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Abstract

Minimizing a function over an intersection of convex sets is an important task in optimization,
but it is often much more challenging than minimizing over each individual constraint set.
While traditional methods such as Frank-Wolfe (FW) or proximal gradient descent assume
access to a linear or quadratic oracle on the intersection, splitting techniques, developed
in the context of proximal methods, take advantage of the structure of each sets, and only
require to perform the projection step over each individual constraint. In this work we
develop and analyze the Frank-Wolfe Augmented Lagrangian (FW-AL), a method for
minimizing a smooth function over an intersection of constraints that only requires access
to a linear minimization oracle over the individual constraints. This method is based on
the Augmented Lagrangian Method (ALM), a.k.a Method of Multipliers, but only requires
access to linear (instead of quadratic) minimization oracles. We use recent advances in the
analysis of FW and the alternating direction method of multipliers algorithms to prove a
linear convergence rate of our algorithm over an intersection of polytopes and a sublinear
convergence rate over general convex compact sets.

1 Introduction

The Frank-Wolfe (FW) or conditional gradient algorithm has seen an impressive revival in recent years,
notably due to its very favorable properties for the optimization of sparse problems (Jaggi, 2013). This
algorithm assumes knowledge of a linear minimization oracle (LMO) over the set of constraints. This oracle
is inexpensive to compute for sets such as the `1 or trace norm ball. However, inducing complex priors often
requires to consider multiple constraints, leading to a constraint set formed by the intersection of the original
constraints. Unfortunately, evaluating the LMO over this intersection can be very challenging even if the
LMO on the individual sets are inexpensive.

The problem of minimizing over an intersection of convex constraints is pervasive in machine learning and
signal processing. For example, one can seek for a matrix that is both sparse and low rank by constraining the
solution to have both small `1 and trace norm (Richard et al., 2012) or find a set of brain maps which are both
sparse and piecewise constant by constraining both the `1 and total variation pseudonorm (Gramfort et al.,
2013).

The objective of this paper is to describe and analyze FW-AL, an optimization method that can solve convex
optimization problems subject to multiple constraints, assuming we have access to a LMO on each of the set
of constraints.

Previous work. One of the most popular algorithm to solve optimization problems over an intersection of
constraints is the alternating direction method of multipliers (ADMM), proposed by Glowinski and Marroco
(1975), studied by Gabay and Mercier (1976), and revisited many times; see for instance (Boyd et al., 2011;
Yan and Yin, 2016). On some cases, such as constraints on the trace norm (Cai et al., 2010) or the latent group
lasso (Obozinski et al., 2011), the projection step can be a time-consuming operation, while the Frank-Wolfe
LMO is much cheaper in both cases. Moreover, for some highly structured polytopes such as those appearing
in alignment constraints (Alayrac et al., 2016) or Structured SVM (Lacoste-Julien et al., 2013), there exists a
fast and elegant dynamic programming algorithm to compute the LMO, while there is no known tractable
algorithm to compute the projection. Recently, Yen et al. (2016a) proposed a FW variant for objectives
with a linear loss function over an intersection of polytopes named Greedy Direction Method of Multipliers
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(GDMM). A similar version of GDMM is also used in (Yen et al., 2016b; Huang et al., 2017) to optimize
a function over a Cartesian product of spaces related to each other by a linear consistency constraint. The
constraints are incorporated through the augmented Lagrangian method and its convergence analysis crucially
uses recent progress in the analysis of ADMM by Hong and Luo (2017).

Contributions. Our main contribution is the development of a novel variant of FW for the optimization
of a function over an intersection of sets and its rigorous analysis. We name this method Frank-Wolfe via
Augmented Lagrangian method (FW-AL). With respect to Yen et al. (2016a,b); Huang et al. (2017), our
framework generalizes GDMM by providing a method to optimize a general class of functions over an
intersection of an arbitrary number of compact sets, which are not restricted to be polytopes. We show that
FW-AL converges for any smooth objective function. We prove that a standard gap measure converges linearly
(i.e., with a geometric rate) when the constraint sets are polytopes, and sublinearly for general compact convex
sets. We also show that when the function is strongly convex, this gap measure gives a bound on the distance
to the set of optimal solutions. This is of key practical importance since the applications that we consider (e.g.,
minimization with trace norm constraints) verify these assumptions.

The paper is organized as follows. In Section 2, we introduce the general setting, provide some motivating
applications and present the augmented Lagrangian formulation of our problem. In Section 3, we describe the
algorithm FW-AL and provide its analysis.

2 Problem Setting

Let f : Rp → R be a convex smooth function and for k ∈ [K], Xk ⊂ Rp be convex compact sets. We will
consider the following minimization problem,

minimize
x∩Kk=1Xk

f(x) , with only access to LMOk(r) ∈ arg min
s∈Xk

〈s, r〉 , k ∈ [K] . (OPT)

This framework models several problems that arise in machine learning and signal processing. We denote
by X ∗ the set of optimal points of the optimization problem (OPT) and we will assume that this problem is
feasible, i.e., the set of solutions is non empty. By casting (OPT) into the problem of finding a saddle point
of an augmented Lagrangian (Bertsekas, 1996), we can split the constraints in a way in which the linear
oracle is computed over the product space X := X1 × · · · × XK ⊂ Rm. Noting x := (x(1), . . . ,x(K)) and
f̄(x) := 1

K

∑K
k=1 f(x(k)) we can consider the augmented Lagrangian formulation of (OPT)

minimize
x

max
y∈Rd

L(x,y) s.t. x(k) ∈ Xk, k ∈ {1, . . . ,K} , (OPT2)

where L(x,y) := f̄(x)+ 〈y,Mx〉+ λ
2 ‖Mx‖2, and M is such that Mx = 0⇔ x(k) = x(k+1), k ∈ [K−1].

This saddle point formulation is the one onto our algorithm FW-AL is performed.

3 FW-AL Algorithm
The augmented Lagrangian method alternates a primal update on x (approximately) minimizing1 the aug-
mented Lagrangian L(·,yt), with a dual update on y by taking a gradient ascent step on L(xt+1, ·). The
FW-AL algorithm follows the general iteration of the augmented Lagrangian method, but with the crucial
difference that Lagrangian minimization is replaced by one Frank-Wolfe step on L(·,yt). The algorithm is
thus composed by two loops: an outer loop presented in (2) and an inner loop noted FW which can be chosen
to be one of the FW step variants described in Alg. 1 or 2.

FW steps. In our algorithm, we need to ensure that the FW inner loop makes sufficient
progress. For general sets, we can use one iteration of the classical Frank-Wolfe algorithm with
line-search Jaggi (2013) as given in Algorithm 2. When working over polytopes, we can get
faster (linear) convergence by taking one non-drop step (defined below) of the away-step vari-
ant of the FW algorithm (AFW) Lacoste-Julien and Jaggi (2015), as described in Algorithm 1).

1An example of approximate minimization is taking one proximal gradient step, as used for example in the Linearized
ADMM algorithm (Goldfarb et al., 2013; Yang and Yuan, 2013). We replace this step with a FW one.
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FW Augmented Lagrangian method (FW-AL)
At each iteration t ≥ 1, we first update the primal variable blocks xt with a Frank-Wolfe step and then
update the dual multiplier yt using the updated primal variables:{

xt+1 = FW(xt;L(·,yt)) ,

yt+1 = yt + ηtMxt+1 ,
(2)

where ηt > 0 is the step size for the dual update and FW is either Alg. 1 or Alg. 2.

Algorithm 1 AFW: Lacoste-Julien and Jaggi (2015)

1: input: (xt,St, f)
2: while γmax < 1 (away step) do
3: st := LMO (∇f(xt))
4: vt ∈ arg maxv∈St 〈∇f(xt),v〉
5: if 〈−∇f(xt),vt + st − 2xt〉 ≥ 0 then
6: dt := st − xt and γmax := 1
7: else
8: dt := xt − vt and γmax := α

(t)
vt /(1− α

(t)
vt )

9: end if
10: Compute γt∈arg minγ∈[0,γmax] f (xt + γdt)
11: Update xt+1 := xt + γtdt
12: Update α(t+1)

v according to (1)
13: Update St+1 := {v ∈ A s.t. α

(t+1)
v > 0}

14: Update t← t+ 1
15: end while
16: return: (xt+1,St+1)

We denote by xt and yt the iterates computed by FW-AL
after t steps and by At the set of atoms previously given
by the FW oracle (including the initialization point). If
the constraint set is the convex hull of a set of atoms A,
the iterate xt has a sparse representation as a convex com-
bination of the first iterate and the atoms previously given
by the FW oracle. The set of atoms which appear in this
expansion with non-zero weight is called the active set St.
Similarly, yt is by construction in the cone generated by
{Mxs}s≤t, that is, they both have the sparse expansion:

xt =
∑
v∈St

α(t)
v v, and yt =

∑
v∈At

ξ(t)v Mv , (1)

When we choose to use the AFW Alg. 1 as inner loop al-
gorithm, it can choose an away direction to remove mass
from “bad” atoms in the active set, i.e. to reduce α(t)

v

for some v (see L8 of Alg. 1). On the other hand, the
maximal step size for an away step can be quite small (γmax = α(t)

v /1−α(t)
v , where α(t)

v is the weight of the away
vertex in (1)), yielding to arbitrary small suboptimality progress when the line-search is truncated to such small
step-sizes. A step removing an atom from the active set is called a drop step , Alg. 1 loops until it performs
one.One of the issue of ALM is that it is a non feasible method and consequently the usual suboptimality
convergence criterion is no longer a satisfying one (since it can be negative). In the following section we
wonder what could be the quantities to look at in order to get a sufficient condition of convergence.

Algorithm 2 FW: Frank and Wolfe (1956)

1: input: (xt, f)
2: Compute rt = ∇f(xt)
3: Compute st := arg min

s∈X
〈s, rt〉

4: γt ∈ arg minγ∈[0,1] f(xt + γ(st − xt))

5: Update xt+1 := (1− γ)xt + γst
6: return: xt+1

Convergence Measures. Variants of ALM update at each
iteration both the primal variable and the dual variable. For
the purpose of analyzing the popular ADMM algorithm,
Hong and Luo (2017) introduced two positives quantities
which they called primal and dual gaps that we re-use in
the analysis of our algorithm. Let xt and yt be the current
primal and dual variables after t iterations of the FW-AL al-
gorithm (2), the primal and dual gaps are respectively defined
as

∆
(d)
t := max

y∈Rd
d(y)− d(yt) where d(yt) := min

x∈X
L(x,yt) and ∆

(p)
t := L(xt+1,yt)− d(yt) . (3)

Notice that ∆
(p)
t is not the suboptimality associated with the primal function p(·) := maxy∈Rd L(·,y) (which

is infinite for every x non feasible). In this paper, we also define ∆t := ∆
(p)
t + ∆

(d)
t . It is important to realize

that since ALM is a non-feasible method, the standard convergence convex minimization certificates could
become meaningless. In particular, the quantity f(xt)− f∗ might be negative since xt does not necessarily
belong to the constraint set of (OPT).

Convergence over general convex sets. The GDMM algorithm of (Yen et al., 2016a,b; Huang et al., 2017)
relied on the assumption of X being polytope, hence we obtain from this sublinear decrease a completely new
result on ALM with FW. This result covers the case of the simultaneously sparse and low rank matrices where
the trace norm ball is not a polytope.
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Theorem 1 (Rate of FW-AL with Alg. 2). If X is a compact convex set, f is a L-smooth convex function and
if the affine hull of ∩Kk=1Xk is equal to the intersection of the affine hull of Xk then using Alg.2 in FW-AL and

ηt := min
{

2
λ ,

α2

2δ

}
2
t+2 implies that there exists a bounded t0 ≥ 0 such that,

∆t ≤
4δ(t0 + 2)

t+ 2
, min

t0≤s−1≤t
‖Mxs‖2 ≤

O(1)

t− t0 + 1
, ∀t ≥ t0 (4)

where D := maxx,x′∈X ‖x− x′‖ is the diameter of X , Lλ := L/K + 2λ the Lipschitz constant of L the AL
function, δ := LλD

2 and α is a positive constant depending on X . Moreover if f is µ-strongly convex, the
optimal set of (OPT) is reduced to a point, X ∗ = {x∗}, and,

min
t0≤s≤t

‖xt − x∗‖2 ≤ 4K

µ

O(1)

t− t0 + 1
,∀t ≥ t0 , (5)

Some bounds on t0 can be explicitly given with the constants introduced in this theorem.

Convergence over Polytopes. On the other hand, ifX is a polytope, recent advances on FW proposed global
linear convergence rates for a generalized strongly convex objective using FW with away steps (Lacoste-Julien
and Jaggi, 2015; Garber and Meshi, 2016). More precisely, we will use the fact that Algorithm 1 performs
geometric decrease (Lacoste-Julien and Jaggi, 2015, Theorem 1): for x+ := FW(x;L(·,y)), there exists
ρA < 1 such that for all x ∈ X and y ∈ Rd,

L(x+,y)− L(x,y) ≤ ρA
[

min
x′∈X

L(x′,y)− L(x,y)
]
. (6)

The constant ρA (Lacoste-Julien and Jaggi, 2015) depends on the smoothness, the generalized strong convexity
of L(·,y) (does not depend on y, but depends on M ) and the condition number of the set X depending on its
geometry.

Theorem 2 (Rate of FW-AL with inner loop Alg. 1). If X is a compact polytope, f is a L-smooth convex
function and if the affine hull of ∩Kk=1Xk is equal to the intersection of the affine hull of Xk then using Alg 1 as
inner loop and a constant step size ηt = λρA

4 , there exists t0 ∈ N such that the quantity ∆t decreases at least
by a uniform amount for finite number of steps t0 as,

∆t+1 −∆t ≤ −
λα2ρA

8
, (7)

until ∆t0 ≤ LλD2. Then we have that the gap and the feasibility violation decrease linearly as,

∆t ≤
∆t0

(1 + κ)t−t0
, ‖Mxt+1‖2 ≤

16

λ · ρA
∆t0

(1 + κ)t−t0
, ∀t ≥ t0 ,

where κ := ρA
2 min

{
1, λα2

4LλD2

}
, Lλ := L/K + 2λ and α a constant depending on X . Morever if f is

µ-strongly convex, the optimal set of (OPT) is reduced to a point, X ∗ = {x∗}, and,

‖xt+1 − x∗‖2 ≤ 2K∆t0(
√

2 + 1)

µ(
√

1 + κ)t−t0
, ∀t ≥ t0 . (8)

For an intersection of sets, the theorem above give stronger results than Yen et al. (2016b); Huang et al. (2017)
since we prove that the distance to the optimal point as well as the feasibility condition vanish linearly.
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