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Abstract

We design a stochastic first-order algorithm to train any smooth neural network to
ε-approximate local minima, using O(ε−3.25) backpropagations. The best result
was essentially O(ε−4) by SGD.
More broadly, it finds ε-approximate local minima of any smooth nonconvex
function in rate O(ε−3.25), with only oracle access to stochastic gradients.

1 Introduction
We study the fundamental problem of online stochastic nonconvex optimization:

minx∈Rd

{
f(x) := 1

n

∑n
i=1 fi(x)

}
(1.1)

where both f(·) and each fi(·) can be nonconvex. We want to study
online algorithms to find approximate local minimum of f(x).

Here, we say an algorithm is online if its complexity is independent of n. This tackles the big-data
scenarios when n is extremely large or even infinite.2

Nonconvex optimization arises prominently in large-scale machine learning (e.g. [7]). Most notably,
training deep neural networks corresponds to minimizing f(x) of this average structure: each training
sample i corresponds to one loss function fi(·) in the summation. This average structure allows
one to perform stochastic gradient descent (SGD) which uses a random ∇fi(x) —corresponding to
computing backpropagation once— to approximate∇f(x) and performs descent updates.
The standard goal of efficient nonconvex optimization is to find local minima, because finding the
global one is NP-hard. Experiments in [6, 4, 3] suggest that fast convergence to local minima may
be sufficient for training neural nets, while convergence to stationary points (i.e., points that may be
saddle points) is not. In other words, we need to escape from saddle points.

Escape from Saddle Points. Randomness naturally helps us escape from saddle points. For
instance, Ge et al. [5] showed the random noise incurred by stochastic gradients help SGD make
exploitation, and escape from saddle points. Jin et al. [8] showed that, when equipped with random
perturbation, full gradient descent (GD) also escapes from saddle points [8]. These results were
considered breakthroughs in machine learning, since they successfully explained why stochastic
methods perform so well in deep learning. Being easy to implement, however, SGD and GD are still
“blind” to the Hessian information of the function.
How can we more effectively use Hessian? Of course, in large-scale settings, we do not wish to
apply second-order methods, because even computing a d × d Hessian matrix may be unrealistic.
Fortunately, computing Hessian-vector product is usually computationally cheap.

∗Full version available at https://arxiv.org/abs/1708.08694.
2All of our results in this paper apply to the case when n is infinite, because we focus on online methods.

However, we still introduce n to simplify notations.
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Our Idea. Can we escape from saddle points using Hessian-vector products? For instance, instead
of naively using a random perturbation vector v, can we at least apply power method for a few
iterations on v, to obtain a better direction in the negative curvature of∇2f(x)?
In this paper, we find a YES answer to this question. In fact, the “correct” online variant of power
method is known as Oja’s algorithm [9]. Earlier this year, Allen-Zhu and Li showed that Oja’s
algorithm computes the minimum eigenvector of a matrix M = 1

n

∑n
i=1 Mi —up to an additive δ

error— using only Õ(δ−2) matrix-vector products of the form Mi · v. Therefore, we can use Oja’s
algorithm to find negative curvature of∇2f(x), using only Hessian-vector products.3

However, finding negative curvature is not enough. Even if x is a point where the Hessian∇2f(x)
has all eigenvalues above some small threshold −δ, its gradient∇f(x) may still be large. Thus, we
need to find a direction to further decrease f , using only first-order information. In other words, can
we design an online first-order method that makes use of the fact that δ is small?
In this paper, we also find a YES to this question. We propose a variance-reduction based online
method, that we call Natasha1.5, based on the offline method Natasha1 [1].
Finally, we combine Oja’s algorithm and Natasha1.5 to construct algorithm Natasha2, which finds
approximate local minima of f(x) using only T = O(ε−3.25) computations of stochastic gradients
and Hessian-vector products. Note that T is independent of n.
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