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Abstract

It has been experimentally observed that distributed implementations of mini-batch
stochastic gradient descent (SGD) algorithms exhibit speedup saturation and decaying gen-
eralization ability beyond a particular batch-size. In this work, we present an analysis hint-
ing that high similarity between concurrently processed gradients may be a cause of this
performance degradation. We introduce the notion of gradient diversity that measures the
dissimilarity between concurrent gradient updates, and show its key role in the convergence
and generalization performance of mini-batch SGD. We also establish that heuristics simi-
lar to DropConnect, Langevin dynamics, and quantization, are provably diversity-inducing
mechanisms, and provide experimental evidence indicating that these mechanisms can in-
deed enable the use of larger batches without sacrificing accuracy and lead to faster training
in distributed learning.

1 Introduction

In recent years, deploying algorithms on distributed computing units has become the de facto architectural
choice for large-scale machine learning. Distributed optimization has gained significant traction with a large
body of recent work establishing near-optimal speedup gains on both convex and nonconvex objectives
[30, 15, 10, 41, 26, 20, 12, 4], and several state-of-the-art publicly available (distributed) machine learn-
ing frameworks, such as Tensorflow [1] and MXNet [5] offer distributed implementations of popular learning
algorithms.

Mini-batch SGD is the algorithmic cornerstone for several of these distributed frameworks. During a dis-
tributed iteration of mini-batch SGD, a master node stores a global model, and P worker nodes compute
gradients for B data points, sampled from a total of n training data (i.e., B/P samples per worker per itera-
tion), with respect to the same global model; the parameter B is commonly referred to as the batch-size. The
master, after receiving these B gradients, applies them to the model and sends the updated model back to the
workers; this is the equivalent of one round of communication.

These algorithms are typically used to solve empirical risk minimization problems, where we are interested
in minimizing the population risk R(w) = E,.p|[f(w;z)], but have access to it through i.i.d. samples from
D, denoted by S = {21, 2, ..., 2, }, and thus minimize the empirical risk Rs(w) := £ 3" | f(w;z;). For
simplicity, denote Rs(w) and f(w;z;) by F'(w) and f(w;z;), respectively. The iterations of mini-batch

SGD then take the form w1y = Wi — ¥ ZEE;BB_I V fs, (W), where each index s; is drawn uni-

formly at random from [n], with replacement, and the gradient computations are divided among the workers'.
Here, we use w with subscript kB to denote the model we obtain after &k distributed iterations, i.e., a total of
kB gradient updates.

Unfortunately, near-optimal scaling for distributed variants of mini-batch SGD is only possible for up to tens
of compute nodes. Several studies [10, 32] indicate that there is a significant gap between ideal and realizable

'In related work, there is a normalization of 1/B included in the gradient step, here, without loss of generality we
subsume that in the step-size . Our assumption of constant step-size is for convenience.
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speedups when scaling out to hundreds of compute nodes. This commonly observed phenomenon is referred
to as speedup saturation. A key cause of speedup saturation is the communication overheads of mini-batch
SGD.

Ultimately, the batch-size B controls a crucial performance trade-off between
communication costs and convergence speed, as observed and analyzed in sev-
eral studies [34, 37, 16]. When using large batch-sizes, we observe large
speedup gains per pass (i.e., per n gradient computations), as shown in Fig-
ure 1, due to fewer communication rounds. However, as shown in Figure 2,
to achieve a desired level of accuracy for larger batches, we may need a larger

number of passes over the dataset, resulting in overall slower computation that L a4 a
leads to speedup saturation. Furthermore, recent work shows that large batch Humber of workers
sizes lead to models that generalize worse [22], and efforts have been made to  Figure 1: Speedup gains for
improve the generalization ability [19]. Here, generalization is measured by the a single data pass and various
gap |Rs(w) — R(w)| that quantifies the performance discrepancy of the model batch-sizes  (cuda-convnet,
w between the empirical and population risks. CIFAR-10)
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Our contributions: We introduce the notion of gradient diversity that mea-
sures the dissimilarity between concurrent gradient updates, and show that
mini-batch SGD does not suffer from speedup saturation and generalization
degradation as long as we choose the batch-size no more than a fundamental
bound implied by gradient diversity. We also establish that some heuristics in
large scale optimization are provably diversity-inducing, and provide experi-
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We focus on some key papers that are closest to our work. Dekel et al. [11] glﬁg’AéC;‘g)a'con"net variant,

analyze mini-batch SGD on non-strongly convex functions and propose B =
O(V/T) as an optimal choice for batch-size. In contrast, our work provides a data-dependent principle for
the choice of batch-size, and it holds without the requirement of convexity. Even in the regime where the
result in [11] is valid, depending on the problem, our result may still provide better bounds on the batch-size
than O( VT ) (e.g., in the sparse conflict setting [30]). Other papers that analyze minibatch SGD show weak
linear convergence rate for strongly convex functions [13], propose optimization algorithms for choosing the
batch-size [9], and develop weighted sampling techniques [28, 42]. In empirical studies, it has been observed
that more diversity in the data allows more parallelism [6]. Data-dependent thresholds for batch-size have
been developed for some specific problems such as least squares [21] and SVM [34]. In particular, for least
square problems, Jain et al. [21] propose a bound on batch-size similar to our measure of gradient diversity;
however, our result holds for a much wider range of problems including nonconvex setups, and can be used
to motivate several heuristics.

Several other mini-batching algorithms have been proposed; including mini-batch proximal algorithms [25,
37, 38], accelerated methods [7], mini-batch SDCA [33, 35], and the combination of mini-batching and
variance reduction such as Acc-Prox-SVRG [29] and mS2GD [23]. We emphasize that although different
mini-batching algorithms can be designed for particular problems and may work better in particular regimes,
especially in the convex setting, these algorithms are usually more difficult to implement in distributed learn-
ing frameworks, and can introduce additional communication costs. A few other algorithms have been re-
cently proposed to reduce the communication cost by inducing sparsity in the gradients, e.g., , QSGD [2] and
TernGrad [40].

On the generalization side, bounds for SGD were shown by Hardt et al. [17] and Jain et al. [21] (for least
squares regression) via stability analysis and operator methods, respectively. Variance reduction methods are
also used to develop algorithms with good generalization performance [14, 8].

3 Main Results

Convergence Our results for convergence are dependent on definitions of gradient diversity, which mea-
sures the dissimilarity between individual gradients.

Definition 1 (gradient diversity). We refer to the following ratio as gradient diversity:

Ap(w) = S IVAEwIE S IV (w3
SO VAW T IVAWIE + 25,V fi(w), V(W)




The gradient diversity is clearly a data-dependent quantity, and can be shown to be bounded below by simple
functions of the data in many cases, e.g., for cases of generalized linear models and sparse conflict graphs [30].
We define the batch-size bound Bp(w) := nAp(w).

We are now ready to state our convergence results for particular classes of functions”. In all of these results,
we assume that B < § Bp(w)+1 for all w € W; the takeaway message is that we can guarantee convergence
within a similar number of gradient updates as serial SGD provided that this condition is met. Note that this
ensures linear speed-ups. In the following, we define w* € arg minyey F(w), F* := mingew F(w),
Dy = ||lwo — w*||3, and assume 1 3" | [V fi(w)[3 < M2, Yw € W.

Theorem 1 (smooth functions). Suppose that F(w) is (-smooth, W = R, and use step-size y = ﬁ
Then, after T > 2 M?B(F(wo) — F**) gradient updates, miny_q _7/5-1 E[|VF(wkp)|3] < (1 + %)e

2ep
Mzﬁ’

and batch-size B < ﬁ Then, after T > %Zf log(w) gradient updates, we have E[F(wr) —
Fl<(1+ 9)e.

Theorem 2 (PL functions). Suppose that F(w) is 3-smooth, u-PL, W = RY, and use step-size 7 =

For convex loss functions, we emphasize that there have been a lot of studies that establish similar rates,
without explicitly using our notion of gradient diversity [13, 21, 34]. We emphasize the general form of our
characterization that is essentially identical across convex and nonconvex objectives.

Theorem 3 (convex functions). Suppose that F(w) is convex, and use step-size v = 5. Then, after

et
r _
T> M;D" gradient updates, we have E[F (2 sz:ol wip) — F] < (1+ §)e.

Theorem 4 (strongly convex functions). Suppose that F/(w) is \-strongly convex, and use step-size v = ]%
and batch-size B < ﬁ Then, after T > 2]\;\1226 1og(%) gradient updates, we have E[|lwp — w*|[|3] <
(1+3)e

We can also show that our convergence result is optimal in the worst-case, for strongly convex objectives, but
we omit this result due to space constraints. Another interesting consequence is that it validates many heuris-
tics that exist in the literature as diversity-inducing mechanisms. These include DropConnect (DC) [36],
stochastic gradient Langevin dynamics (SGLD) [39], and quantization (Quant) [2], which are used for im-
proving large scale optimization. Using the abbreviation DIM for any such diversity-inducing mechanism,
we note that mini-batch SGD is modified in the following way: when each data point ¢ is sampled, in-
stead of making gradient update V f;(w), the algorithm updates with a random surrogate vector gP'™ (w)
by introducing some additional randomness, which is acquired i.i.d. across data points and iterations. The
corresponding gradient diversity is defined analogously to Definition 1 as is the batch-size bound BB'M (w);
our key takeaway is that, for any DIM € {DC,SGLD, Quant}, and any w € W with Bp(w) < n, we have

BpM(w) > Bp(w).

Generalization We define the generalization error of the algorithm A as egen(A) := Es a[Rs(A(S)) —
R(A(S))]. In [3], Bousquet and Ellisseef show the equivalence between the generalization error and algo-
rithmic stability. The stability of mini-batch SGD is governed by the differential gradient diversity, defined
as follows.

Definition 2 (differential gradient diversity, batch-size bound). For any w,w’ € W, w # w’, the differential
gradient diversity and batch-size bound are given by

i IV fi(w) = Vfi(w')]13 x

Ap(w,w') = = , and Bp(w,w') := nAp(w,w’).
12051 VSi(w) = V(w3
Although it is a distinct measure, differential gradient diversity shares similar properties with gradient diver-
sity; e.g., it can be shown to be bounded below for generalized linear models and sparse conflicts; DropCon-
nect and SGLD also induce differential gradient diversity.

We now analyze the stability (generalization) of mini-batch SGD via differential gradient diversity. We asume
that, for each z € Z, the loss function f(w;z) is convex, L-Lipschitz and S-smooth in V. Hardt et al. [17]
analyzed such functions for serial SGD, and showed that stability is guaranteed up to a particular step-size ¥
(the bound takes multiple forms depending on the function class).

>The definitions of smooth, convex, and strongly convex functions are standard; we say a function F' is pu-PL if
sIVF(w)[2 > p(F(w) — F(w*)) [31, 27].
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Figure 3: Data replication. Here, 2-R, 4-R, etc represent 2-replication, 4-replication, etc, and DC stands for DropConnect.
(a) Logistic regression with two classes of CIFAR-10 (b) Cuda convolutional neural network (c) Residual network. For
(a), we plot the average loss ratio during all the iterations of the algorithm, and average over 10 experiments; for (b), (c),
we plot the loss ratio as a function of the number of passes over the entire dataset, and average over 3 experiments. With
larger replication factors, the convergence gap increases.

Our result is stated informally in Theorem 5, and holds for both convex and strongly convex functions.
Here, 7 is the step-size upper bound required to guarantee stability of serial SGD, and differently from the
convergence results, we treat Bp(w, w’) as a random variable defined by the sample S.

Theorem 5 (informal stability result). Suppose that, with high probability, the batch-size B < Bp(w,w’)
forall w,w' € W, w # w'. Then, after the same number of gradient updates, the generalization errors
of mini-batch SGD and serial SGD satisfy €gen(minibatch SGD) < e, (serial SGD), and such a guarantee
holds for any step-size v < 7.

Therefore, our main message is that, if with high probability, batch-size B is smaller than Bp(w, w’) for all
w, w’, mini-batch SGD and serial SGD can be both stable in roughly the same range of step-sizes, and the
generalization error of mini-batch SGD and serial SGD are roughly the same. Thus, if batch-size B is not too
large compared with the bound implied by differential gradient diversity, mini-batch SGD can achieve both
speedup and good generalization ability.

4 Experiments

We conduct experiments to justify our theoretical results on convergence and stability. For lack of space, we
present only the former here. Our neural network experiments are all implemented in Tensorflow and run on
Amazon EC2 p2.xlarge instances.

Convergence We conduct the experiments on a logistic regression model and two deep neural networks (a
cuda convolutional neural network [24] and a deep residual network [18]) with cross-entropy loss running on
CIFAR-10 dataset. These results are presented in Figure 3. We use data replication to implicitly construct
datasets with different gradient diversity. By replication with a factor r (or r-replication), we mean picking a
random 1/r fraction of the data and replicating it » times. Across all configurations of batch-sizes, we tune
our (constant) step-size to maximize convergence, e.g., to minimize training time. The sample size does not
change by data replication, but gradient diversity conceivably gets smaller while we increase . We use the
ratio of the loss function for large batch-size SGD (e.g., B = 512) to the loss for small batch-size SGD (e.g.,
B = 16) to measure the negative effect of large batch sizes on the convergence rate. When this ratio gets
larger, the algorithm with the large batch-size is converging slower. We can see from the figures that while
we increase 7, the large batch size instances indeed perform worse, and the large batch instance performs the
best when we have DropConnect, due to its diversity-inducing effect, as discussed in the previous sections.
This experiment thus validates our theoretical findings.

Diversity-inducing Mechanisms We finally implement diversity-inducing mechanisms in a distributed set-
ting with 2 workers and test the speedup gains. We use a convolutional neural network on MNIST and
implement DropConnect with drop probability pgrop = 0.4,0.5. We tune the step-size vy and batch-size B
for vanilla mini-batch SGD and the diversity-induced setting, and find the (v, B) pair that gives the fastest
convergence for each setting. For instance, while comparing wall-clock times taken for 95% training accu-
racy, the two instantiations of DropConnect result in 31% and 25%- speedup gains, respectively. Indeed, the
the batch-size gain afforded by DropConnect — the best batch-size for vanilla mini-batch SGD is 256, while
with the diversity-inducing mechanism, it becomes 512 — is able to dwarf the noise in gradient computation.
Reducing communication cost thus has the biggest effect on runtime, more so than introducing additional
variance in stochastic gradient computations.
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