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Abstract

Second-order methods, which utilize gradients as well as Hessians to optimize a given
function, are of major importance in mathematical optimization. In this work, we prove
tight bounds on the oracle complexity of such methods for smooth convex functions, or
equivalently, the worst-case number of iterations required to optimize such functions to
a given accuracy. In particular, these bounds indicate when such methods can or cannot
improve on gradient-based methods, whose oracle complexity is much better understood.
We also provide generalizations of our results to higher-order methods.

1 Introduction

We consider an unconstrained optimization problem of the form

min
w∈Rd

f(w), (1)

where f is a generic smooth and convex function. A natural and fundamental question is how efficiently can
we optimize such functions.

We study this question through the well-known framework of oracle complexity
[Nemirovsky and Yudin(1983)], which focuses on iterative methods relying on local information. Specifi-
cally, it is assumed that the algorithm’s access to the function f is limited to an oracle, which given a point
w, returns the values and derivatives of the function f at w. This naturally models standard optimization
approaches to unstructured problems such as (1), and allows one to study their efficiency, by bounding the
number of oracle calls required to reach a given optimization error. Different classes of methods can be
distinguished by the type of oracle they use. For example, gradient-based methods (such as gradient descent
or accelerated gradient descent) rely on a first-order oracle, which returns gradients, whereas methods such
as the Newton method rely on a second-order oracle, which returns gradients as well as Hessians.

The theory of first-order oracle complexity is quite well developed [Nemirovsky and Yudin(1983),
Nesterov(2004), Nemirovski(2005)]. For example, if the dimension is unrestricted, f in (1) has µ1-Lipschitz
gradients, and the algorithm makes its first oracle query at a point w1, then the worst-case number of queries
T required to attain a point wT satisfying f(wT )−minw f(w) ≤ ε is

Θ

(√
µ1D2

ε

)
, (2)

where D is an upper bound on the distance between w1 and the nearest minimizer of f . Moreover, if the
function f is also λ-strongly convex for some λ > 01, then the oracle complexity bound is

Θ

(√
µ1

λ
· log

(
µ1D

2

ε

))
. (3)

Both bounds are achievable using accelerated gradient descent [Nesterov(1983)].

However, these bounds do not capture the attainable performance of second-order methods, which rely on
gradient as well as Hessian information. This is a central class of optimization methods, including the well-
known Newton method and its many variants. Clearly, since these methods rely on Hessians as well as

1Assuming f is twice-differentiable, this corresponds to∇2f(w) � λI uniformly for all w.
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gradients, their oracle complexity can only be better than first-order methods. On the flip side, the per-
iteration computational complexity is generally higher, in order to process the additional Hessian information
(especially in high-dimensional problems where the Hessian matrix may be very large). Thus, it is natural to
ask how much does this added per-iteration complexity pay off in terms of oracle complexity.

To answer this question, one needs good oracle complexity lower bounds for second-order methods, which
establish the limits of attainable performance using any such algorithm. Perhaps surprisingly, such results do
not seem to currently exist in the literature, and clarifying the oracle complexity of such methods was posed
as an important open question (see for example [Nesterov(2008)]). The goal of our paper is to address this
gap.

Specifically, we prove 2 that when the dimension is sufficiently large, for the class of convex functions with
µ1-Lipschitz gradients and µ2-Lipschitz Hessians, the worst-case oracle complexity of any deterministic
algorithm is

Ω

(
min

{√
µ1D2

ε
,

(
µ2D

3

ε

)2/7
})

. (4)

This bound is tight up to constants, as it is matched by a combination of existing methods in the literature (see
discussion below). Moreover, if we restrict ourselves to functions which are λ-strongly convex, we prove an
oracle complexity lower bound of

Ω

((
min

{√
µ1

λ
,
(µ2

λ
D
)2/7}

+ log log18

(
λ3/µ2

2

ε

)))
. (5)

Moreover, we establish that this bound is tight up to logarithmic factors (independent of ε), utilizing a novel
adaptation of the A-NPE algorithm proposed in [Monteiro and Svaiter(2013)]. These new lower bounds have
several implications:

• Perhaps unexpectedly, (5) establishes that one cannot avoid in general a polynomial dependence
on geometry-dependent “condition numbers” of the form µ1/λ or µ2D/λ, even with second-order
methods. This is despite the ability of such methods to favorably alter the geometry of the problem
(for example, the Newton method is well-known to be affine invariant).

• To improve on the oracle complexity of first-order methods for strongly-convex problems ((3)) by
more than logarithmic factors, one cannot avoid a polynomial dependence on the initial distance D
to the optimum. This is despite the fact that the dependence on D with first-order methods is only

logarithmic. In fact, when D is sufficiently large (of order µ
7/4
1

µ2λ3/4 or larger), second-order methods
cannot improve on the oracle complexity of first-order methods by more than logarithmic factors.
• In the convex case, second-order methods are again no better than first-order methods in certain

parameter regimes (i.e., when µ2 ≥ µ7/4
1

√
D/ε3/4), despite the availability of more information.

Finally, we show how our proof techniques can be generalized, to establish lower bounds for methods em-
ploying higher-order derivatives. In particular, for methods using all derivatives up to order k, we show that
for convex functions with µk-Lipschitz k-th order derivatives, the oracle complexity is

Ω

((
µkD

k+1

(k + 1)!kε

)2/(3k+1)
)
.

Note that this directly generalizes (2) for k = 1, and (4) when k = 2 and µ1 is unrestricted.

Related Work

Below, we review some pertinent results in the context of second-order methods.

Perhaps the most well-known and fundamental second-order method is the Newton method, which relies on
iterations of the form wt+1 = wt − (∇2f(w))−1∇f(w) (see e.g., [Boyd and Vandenberghe(2004)]). It is
well-known that this method exhibits local quadratic convergence, in the sense that if f is strictly convex, and
the method is initialized close enough to the optimum w∗ = arg minw f(w), thenO(log log(1/ε)) iterations
suffice to reach a solution w such that f(w) − f(w∗) ≤ ε. However, in order to get global convergence

2All statements provided in this workshop paper can be found in the full version.
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(starting from an arbitrary point not necessarily close to the optimum), one needs to make some algorithmic
modifications, such as introducing a step size parameter or line search, employing trust region methods, or
adding various types of regularization (see for example [Conn et al.(2000)] and references therein). Despite
the huge literature on the subject, the worst-case global convergence behavior of these methods is not well
understood [Nesterov and Polyak(2006)]. For the Newton method with a line search, the number of iterations
can be upper bounded by

O
(
µ2
1µ

2
2

λ5
(f(w1)− f(w∗)) + log log2

(
λ3/µ2

2

ε

))
,

where µ1, µ2 are the Lipschitz parameters of the gradients and Hessians respectively, and assuming the func-
tion is λ-strongly convex ([Kantorovich(1948)], see also [Boyd and Vandenberghe(2004)]). Note that the first
term captures the initial phase required to get sufficiently close to w∗, whereas the second term captures the
quadratically convergent phase. Although the final convergence is rapid, the first phase is the dominant one
in the bound (unless ε is exceedingly small). If f is self-concordant3, this can be improved to

O
(

(f(w1)− f(w∗)) + log log2

(
1

ε

))
,

independent of the strong convexity and Lipschitz parameters ([Nesterov and Nemirovskii(1994)]). Unfor-
tunately, not all practically relevant objective functions are self-concordant. For example, loss functions
common in machine learning applications, such as the logistic loss x 7→ log(1 + exp(−x)), are not self-
concordant4, and our own results utilize the simple but not self-concordant function x 7→ |x|3.

Returning to our setting of generic convex and smooth functions, and focusing on strongly convex functions
for now, the best existing upper bounds (we are aware of) were obtained for cubic-regularized variants of the
Newton method, where at each iteration one essentially minimizes a quadratic approximation of the function
at the current point, regularized by a cubic term [Nesterov and Polyak(2006), Nesterov(2008)]. The existing
analysis (in section 6 of [Nesterov(2008)]) implies an oracle complexity bound of at most

O
((µ2

λ
D
)1/3

+ log log2

(
λ3/µ2

2

ε

))
,

where D = ‖w1 −w∗‖ is the distance from the initialization point w1 to the optimum w∗ (see section 6 in
[Nesterov(2008)], as well as [Cartis et al.(2012)] for another treatment of such cubic-regularized methods).
However, we show that a better oracle complexity bound can be obtained, by adapting the A-NPE method
proposed in [Monteiro and Svaiter(2013)] and analyzed for convex functions, to the strongly convex case.
The resulting complexity upper bound is

O
((µ2

λ
D
)2/7

log

(
µ1µ

2
2D

2

λ3

)
+ log log2

(
λ3/µ2

2

ε

))
. (6)

An alternative to the above is to use a hybrid scheme, starting with accelerated gradient descent (which is an
optimal first-order method for strongly convex functions with Lipschitz gradients) and when close enough to
the optimal solution, switch to a cubic-regularized Newton method, which is quadratically converging in that
region5. The required number of iterations is then

O
(√

µ1

λ
· log

(
µ1µ

2
2D

2

λ3

)
+ log log2

(
λ3/µ2

2

ε

))
, (7)

where D = ‖w1 − w∗‖ (see [Nesterov(2004), Nesterov(2008)]). Clearly, by taking the best of (6) and (7)
(depending on the parameters), one can theoretically attain an oracle complexity which is the minimum of
(6) and (7). This minimum matches (up to a logarithmic factors) the lower bound in (5), which we establish
in this paper.

It is interesting to note that the bounds in (6) and (7) are not directly comparable: The first bound has a
polynomial dependence on µ2/λ and ‖w1 −w∗‖, and a logarithmic dependence on µ1, whereas the second

3That is, for any vectors v,w, the function g(t) = f(w + tv) satisfies |g′′′(t)| ≤ 2g′′(t)3/2
4These can often be made self-concordant by re-scaling, smoothing and adding regularization (e.g. [Bach(2010)]),

but even when possible, these modifications strongly affect the f(w1)− f(w∗) term in the bound, and prevents it from
being independent of the strong convexity and Lipschitz parameters.

5Instead of cubic-regularized Newton, one can also use the standard Newton method, although the resulting bound
using the existing analysis will have slightly worse logarithmic factors.
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bound has a polynomial dependence on µ1/λ, logarithmic dependence on ‖w1 − w∗‖, and a logarithmic
dependence on µ2. In a rather wide parameter regime (e.g. when D is reasonably large, as often occurs in
practice), the bound of the hybrid scheme can be better than that of pure second-order methods. In light of
this, [Nesterov(2008)] raised the question of whether second-order schemes are indeed useful at the initial
stage of the optimization process, for these types of problems. Our results indicate that indeed, in certain
parameter regimes, this is not the case.

Analogous results can be obtained for convex (not necessarily strongly convex) smooth functions. Using an
appropriate analysis of the accelerated cubic-regularized Newton method [Nesterov(2008)], one can attain a
bound of

O

((
µ2D

3

ε

)1/3
)
.

More recently, [Monteiro and Svaiter(2013)] proposed an accelerated hybrid proximal extragradient method,
denoted as A-NPE, which attains a better bound of

O

((
µ2D

3

ε

)2/7
)
. (8)

In addition, using an optimal first-order method (such as accelerated gradient descent), one can attain a bound
of

O

(√
µ1D2

ε

)
. (9)

Clearly, by taking the best of the last two approaches (depending on the problem parameters), one can attain
an oracle complexity equal to the minimum of the two bounds in (8) and (9). This is matched (up to constants)
by the lower bound in (4), which we establish in this paper.

Finally, we discuss the few existing lower bounds known for second-order methods. If µ2 is not bounded
(i.e.,the Hessians are not Lipschitz), it is easy to show that Hessian information is not useful. Specifi-
cally, the lower bound of (2) for first-order methods will then also apply to second-order methods, and
in fact, to any method based on local information (see [Nemirovsky and Yudin(1983), section 7.2.6] and
[Arjevani and Shamir(2016)]). Of course, this lower bound does not apply to second-order methods when
µ2 is bounded. In our setting, it is also possible to prove an Ω(log log(1/ε)) lower bound, even in one
dimension [Nemirovsky and Yudin(1983), section 8.1.1], but this does not capture the dependence on the
strong convexity and Lipschitz parameters. Some algorithm-specific lower bounds in the context of non-
convex optimization are provided in [Cartis et al.(2010)]. Finally, we were recently informed of a new work
([Agarwal and Hazan(2017)], yet unpublished at the time of writing), which uses a clean and elegant smooth-
ing approach, to derive second- and higher-order oracle lower bounds directly from known first-order oracle
lower bounds, as well as extensions to randomized algorithms. However, the resulting bounds are not as tight
as ours.
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