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Abstract

In most applications of gradient-based optimization to complex problems the choice of step
size is based on trial-and-error and other heuristics. A case when it is easy to choose the
step sizes is when the function has a Lipschitz continuous gradient. Many functions of
interest do not appear at first sight to have this property, but often it can be established with
the right choice of underlying metric. We find a simple recipe for choosing step sizes when
a function has a Lipschitz gradient with respect to any Finsler structure that verifies an ex-
ponential bound. When relevant problem structure can be encoded in the metric to yield a
significantly tighter bound while keeping optimization tractable, this may lead to rigorous
and efficient algorithms. Our general result can be applied to yield an optimization al-
gorithm with non-asymptotic performance guarantees for batch optimization of multilayer
neural networks.

1 Introduction

The past decade has witnessed significant advances in the application of neural networks to computer vision
problems, such as representation learning [10, 8], image classification [4, 6], scene labeling [2], and mul-
timodal processing [11]. All of these works achieve their goals through gradient based optimization, using
carefully tuned heuristics to determine the step size taken at each iteration. Using a more rigorous approach
to gradient descent in these problems can improve the practice of machine learning, for instance by avoiding
the time consuming process of manually tuning algorithms.

Here we consider a generalization of Euclidean gradient descent where instead of requiring a global bound
on the norm of the second derivative of the function of interest, we require that the second derivative be
bounded with respect to a Finsler structure. We find that if the Finsler structure obeys certain exponential
bounds, then exact solution of the corresponding line search problems yields a convergence guarantee. If
the Finsler structures themselves are not too complicated, these sub-problems can be easily solved and the
procedure becomes practical. When we apply this to machine learning classification tasks, the result is a
full-batch gradient descent method for minimizing the empirical error. Our main result says the function is
guaranteed to decrease on every iteration, and also provides a bound on the number of iterations needed to
reach a point with an arbitrarily small gradient, measured with respect to the local norm determined by the
Finsler structure. We then show that the algorithm, and its associated performance guarantee, is applicable
to multilayer neural networks, by constructing a Finsler structure which reflects the hierarchical structure
of the network. Numerical experiments on standard data sets suggest the resulting step sizes are not too
conservative. All proofs may be found in the full version of the paper [3].

2 Finsler Gradient Descent

Let W = Rn be the parameter space. We begin by defining Finsler duality structures.

Definition 2.1. Let ‖·‖w be an assignment of a norm on Rn to each point of W . The notation ‖u‖w refers to
the norm of the vector u at the parameterw. We say that ‖·‖w is a Finsler structure if the map (w, u) 7→ ‖u‖w
is continuous on W × Rn.

The Finsler structure induces a norm on the dual L(Rn,R) at each point w; if ` ∈ L(Rn,R) then

‖`‖w= sup
‖u‖w=1

`(u). (1)
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Definition 2.2. A duality structure is an assignment of a duality map to each w ∈ W . The notation ρ(`)w
refers to the value of the duality map at w applied to the functional `. That is, a duality structure is a function
ρ : W × L(Rn,R) → Rn satisfying, for all (w, `) ∈ W × L(Rn,R), the two properties ‖ρ(`)w‖w= 1 and
`(ρ(`)w) = ‖`‖w.

We introduce a growth condition on the Finsler structure.
Assumption 2.3. There is an η ≥ 0 so that for all (w, `) ∈ W × L(Rn,R) and λ ∈ R, if u = ρ(`)w, then
‖u‖w+λu≤ ‖u‖wexp(η|λ|).

Let f : W → R be the function to be optimized. We introduce the notation ∆w to refer to ρ( ∂f∂w (w))w, that
is, the duality map at w applied to the linear functional ∂f∂w (w).
Assumption 2.4. The function f is twice differentiable, bounded from below with f ≥ f∗, and there is an
L ≥ 0 such that, for all w ∈W and λ ≥ 0, | ∂

2f
∂w2 (w − λ∆w)[∆w,∆w]| ≤ L‖∆w‖2w−λ∆w.

We now describe the algorithm and convergence guarantee. We obtain convergence of the gradients in terms
of the local-norms ‖·‖w(n); this is a common criteria for gradient convergence in the manifold setting, and
can be compared with Theorem 4 of [1] or, in the stochastic case, Theorem 2 of [12].
Theorem 2.5. Let Assumptions 2.3 and 2.4 hold. Starting from w(0) ∈W , define w(n) as

w(n+ 1) = w(n)− ε(n)∆(n) (2)

where ∆(n) = ρ
(
∂f
∂w (w(n))

)
w(n)

and

ε(n) = arg min
ε

[
−ε‖ ∂f∂w (w(n))‖w(n)+L

∫ ε

0

∫ u

0

‖∆(n)‖2w(n)−λ∆(n)dλdu

]
. (3)

Then ‖ ∂f∂w (w(n))‖w(n)→ 0. Furthermore, the following non-asymptotic performance guarantee holds.
Defining the function

g(x, η, L) =

{
1
2η

[
log(1 + 2η

L x)(x+ L
2η )− x

]
if η > 0,

x2

2L if η = 0,

then min0≤i≤n−1‖ ∂f∂w (w(i))‖w(i)≤ ε when n ≥ 1
g(ε,η,L) (f(w0)− f∗) .

3 Application to Neural Networks with Multiple Layers

In any application of the methodology there are three tasks. First, one must define the Finsler and duality
structures for the space, and check that the exponential bounds hold. Secondly, one must verify the Lipschitz-
like condition on the gradient. This determines the search directions. Finally, one must devise a solution to
the resulting optimization problems, in order to obtain the step sizes.

Let the input to a neural network be of dimensionality n0, and let n1, . . . , nK specify the number of nodes
in each of K − 1 non-input layers. For k = 1, . . . ,K define Wk = Rnk×nk−1 to be the space of nk × nk−1

matrices; a matrix inWk specifies weights from nodes in layer k−1 to nodes in layer k. The overall parameter
space is then W = W1 × . . .×WK−1. Let us denote the 2-norm by ‖·‖2. For an input y ∈ Rn0 , the output
of the network is xK(w; y) ∈ RnK where x0(w; y) = y and for 1 ≤ l ≤ K,

xki (w; y) = σ

(
nk−1∑
j=1

wk,i,jx
k−1
j (w; y)

)
, i = 1, 2, . . . , nk.

Given m input/output pairs (y1, t1), (y2, t2), . . . , (ym, tm), where (yn, tn) ∈ Rn0 × RnK , we seek to mini-
mize the empirical error

f(w) =
1

m

m∑
i=1

‖xK(w; yi)− ti‖22. (4)

Our assumptions on the nonlinearity σ, the inputs yi, and the targets ti, are as follows:
Assumption 3.1. ‖σ‖∞≤ 1, ‖σ′‖∞< ∞,‖σ′′‖∞< ∞ (Nonlinearity bounds) and for i = 1, 2, . . . ,m,
‖yi‖∞≤ 1 and ‖ti‖∞≤ 1 (Input/target bounds).

We define the Finsler structure on W :
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1. Each space Rni has the norm ‖·‖∞.

2. The spaces W1, . . . ,WK have the norm induced by ‖·‖∞, which is the maximum-absolute-row-sum

norm: for an r × c matrix, ‖m‖∞= max1≤i≤r
c∑
j=1

|mi,j |.

3. The Finsler structure is then defined as

‖(δw1, . . . , δwK)‖w= p1(w)‖δw1‖∞+ . . .+ pK(w)‖δwK‖∞ (5)

where the functions pi are defined as follows. Let r0 = 1 and for n > 0 define rn(z1, . . . , zn) =
‖σ′‖n∞

∏n
i=1 zi. Then define qn recursively, with q0 = 0, q1(z1) = ‖σ′′‖∞z2

1 , and for n > 1,

qn(z1, . . . , zn) = ‖σ′′‖∞z2
n‖σ′‖2(n−1)

∞
∏n−1
i=1 z

2
i + ‖σ′‖∞znqn−1(z1, . . . , zn−1)

Define s0, . . . , sK−1 as

si(z1, . . . , zi) = nK‖σ′‖2∞r2
i (z1, . . . , zi) + 2nK‖σ′‖2∞qi(z1, . . . , zi) + 2nK‖σ′′‖∞ri(z1, . . . , zi)

Finally, the p1, . . . , pK are pi(w) =
√
sK−i(‖wi+1‖∞, . . . , ‖wK‖∞) + 1. (6)

For example, in a network with one hidden layer, the two polynomials p1, p2 are

p1(w) =
√

(n2‖σ′‖4∞+2n2‖σ′‖2∞‖σ′′‖∞)‖w2‖2∞+2n2‖σ′‖∞‖σ′′‖∞‖w2‖∞+1 (7)

p2(w) =
√
n2(‖σ′‖2∞+2‖σ′′‖∞) + 1. (8)

To obtain the duality structure, first we derive a duality map for matrices with the norm ‖·‖∞, and then use a
standard construction for product spaces. The first part is summarized in the following.
Proposition 3.2. Let ` ∈ L(Rr×c,R) be defined on the space of matrices with the norm ‖·‖∞. Then

‖`‖∞=
∑r
i=1 max1≤j≤c|`i,j | (9)

and one duality map is ρ∞, which sends ` to a matrix that ’picks out’ a maximum in each row:

ρ(`)∞ = m where mi,j =

{
sgn(`i,j) if j = arg maxk|wi,k|,
0 otherwise.

(10)

In the next result we construct a duality map for a product space from duality maps on the components.
Proposition 3.3. If X1, . . . , Xn are normed spaces, carrying duality maps ρX1

, . . . , ρXn
respectively, and

the product Z = X1× . . .×Xn has norm ‖(x1, . . . , xn)‖Z= p1‖x1‖X1
+ . . .+pn‖xn‖Xn

, for some positive

coefficients p1, . . . , pn, then the dual norm for Z is ‖(`1, . . . , `n)‖Z = max
{

1
p1
‖`1‖X1

, . . . , 1
pn
‖`n‖Xn

}
and a duality map for Z is given by ρ((`1, . . . , `n))Z =

(
0, . . . , 1

pi∗
ρ(`i∗)Xi∗ , . . . , 0

)
where i∗ =

arg maxi

{
1
pi
‖`i‖Xi

}
.

Based on this, we define the Finsler duality structure on W :

1. Each space W1, . . . ,WK has the duality map ρ(·)∞, defined according to (10).

2. The duality map at each point w is defined according to Proposition 3.3:

ρ((`1, . . . , `K))w =
(

0, . . . , 1
pi∗ (w)ρ(`i∗)∞, . . . , 0

)
where i∗ = arg max

i

{
1

pi(w)‖`i‖∞
}

(11)

We can now set up the line search problems at each step and determine their solution. Let
w ∈ W and let ∆w = ρ( ∂f∂w (w))w. Set i∗ = arg maxi

{
1

pi(w)‖
∂f
∂wi

(w)‖∞
}

. Then

arg minε

[
−ε‖ ∂f∂w (w)‖w+

∫ ε
0

∫ u
0
‖∆w‖2w−λ∆wdλdu

]
= 1

pi∗ (w)‖
∂f
∂wi∗

(w)‖∞.

We now arrive at the convergence result for batch training of multilayer networks:
Proposition 3.4. Let f be defined as in (4), let Assumption 3.1 hold, and endow W with the Finsler structure
(5) and duality structure (11). Then Assumption 2.3 is satisfied with η = 0, Assumption 2.4 is satisfied with
L = 1, and the sequence w(n) defined by Eqn. 2 is guaranteed to satisfy the conclusion of Theorem 2.5.In
particular, min0≤i≤n−1‖ ∂f∂w (w(i))‖w(i)≤ ε when n ≥ 2L

ε2 f(w0).
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Figure 1: A comparison of Finsler gradient descent with normal Euclidean gradient descent with constant
step sizes. The curves indicate the empirical error (Eqn. 4).

4 Numerical Experiment

We considered minimization of the empirical error in the MNIST [7], SVHN [9], and CIFAR-10 [5] classi-
fication tasks. See [3] for architecture and initialization details. In all cases the objective f was the average
squared error over the first 10,000 training examples.

Algorithm 1: Finsler gradient descent for a network with one hidden layer
for n = 0, 1, . . . do

Compute ∂f
∂w1

(w(n)), ∂f
∂w2

(w(n)) via back-propagation.

Compute 1
p1(w(n))

‖ ∂f
∂w1

(w(n))‖∞ and 1
p2(w(n))

‖ ∂f
∂w2

(w(n))‖∞ via eqns. (7, 8 , 9).

Compute the matrices ρ( ∂f
∂w1

(w(n)))∞ and ρ( ∂f
∂w2

(w(n)))∞ via equation (10).

if 1
p2(w(n))

‖ ∂f
∂w2

(w(n))‖∞> 1
p1(w(n))

‖ ∂f
∂w1

(w(n))‖∞ then

w(n+ 1) =
(
w1(n), w2(n)− 1

p2(w(n))
‖ ∂f
∂w2

(w(n))‖∞ρ( ∂f
∂w2

(w(n)))∞
)

else
w(n+ 1) =

(
w1(n)− 1

p1(w(n))
‖ ∂f
∂w1

(w(n))‖∞ρ( ∂f
∂w1

(w(n)))∞, w2(n)
)

end
end

We compared Finsler gradient descent (Algorithm 1) with vanilla Euclidean gradient descent (GD). For each
of the three problems we ran four algorithms: GD with a constant step size of ε = 0.1, 0.01, and 0.001, and
the Finsler gradient descent. The results are shown in Figure 1. In all cases we see that the step size has a big
effect on the behavior of the algorithm. Small step sizes like ε = 0.001 lead to very slow optimization. The
function decreases much faster with larger ε, but this leads to oscillations. The Finsler based optimization
procedure, on the other hand, always produces a smooth decrease in the empirical error (guaranteed by
Proposition 3.4), with at most a moderate slow down compared to the large step size algorithms. Note that
GD requires extra time to tune the step size.

5 Discussion

In this work we presented an approach to neural network optimization which involves computing step sizes
and search directions with the help of a pair of geometric structures: a Finsler structure and a duality structure.
Numerical results suggest the promise of the approach. A reason for this may be that our framework is better
able to integrate problem structure as compared to naive Euclidean gradient descent. The Finsler structure
uses a good deal of problem information, such as the hierarchical structure of the network, bounds on various
derivatives, and bounds on the input.
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