {xt,y′t} generated by ZOO-ADMM, the expected
average regret is bounded as

RegretT (xt,y
′
t) ≤

1

T

T∑
t=2

{
α

2ηt
− α

2ηt−1
− σ

2
, 0

}
R2 +

mL2
1

T

T∑
t=1

ηt +
M(µ)2L2

g

4T

T∑
t=1

ηtβ
2
t +

K

T
, (9)

where α is introduced in (7), R, L1, Lg, s(m) and M(µ) are defined in Assumptions A-E, and K denotes a
constant term that depends on α, R, η1, A, B, λ, ρ and L2. Suppose A is invertible in (1). For {x′t,yt}, the
regret RegretT (x

′
t,yt) obeys the same bounds as (9).

Proof: [24, Appendix A]. �

In Theorem 1, if the step size ηt and the smoothing parameter βt are chosen by ηt = C1

m
√
t

and βt = C2

M(µ)t for
some constant C1 > 0 and C2 > 0, then the regret bound (9) can simplify to

RegretT (xt,y
′
t,x
∗,y∗) ≤ αR2

2C1

√
m√
T

+ 2C1L
2
1

√
m√
T

+
5C1C

2
2L

2
g

12

1

T
+
K

T
. (10)
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It is clear from (10) that ZOO-ADMM converges at least as fast as O(
√
m/
√
T ), which is similar to the

convergence rate of O-ADMM found by [8] but involves an additional factor
√
m. Such a dimension-dependent

effect on the convergence rate has also been reported for other zeroth-order optimization algorithms [17, 18, 19],
leading to the same convergence rate as ours.
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Figure 1: Objective value of overlapping group Lasso versus
ZOO-ADMM iteration for m = 25 (left) and m = 100
(right).

For demonstration, we compare ZOO-ADMM
with the conventional O-ADMM algorithm
in [8] with the same parameters: x1 = 0,
y1 = 0, λ1 = 0, ρ = 10, ηt = 1/

√
mt,

βt = 1/(m1.5t), and α = ρηtλmax(A
TA)+1.

The distribution µ is chosen to be uniform on
the surface of the Euclidean-ball of radius

√
m.

We consider a simulated sparse classification
task [8], where an overlapping group Lasso reg-
ularization is imposed.

Similar to [8], we draw n = 512 random sam-
ples {ai} from N (0m, Im), and we generate
{ci} as ci = sign(aTi x

∗ + εi), where x∗ is
a given coefficient vector, εi ∈ N (0, 0.01I)
denotes sample noise, and sign(x) = 1 if
x ≥ 0 and 0 otherwise. Here {(ai, ci) : ai ∈
Rm, ci ∈ {−1, 1}}ni=1 gives a set of training
samples in which ai is the input feature vector
with dimension m = m̃2 for some m̃, and ci is
the target (output) variable. In (1), we design a
logistic regression classifier with loss function
ft(x) = log(1 + e−cta

T
t x), where x is the coefficients to be designed, and wt = (at, ct). To promote group

sparsity, we convert a coefficient vector x ∈ Rm into a m̃× m̃ matrix, denoted by X, and impose column-wise
and row-wise group sparsity via the regularizer φ(x) =

∑m̃
i=1 (‖Xi,·‖2 + ‖X·,i‖2).

Fig. 1 presents the convergence trajectory of ZOO-ADMM as a function of number of iterations for problem
dimension m ∈ {25, 100}. As we can see, the convergence speed of ZOO-ADMM is comparable to that of
O-ADMM when m is small. However, the convergence becomes much slower when a larger-scale problem
is considered. The dependency of the convergence rate of ZOO-ADMM on the dimension of optimization
variables is precisely characterized by Theorem 1.

4 Conclusion an Future Work

We proposed and analyzed a new zeroth-order online ADMM algorithm, ZOO-ADMM. We showed that
the regret bound of ZOO-ADMM suffers an additional dimension-dependent factor in convergence rate over
gradient-based online variants of ADMM, leading to O(

√
m/
√
T ) convergence rate, where m is the number

of optimization variables. In the future, we would like to analyze the converge of ZOO-ADMM with variance
reduction techniques, e.g., minibatch sampling. We also would like to relax the assumptions on smoothness
and convexity of the cost function in ZOO-ADMM.
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