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Abstract

We develop minimal test-set risk bounds of any given classifier in the multi-class setting.
Unlike most previous works, which typically reduce multi-class classification to a greedy
series of dichotomizations, we consider a simultaneous risk bounds with valued asymmetric
loss function reflecting unequal gravity of misclassification. We first observe that on an i.i.d
test set, the observed losses follow a multinomial distribution which makes it possible to
represent the multi-class classification in a compact form. We then formulate a mathematical
program that yields the tightest possible bound. Due to a pseudo-convex constraint, a special
method of centers is used to solve this problem.

1 Introduction

We consider a multi-class supervised classification problem where classifiers partition a set of examples into
more than two classes. We adopt the PAC setting where data is drawn independent and identically distributed
(i.i.d) according to a fixed, but unknown distribution D. A good classifier aims to minimize the generalization
errors or true risk. Since the distribution D is unknown, the true risk is an unobservable quantity. In statistical
learning theory, finding computable upper bounds for the true risk is a challenging area. Constructing optimal
risk bounds in multi-class learning with valued asymmetric loss function is the main object of this paper.
The most used approach in multi-class learning is a reduction from multi-class problem into multiple binary
classifications with zero-one loss function. The majority of reduction approaches have been integrated under
the framework of Error Correction Output Codes (ECOC) (Dietterich and Bakiri 1995, Allwein et al. 2000).
The weaknesses of reduction approaches have been appointed in (Daniely et al. 2011, Daniely et al. 2012). A
few more direct approaches to treat multiclass learning jointly have been studied in (Vapnik 1998, Weston
and Watkins 1999, Fung and Mangasarian 2001, Crammer and Singer 2001, Aiolli et al. (2005), He et al.
(2012), Ramaswamy and Agarwal (2016)). In this paper we consider a more realistic multi-class setting
with valued loss function and different cost of errors. In the following section we present the multi-class
setting with a compact form based on the multinomial distribution of observed losses on an i.i.d test set.
Foundations of optimal multi-class test-set bounds are given in section 3. In section 4 we present bounds
optimization approaches. We formulate a mathematical program that yields the tightest possible bound. Due
to a pseudo-convex constraint, a special method of centers is used to solve this problem. Proofs are provided
in Appendix A.

2 Multi-class Setting

We are concerned with a multi-class problem in which each example z̃ = (x̃, ỹ) is constituted from an
input-output pair (x, y) where x 2 X and y 2 Y; such that Y > 2; a finite set of observed classes. Let C a set
of predicted classes such that Y ✓ C. In our multi-class setting, the classification task consists in assigning
to each input object x a predicted class c where, possibly, C 6= Y if the context so dictates. Many reasons
may justify adding to Y new predicted classes like "Unclassified" "hesitation between classes y1 and y2", etc.
In practice, it’s more prudent to not classify an example than to give him a wrong class. We consider a test
set S̃n = (z̃1, ..., z̃n) of n i.i.d. examples drown from unknown distribution D. We wish to assess a given a
classifier h : X ! C on the test set Sn . The accuracy of classifier h is measured through a loss function. In
the binary case, this is usually a zero-one loss function. In our multi-class context, however, different types of
errors may deserve different error costs according to their relative gravity. For example in medical diagnosis,
the cost of error for classifying a patient with the true class "cancer" in the class "cold" is more than the cost of
error to predict the class "unclassified" and ask for more medical examinations. The asymmetric and valued
nature of the loss function reflects the uncertainty of the classification decision.
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We thus posit a more general valued, cardinal, normalized, loss function Q : C⇥Y ! [0, 1], with Q(y, y) =
08y 2 Y and Maxc,yQ(c, y) = 1. The true error that the classifier h predicted c and the true class is y is
defined as the unknown probability: ⇡c,y = Pr{h(x̃) = c|ỹ = y}, (c, y) 2 C⇥Y. The true risk associated
to h is then defined as the expected loss Rh = E[Q(h(x̃), ỹ)], Since the true risk Rh is unknown, one is
interested in upper-bounding this risk. The related empirical value, the empirical risk,Re , the observed number
of errors in each case (c, y).

In order to assess the performance of a multi-class classifier h on a random test set Sn , it is necessary to
consider all possible error cases (including non-errors)(c, y) 2 C ⇥ Y. Define Ñcs as the (h-dependent)
number of observations in S̃n falling into error case (c, y) (so that

P
(c,y)2C⇥Y Ñc,y ⌘ n). In the simple

case of binary classification the probability of observing k errors (heads) out of n examples is a binomial
distribution (Langford 2005). In our multi-class setting; by the i.i.d assumption, the random array Ñ =
(Ñc,y|(c, y) 2 C⇥Y) has another familiar distribution in statistics, the multinomial distribution with unknown
probabilities: ⇡c,y .

Now consider the ordered set of distinct s values that may be incurred of the valued loss function Q(error costs)
noted 0 = q1 < q2 < ... < qs = 1. There is an aggregation function a mapping the set C⇥Y of error cases into
the set {1, ..., s} of error costs such that: Qc,y = qi8(c, y) 2 a�1(i), 1  i  s. Consider the random vector
K̃ = (K̃1, ..., K̃s) , where K̃i =

P
(c,y)2a�1(i) Ñcy is the number of observations from S̃n falling into error

cost category i, 1  i  s. In the sequel, “multi-class” is taken to mean that the error cost takes on at least one
fractional value, reflecting intensity or relative gravity of errors – so that s > 2. See example in appendix B for
repartition of examples by error cost category for: |Y | = 3; |C| = 4; s = 3; q1 = 0; q2 = 0.5, qs = 1;n = 30.

Let K = {k 2 Zs
+ | eT k = n} denote the range of K̃, the empirical risk is defined by r̃ = 1

nq
T K̃. The

following remark will help characterize our multi-class setting:

K̃ = (K̃1, ..., K̃s) has a multinomial distribution with probabilities pi =
P

(c,y)2a�1(i) ⇡cy, 1  i  s.

As a consequence, the true risk can equivalently be expressed as: Rh = qT p =
Ps

i=1 qipi. Let define
Kr = {k 2 K | qT k  nr} the set of outcomes for K̃ whose empirical risk does not exceed r. According to
the previous remark, the probability of an empirical error less than or equal to r is:

Pr{r̃  r | p} =
P

k2Kr
Pr{K̃ = k | p} =

P
k2Kr

Ck
Qs

i=1 p
ki
i With Ck = n!Qs

i=1 ki!
.

3 Optimal Multi-class Test Set Bounds

A bound will be meant to provide an upper confidence interval on an unknown true risk. The “test set” context
is concerned with the evaluation of a given classifier h. By contrast, the design question is one of choosing a
particular classifier from a possibly vast family. The fact that the classifier h is given does not, however, imply
that its inputs x̃ or its inner workings are known. Indeed, the classifier’s performance is evaluated only in
terms of the observed output pairs (h(xj), yj), independently of the underlying classification model. Whereas
the multinomial distribution is an exact representation of the error occurrence process, it will later become
apparent that approximations are also of interest. Therefore, our framework will encompass more abstract
stochastic error models, with the proviso that they are entirely characterized by a probability vector p. In this
spirit, the following definition is a generalization of Langford’s (Langford 2005).

Definition 1 A tail bound is a function B : [0, 1]2 ! [0, 1] such that 8r 2 [0, 1], � 2 (0, 1], and 8p 2 U such
that qT p > B(r, �) : Pr{r̃  r|p} < �.

Where U = {x 2 <s
+|eTx = 1} and e = (1, 1, ..., 1). r is a parametric threshold which will later assume the

value of an observed empirical risk. Prior to any observation, given some confidence level �, the bound is
stated as a function of this threshold. The bound’s defining property is that whatever the threshold, under a
true risk greater than the bound, the probability of observing an empirical risk below the threshold does not
exceed �. A minimal bound (one which cannot be tightened) is, of course, unique. The set of pairs (r, �) over
which the bound exists, will depend on the particular probabilistic model considered. Minimal bounds cannot
in general be expressed analytically. We will instead seek numerical bounds which (as “best”) will entail some
optimization. Several mathematical programs, with differing computational advantages, are conceivable to
represent definition 1 under specific conditions. This is illustrated below with two families of formulations.
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Let consider the function F : F (p; r) = Pr{r̃  r | p}, we will henceforth assume that F is continuous in p.
A direct representation of definition 1 is the following mathematical program:

B1(r, �) = Supp{qT p|p 2 U,F (p; r) � �} (1)

This definition implies that for any p such that qT p > B1(r, �), F (p; r) < �. It is tempting to replace (1) with
the following variant:

B
0

1(r, �) = Supp{qT p|p 2 U,F (p; r) = �}

Function F will be called risk-complete if 8r 2 [0, 1), Limp!esF (p; r) = 0.

Proposition 1:

• (i) B1 is a risk bound in the sense of definition 1.

• (ii) If F is risk-complete, B1 = B
0

1.

A second, more indirect computational scheme, is in two steps as follows:

V (�; r) = SuppF (p; r) (2)

S.t.: qT p � �

p 2 U

B2(r, �) = Sup{�|V (�; r) � �} (3)

In 2, � 2 [0, 1] is a parameter that will eventually assume the value of the bound. For each possible value of �,
we seek the largest possible probability of observing an empirical error equal to r, given that the true risk is at
least �. Observe that, by a simple relaxation argument,V (.; r) is non-increasing. It follows that the bound B2,
guarantees that for any � > B2(r, �) one has V (�; r) < � , which, given the maximality of V (.; r), also holds
for the “true” unknown empirical risk distribution.

Proposition 2: B2 = B1.

We now consider the exact probabilistic model of the multinomial distribution and study the computability of
bound B1(r, �). We remind that: F (p; r) = Pr{r̃  r | p} =

P
k2Kr

Ck
Qs

i=1 p
ki
i . It is readily verified that

F is risk-complete. We now establish a second important property that is the key to computing exact bound.

Proposition 3: F is pseudo-concave in p on <s
++.

This property has two important implications: (i) any local optimum for problem (1) is also a global optimum,
and (ii) the Karoush-Kuhn-Tucker (KKT) conditions are necessary and sufficient to characterize optimality
(see e.g. Mangasarian 1969. Hence solving problem (1) reduces to finding a KKT point. We thus have an
operational criterion to solve problem (1) to optimality when the error occurrence process is modeled as a
multinomial distribution (an exact representation). However, any computational scheme to this end will require
several evaluations of F (p; r); each such evaluation entails an enumeration of Kr. It can be verified that
|K| = O(sn) and that, for non-trivial values of r, |Kr| grows similarly.

4 Bound Optimization

The best bound is a solution of the mathematical program:

B(r, �) = Maxpq
T p (4)

S.t. F (p; r) � � (4.a)

eT p = 1

p � 0
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where F is pseudo-concave in p. The only complicating constraint in this problem is (4.a). Non-concavity
of F precludes constructing inner or outer envelopes on its hypograph. However, the level set: �� = {p 2
U |F (p; r) � �} is convex. Il follows that if a point p0 is not in the relative interior of ��, the inequality
rpF (p0; r)(p � p0) � 0, is valid for ��. Our solution strategy will thus entail constructing increasingly
tight polyhedral relaxations of ��. Let P = {p 2 U |aip � bi, i 2 I} be a polyhedron containing ��, and
� = max{qT p|p 2 P}. It is clear that � is an upper bound on B(r, �). Now consider a feasible point p̂ 2 �� .
Let � = qT p̂ , and P� = {p 2 P | qT p � �} (a localization set). Since � is a lower bound on B(r, �), one
has P� contains all optimal solutions to (4).

Our cut generation mechanism is a variant of the general Method of centers (Huard, 1976), which enjoys good
stability properties. From a point p̄ in the relative interior of P, we can measure a weighted distance to each
frontier hyperplane of P. A center of P is defined as a point p̄ which maximizes the smallest such (weighted)
distance. Since the Euclidian distance from a given point p̄ to a hyperplane {p|aT p = b} is |aT p̄� b|/kak, a
center p̄ of P� can be found by solving the linear program:

Maxp,zz (5)

S.t. aip� kaikz � bii 2 I

qT p� ✏kqkz � �

p 2 U

The algorithm generates a sequence hP t
�
t
i of localization sets, two sequences of points hxti ⇢ �� and

hyti ⇢ P t
�
t
\ �� and the associated bounds �

t
= qTxt, �̄t = qT yt. At each iteration t, a center p̄t 2 pt�

t

is computed. If F (p̄t) > � , this center becomes the next xt+1. Otherwise a cut through p̄t is generated,
and a new upper-bound-yielding yt+1 is found. In both cases, we obtain 0 < �̄t+1 � �

t+1
< �̄t � �

t
and

pt+1
�
t+1

⇢ pt�
t
.

Proposition 4 Any accumulation point of the sequence hxti is an optimal solution of (4).

In practice, the algorithm can be accelerated with approximate line searches. It will be interrupted upon
reaching a prescribed degree of accuracy. The current value of �̄t will then serve as a conservative estimate of
the test-set bound (note that the �̄t’s are tail bounds in the sense of Definition 1).

5 Conclusion

This paper’s contribution is focused on multi-class test set bounds optimization. The most disadvantage of
test set bound is that data used for testing can not be used for training. Several extensions to training-set
and PAC-Bayes bounds are conceivable. Furthermore, the complexity of problem (1) under the multinomial
distribution is a strong incentive to seek computationally less demanding approximations. A number of avenues
are conceivable toward that end. An obvious candidate is the use of a multivariate normal distribution as
an approximation to the multinomial distribution. A sequel to this paper will empirically study the bound’s
behavior under different sets of parameter values (e.g. sample size, number of classes, class penalties, required
confidence level, observed empirical risk) with a view on one hand to assessing the quality of the bound, but
foremost to stimulating the development of new approximations.
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A Appendix A

A.1 Proof of proposition 1(ii)

Let p satisfy F (p, r) > �. Consider the path

P̄ (t) = (1� t)p+ tes, t 2 [0, 1]

Since F (P̄ (0); r) > � > F (P̄ (1�); r) and since F (.; r) is continuous, there is an ↵ 2 (0, 1) such that
F (P̄ (↵); r) = �. Since qT P̄ (t) is strictly increasing in t , qT P̄ (↵) > qT p. Therefore, p is not optimal for (1).

A.2 Proof of proposition 2

B2(r, �) = Sup�{�|Supp2V (�){F (p; r)} � �}
= Sup�,p{�|p 2 U, qT p � �, F (p; r) � �}
= Supp{qT p|p 2 U,F (p; r) � �}
= B1(r, �)

A.3 Proof of proposition 3

Consider any p > 0 . Define D(p) = Diag(p)�1 . Then 8k 2 K:

• (i) f(p; k) > 0

• (ii) rpf(p; k) = f(p; k)D(p)k

• (iii) r2
ppf(p; k) = f(p; k)D(p)[�Diag(k) + f(p; k)kkT ]D(p)

Then, 8r 2 [0, 1] :

• (iv) F (p; r) > 0

• (v) gr(p) = rpF (p; r) = D(p)�r(p),where �r(p) =
P

k2Kr
f(p; k)k

• (vi) Hr(p) = r2
ppF (p; r) = �Ar(p) + gr(p)gr(p)T , whith Ar(p) = D(p)Diag(�r(p))D(p)(a

diagonal matrix)

Function F is pseudo-concave in p on <s
++ if and only if for any p 2 <s

++ and for any admissible variation
dp (i.e. such that p+ dp 2 <s

++ one has

rpF (p; r)T dp  0 =) F (p+ dp; r)  F (p; r)
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Let s0 = max{i|1  i  s, qi  nr} . Clearly, 8i > s0, 8k 2 Kr.ki = 0� and conversely, i  s0 =)
9k 2 Kr : ki > 0, which, with (i) implies (�r(p))i > 0. Thus for any admissible variation dp such that
dpi = 08i  s0 , we have f(p+ dp; k) = f(p; k)8k 2 Kr, hence F (p+ dp; r) = F (p; r).

Consider now the alternative case of admissible variations dp such that dpi 6= 0 for some i  s0. Since F (.; r)
is twice continuously differentiable,

F (p+ dp; r) = F (p; r) + gr(p)T dp+
1
2dp

THr(p)dp+ o(kdpk2)
= F (p; r) + gr(p)T dp+

1
2 (gr(p)

T dp)2 � 1
2dp

TAr(p)dp+ o(kdpk2)

From the preceding assumption, � 1
2dp

TAr(p)dp < 0. Furthermore, gr(p)T dp+ 1
2 (gr(p)

T dp)2  0 for any
dp such that 0  gr(p)T dp  2. This latter inequality will hold by choosing kdpk finitely but sufficiently
small. It follows that F (p+ dp; r)  F (p; r) in some open neighborhood of p. By transitivity, this also holds
for any admissible dp .

A.4 Proof of proposition 4

As long as �t > �
t

, the algorithm generates a new upper bound �t+1 or a new lower bound �
t+1

such that
�t > �t+1 > �

t
or �t > �

t+1
> �

t
. Hence h�ti and h�

t
i converge to a common limit �⇤ , which is the

optimal value of the test-set bound. Since �� is compact, any accumulation point x⇤ of hxti is in �� , yields
an objective value of qTx⇤ = �⇤ , and is therefore optimal for (4).

B Appendix B

Table 1: Repartition of examples by error cases
c \ y 1 2 3

1 0 1 0
2 0.5 0 1
3 1 0.5 0

4:Unclassified 1 0.5 1
Error category i 1 2 3

Error cost qi 0 0.5 1
Error case (c,y): a�1(i) (1,1);(2,2);(3,3);(1;3) (2,1);(3,2);(4,2) (1,2);(2,3);(3,1);(4,1);(4,3)

Number of examples Ñcy 20 3 7
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