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Abstract

We propose some algorithms to find local minima in nonconvex optimization and to obtain
global minima in some degree from the Newton Second Law without friction. With the
key observation of the velocity observable and controllable in the motion, the algorithms
simulate the Newton Second Law without friction based on symplectic Euler scheme. From
the intuitive analysis of 1-D nonconvex function, we propose the experiments for strongly
convex function, non-strongly convex function and nonconvex function in high-dimension.

1 Introduction

From continuous-time limits, we can view the gradient-based method as ODEs. The gradient method is
correspondent to {

ẋ = −∇f(xk)
x(0) = x0,

(1)

and the momentum method and Nesterov accelerated gradient method are correspondent to{
ẍ+ γtẋ+∇f(x) = 0

x(0) = x0, ẋ(0) = 0,
(2)

the difference of which are the setting of the friction parameter γt.

We investigate the governing equation in a conservation force field in this paper, shown as below,{
ẍ = −∇f(x)
x(0) = x0, ẋ(0) = 0.

(3)

Based on the concept of phase space, the governing equation (3) can be rewritten as
ẋ = v

v̇ = −∇f(x)
x(0) = x0, v(0) = 0.

(4)

In this paper, we implement our discrete strategy on (4) with the utility of the observability and controllability
of the velocity, or the kinetic energy for two directions as below,

• Artifically Dissipating Energy Strategy: To look for local minima in non-convex function or global
minima in convex function, the kinetic energy, or the norm of the velocity, is compared with that in
the previous step, it will be re-set to zero until it becomes larger no longer.

• Energy Conservation Strategy: To look for global minima in non-convex function, an initial larger
velocity v(0) = v0 is implemented at the any initial position x(0) = x0. A ball is implemented
with (4), the local maximum of the kinetic energy is recorded to discern how many local minima
exists along the trajectory. Then implementing the strategy above to find the minimum of all the
local minima.

For implementing our thought in practice, we utilize the scheme in the numerical method for Hamiltonian
system, the symplectic Euler method. We remark that a more accuracy version is the Störmer-Verlet method
for practice.
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2 Symplectic Scheme and Algorithms

The first-order symplectic Euler scheme for (4) is shown as below{
xk+1 = xk + hvk+1

vk+1 = vk − h∇f(xk).
(5)

2.1 The Artifically Dissipating Energy Algorithm

Firstly, the artificially dissipating energy algorithm based on (5) is proposed as below.

Algorithm 1 Artifically Dissipating Energy Algorithm
1: Given a starting point x0 ∈ dom(f)
2: Initialize the step length h, maxiter, and the velocity variable v0 = 0
3: Initialize the iterative variable viter = v0
4: while ‖∇f(x)‖ > ε and k < maxiter do
5: Compute viter from the below equation in (5)
6: if ‖viter‖ ≤ ‖v‖ then
7: v = 0
8: else
9: v = viter

10: end if
11: Compute x from the above equation in (5)
12: xk = x;
13: f(xk) = f(x);
14: k = k + 1;
15: end while

Remark 2.1 In the actual algorithm 1, the codes in line 12 and 13 are not need in the while loop in order to
speed up the computation.

2.2 Energy Conservation Algorithm For Detecting Local Minima

Second, the energy conservation algorithm based on (5) is proposed as below.

Algorithm 2 Energy Conservation Algorithm
1: Given a starting point x0 ∈ dom(f)
2: Initialize the step size h and the maxiter
3: Initialize the velocity v0 > 0 and compute f(x0)
4: Compute the velocity x1 and v1 from the equation (5), and compute f(x1)
5: for k = 1 : n do
6: Compute xk+1 and vk+1 from (5)
7: Compute f(xk+1)
8: if ‖vk‖ ≥ ‖vk+1‖ and ‖vk‖ ≥ ‖vk−1‖ then
9: Record the position xk

10: end if
11: end for

Remark 2.2 In the algorithm 2, we can set v0 > 0 such that the total energy large enough to climb up some
high peak. Same as the algorithm 1, the function value f(x) is not need in the while loop in order to speed
up the computation.

2.2.1 The Simple Example For Illustration

Here, we use the non-convex function for illustration in figure 1 as below,

f(x) =


2 cos(x), x ∈ [0, 2π]

cos(x) + 1, x ∈ [2π, 4π]

3 cos(x)− 1, x ∈ [4π, 6π]

(6)
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which is the 2nd-order smooth function but not 3rd-order smooth.
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Figure 1: The Left: the step size h = 0.1 with 180 iterative times. The Right: the step size h = 0.3 with 61
iterative times.

3 Experimental Demonstration

In this section, we implement algorithm 1 and algorithm 2 into high-dimension data for comparison with
gradient method, momentum method and Nesterov accelerated gradient method.

3.1 Strongly Convex Function

Here, we investigate algorithm 1 on the strongly convex function by the quadratic function as below,

f(x) =
1

2
xTAx+ bTx, (7)

where A is symmetric and positive-definite matrix. The two cases are shown as below:

(a) The generative matrix A is 500 × 500 random positive define matrix with eigenvalue from 1e − 6
to 1 with one defined eigenvalue 1e− 6. The generative vector b follows i.i.d. Gaussian distribution
with mean 0 and variance 1.

(b) The generative matrix A is the notorious example in Nesterov’s book [Nesterov(2013)], i.e.,

A =


2 −1
−1 2 −1

. . . . . . . . .
−1 2


We implement dim(A) = 1000 and b is zero vector.
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Figure 2: The Left: the case (a) with the initial point x0 = 0. The Right: the case (b) with the initial point
x0 = 1000

3.2 Non-Strongly Convex Function

Here, we investigate algorithm 1 for the non-strongly convex function by the log-sum-exp function as below,

f(x) = ρ log

[
n∑

i=1

exp

(
〈ai, x〉 − bi

ρ

)]
(8)

where A is the m× n matrix with ai, (i = 1, . . . ,m) the column vector of A and b is the n× 1 vector with
component bi. ρ is the parameter. We show the experiment in (8): the matrix A = (aij)50×200 and the vector
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b = (bi)200×1 are set by the entry following i.i.d Standard Gaussian distribution for the paramter ρ = 5 and
ρ = 10.
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Figure 3: The convergence rate is shown from the initial point x0 = 0. The Left: ρ = 5; The Right: ρ = 10.

3.3 Non-convex Function

For the nonconvex function, we exploit classical test function, Styblinski-Tang function and Shekel function1,
to evaluate characteristics of optimization algorithms from general performance and precision. Firstly, we
investigate Styblinski-Tang function, i.e.

f(x) =
1

2

d∑
i=1

(
x4i − 16x2i + 5xi

)
(9)

to demonstrate the general performance to track the number of local minima by algorihtm 2 and then find the
local minima by algorithm 1.
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Figure 4: Detecting the number of the local minima of 2-D Styblinski-Tang function by algorithm 2 with step
length h = 0.01. The red points are recorded by algorithm 2 and the blue point are the local minima by algo-
rithm 1. The Left: The Initial Position (5, 5); The Right: The Initial Position (−5, 5).

Secondly, we demonstrate the numerical experiment on more complex Shekel function. Case m = 10, the
global minima at x? = (4, 4, 4, 4) is f(x?) = −10.5364. From the position (10, 10, 10, 10), the experimental
result with the step length h = 0.01 and the iterative times 3000 is shown as below

Detect Position (Algorithm 2)7.9977 5.9827 4.0225 2.7268 6.1849 6.2831 6.3929
7.9942 6.0007 3.8676 7.3588 6.0601 3.2421 1.9394
7.9977 5.9827 4.0225 2.7268 6.1849 6.2831 6.3929
7.9942 6.0007 3.8676 7.3588 6.0601 3.2421 1.9394


Detect value

(−5.1741 −2.8676 −7.9230 −1.5442 −2.4650 −1.3703 −1.7895)
Final position (Algorithm 1)7.9995 5.9990 4.0007 3.0009 5.9990 6.8999 5.9919

7.9994 5.9965 3.9995 7.0004 5.9965 3.4916 2.0224
7.9995 5.9990 4.0007 3.0009 5.9990 6.8999 5.9919
7.9994 5.9965 3.9995 7.0004 5.9965 3.4916 2.0224


Final value

(−5.1756 −2.8712 −10.5364 −2.7903 −2.8712 −2.3697 −2.6085)
1https://www.sfu.ca/ ssurjano/index.html
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4 Related Work

The history of gradient method for convex optimization can be back to the time of Euler and
Lagrange. However, since it is relatively cheaper to only calculate for first-order informa-
tion, this simplest and earliest method is still active in machine learning and nonconvex opti-
mization, such as the recent work [Ge et al.(2015)Ge, Huang, Jin, and Yuan, Anandkumar and Ge(2016),
Lee et al.(2016)Lee, Simchowitz, Jordan, and Recht, Hardt et al.(2016)Hardt, Ma, and Recht]. The natural
speedup algorithms are the momentum method first proposed in [Polyak(1964)] and Nesterov accelerated gra-
dient method first proposed in [Nesterov(1983)] and an improved version [Nesterov and Nemirovsky(1988)].
A acceleration algorithm similar as Nesterov accelerated gradient method, named as FISTA, is designed
to solve composition problems [Beck and Teboulle(2009)]. A related comprehensive work is proposed
in [Bubeck et al.(2015)].

The original momentum method, named as Polyak heavy ball method, is from the view of ODE
in [Polyak(1964)], which contains extremely rich physical intuitive ideas and mathematical theory. An
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extremely important work in application on machine learning is the backpropagation learning with mo-
mentum [Rumelhart et al.(1988)Rumelhart, Hinton, Williams, et al.]. Based on the thought of ODE, a lot
of understanding and application on the momentum method and Nesterov accelerated gradient meth-
ods have been proposed. In [Sutskever et al.(2013)Sutskever, Martens, Dahl, and Hinton], a well-designed
random initialization with momentum parameter algorithm is proposed to train both DNNs and RNNs.
A seminal deep insight from ODE to understand the intuition behind Nesterov scheme is proposed
in [Su et al.(2014)Su, Boyd, and Candes]. The understanding for momentum method based on the varia-
tion perspective is proposed on [Wibisono et al.(2016)Wibisono, Wilson, and Jordan], and the understanding
from Lyaponuv analysis is proposed in [Wilson et al.(2016)Wilson, Recht, and Jordan]. From the stability
theorem of ODE, the gradient method always converges to local minima in the sense of almost every-
where is proposed in [Lee et al.(2016)Lee, Simchowitz, Jordan, and Recht]. Analyzing and designing iter-
ative optimization algorithms built on integral quadratic constraints from robust control theory is proposed
in [Lessard et al.(2016)Lessard, Recht, and Packard].

Actually the “high momentum” phenomenon has been firstly observed in [O’donoghue and Candes(2015)]
for a restarting adaptive accelerating algorithm, and also the restarting scheme is proposed
by [Su et al.(2014)Su, Boyd, and Candes]. However, both works above utilize restarting scheme for an aux-
iliary tool to accelerate the algorithm based on friction. With the concept of phase space in mechanics, we
observe that the kinetic energy, or velocity, is controllable and utilizable parameter to find the local minima.
Without friction term, we can still find the local minima only by the velocity parameter. Based on this view,
the algorithm is proposed very easy to practice and propose the theoretical analysis. Meanwhile, the thought
can be generalized to nonconvex optimization to detect local minima along the trajectory of the particle.
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