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Abstract

Blind deconvolution is a fundamental problem, which asks to recover an unknown
kernel a0 ∈ Rk and activation signal x0 ∈ Rm from their convolution y = a0~x0 ∈
Rm. Unfortunately, this is an ill-posed problem in general. This paper focuses on
the short and sparse blind deconvolution problem, where the convolutional kernel
is short (k � m) and the activation signal is sparsely and randomly supported
(‖x0‖0 � m). This variant captures the structure of the convolutional signals in
several important application scenarios. In this paper, we normalize the kernel to
have unit Frobenius norm and then cast the blind deconvolution problem as a non-
convex optimization problem over the kernel sphere. We demonstrate that (i) in a
certain region of the sphere, each local optimum is close to some shift truncation
of the ground truth, and (ii) for a generic a0, when the sparsity rate θ . k−2/3

and number of measurementsm & poly (k), the proposed initialization method to-
gether with a proceeding second order algorithm recovers some shifted truncation
of the ground truth kernel.

1 Introduction

Blind deconvolution is the problem of recovering two unknown signals a0 and x0 from their con-
volution y = a0 ∗ x0. This is a fundamental problem which recurs in several fields. However, it is
ill-posed without further knowledge about the unknown signals, as there are infinitely many pairs
of signals (a,x) whose convolution equals a given observation y.
Many practical scenarios, including microscopy data analysis [CLC+17], neural spike sorting
[ETS11, Lew98], image deblurring [CL09, KH96], etc., admit a short-and-sparse convolution model,
in which the observed signal y ∈ Rm is the convolution of a short kernel a0 ∈ Rk (k � m) and ran-
dom and sparse activation coefficients x0 ∈ Rm (‖x0‖0 � m). Without loss of generality, we model
y as the circular convolution of a0 and x0: y = ã0 ~ x0. Here, ã0 = ιka0 ∈ Rm denotes the zero
paddedm-length version of a0; ιk : Rk → Rm is a zero padding operator that addsm − k zeros at
the end. Its adjoint ι∗k : Rm → Rk projects an m-dimensional vector into Rk by retaining only the
first k coordinates.
Because of the basic properties of a convolution operator, the sparse blind deconvolution (SBD)
problem exhibits a scaled-shift symmetry. Namely, for any nonzero scalar α and integer shift τ ,

y = (αsτ [ã0]) ~
(
α−1s−τ [x0]

)
. (1)

Here, s−τ [v] denotes the cyclic shift of a vector v by τ entries and can be expressed as

sτ [v](i) = v ([i− τ ]m) , ∀ i ∈ {1, · · · ,m} , (2)

with v ∈ Rk indexed as v = [v0, · · · , vk−1] and [·]m denoting the modulo operator ofm.
Clearly, this operation preserves the short-and-sparse structure of (a0,x0). This scaled-shift symmetry
raises challenges for computation, making straightforward convexification approaches ineffective,
and leading to a very complicated optimization landscape for nonconvex formulations. [ZLK+17]
considers a natural nonconvex formulation of blind deconvolution, in which the kernel a ∈ Rk
is constrained to have unit `2 norm. [ZLK+17] argues that this problem has well-structured local
optima, in the sense that every local optimum is close to some shift truncation of the ground truth. These
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local optima arise as (near) shift-truncations of the ground truth: the shifted and truncated kernel
ι∗ksτ [ã0] can be convolved with the sparse signal s−τ [x0] (shifted in the other direction) to produce
a near approximation to y that (ι∗ksτ [ã0]) ~ s−τ [x0] ≈ y. The presence of these local optima can be
viewed as a result of the shift symmetry of the convolution operator.1

In [ZLK+17], this geometric insight about local solutions is corroborated with experiments, but
rigorous proof is only available in the “dilute limit” in which the sparse coefficient signal x0 is
a single spike. In this paper, we consider a different objective function over the sphere Sk−1 and
demonstrate that even when x0 is relatively dense, every local minimum in a certain region of the
sphere is still close to a shift truncation ι∗ksτ [ã0] of the ground truth. Moreover, for a generic kernel
a0 ∈ Sk−1, if the sparsity rate θ . k−2/3 and the number of measurementm & poly(k), initializing
with a k-length window of y and applying any optimization method which (i) is a descent method,
and (ii) converges to a local minimizer under a strict saddle hypothesis [ABG07, GWY09], produces
a near shift-truncation of the ground truth.

2 Problem Formulation and Main Result

In the “short-and-sparse” deconvolution model, any k consecutive entries in y only depend on cor-
responding 2k − 1 consecutive entries in x0, i.e.,

yi =
[
yi−1, · · · , y[i+k−2]m

]T
=

k−1∑
τ=−(k−1)

x[i−1+τ ]m · ι
∗
ksτ [a0]. (3)

Therefore, the observation y = a0 ~ x0 can be equivalently expressed through following matrix
multiplication Y = A0X0. Here, Y ∈ Rk×m, A0 ∈ Rk×(2k−1), andX0 ∈ R(2k−1)×m are truncated
circulant matrices generated from y, ã0, and x0 respectively:

Y = ι∗kCy = [y1 · · · ym] (4)
A0 =

[
ι∗ks−(k−1)[ã0] · · · a0 · · · ι∗ksk−1[ã0]

]
, (5)

X0 = ι∗2k−1Csk[x0] = [x1 · · · xm] . (6)

with Cv ∈ Rm×m the circulant matrix generated from vector v, whose j-th column is a cyclic shift
sj−1[v] of the vector v as defined in Equation 2.
For the randomly and sparsely supported x0, we assume it follows the Bernoulli-Gaussian (BG)
model with rate θ: x0(i) = ωigi with ωi ∼ Ber (θ) and gi ∼ N (0, 1), with all the random variables
jointly independent. For simplicity, we write x0 ∼i.i.d. BG (θ). Note that each column xi of X0

only contains some 2k− 1 entries of x0, while each row ofX0 can be seen as some circularly shifted
version of the reversed x0.

2.1 Finding a Shifted Sparse Signal

Up to the shift ambiguity associated with the convolution operator, recovering any row ofX0 solves
the sparse blind deconvolution problem. Similar idea of casting the bilinear recovery problem as
finding sparse vector can be found in a lot of recentworks [SWW12, SQW15]. The problemof finding
a sparse vector in a subspace has been well studied in several recent works [QSW16, HSSS16]. This
motivates us to consider following objective function over the sphere Sk−1:

min
q∈Sk−1

ψ (q)
.
= − 1

4m

∥∥∥Y T
(
Y Y T

)−1/2
q
∥∥∥4
4
. (7)

Since Ex0∼i.i.d.BG(θ)

[
Y Y T

]
= θmA0A

T
0 , vector Y T

(
Y Y T

)−1/2
q is close to the convolution of

the observation x0 and A0

(
θmA0A

T
0

)−1/2
q, and maximizing the function ‖·‖44 encourages the

1For certain deconvolution problems in communications, the signals a0 and x0 can be assumed to reside
on linear subspaces which are incoherent or random [ARR12, LLJB17]. This model has different properties
from the short-and-sparse model; in particular, it does not admit a shift symmetry. Nonconvex optimization
approaches to this model have been studied in a number of recent theoretical and algorithmic works – see
[LLSW16] and references therein. Because of the very different symmetries (and different applications!) of this
model, these results are not directly comparable with ours.
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"spikiness" of the vector2. Intuitively, the objective function is going to be minimized when
Y T

(
Y Y T

)−1/2
q, orA0

(
A0A

T
0

)−1/2
q, is close to sparse. Note that the expectation of the objective

function ψ (q) can be approximated with the following

Ex0∼i.i.d.BG(θ)

[
1

m

∥∥∥Y T
(
A0A

T
0

)−1/2
q
∥∥∥4
4

]
= 3θ (1− θ)

∥∥ATq
∥∥4
4

+ 3θ2
∥∥ATq

∥∥4
2
, (8)

with A =
(
A0A

T
0

)−1/2
A0 = [a1, · · · ,a2k−1] and

∥∥ATq
∥∥
2

= 1. Hence for asymptotic function
landscape, we instead consider following surrogate objective function for simplicity:

min
q∈Rk−1

ϕ (q)
.
= −1

4

∥∥ATq
∥∥4
4
. (9)

2.2 Optimization Function Landscape

Investigating the optimization landscape for nonconvex problems usually involves delicate analysis
around stationary points. For our particular problem, in the region where the objective function
ϕ(q) is small, the objective landscape is particularly regular, and the critical points of ϕ can be char-
acterized explicitly. This region is given by

R .
=
{
q ∈ Sk−1 |

∥∥ATq
∥∥6
4
≥ Cµκ2

∥∥ATq
∥∥3
3

}
. (10)

Here, κ ≥ 1 is the condition number of A0, and µ is the column incoherence of A, given by µ .
=

maxi6=j |〈ai,aj〉|.3 Hence when restricted onR, the function landscape around a saddle point q̄ can
be characterized based on the number of nontrivial entries4 in ζ̄ = AT q̄:

• For any stationary point q̄ ∈ R as defined, then there must exist some entries of nontrivial
magnitude in ζ̄ = AT q̄;
• If q̄ is a stationary point and ζ̄ = AT q̄ only has one nontrivial entry ζl, then q̄ is one local
minimum near PS [al];
• If q̄ is a stationary point and ζ̄ = AT q̄ has more than one nontrivial entries, then the Rie-
mannian Hessian at q̄ has negative curvature in certain selected direction, then q̄ is saddle
point.

Therefore, each local optimum q̄ in regionR is close to PS [al] for some l, and
(
A0A

T
0

)1/2
q̄ is close

to a signed shift truncation of the ground truth a0 up to scale.5 For finite sample result, we prove
that above characterizations of the function geometry obtain when the observation size m is large
enough.

Theorem 2.1 (Main Result) Suppose observation y ∈ Rm is the circulant convolution of a0 ∈ Sk−1 and
x0 ∼i.i.d. BG (θ) ∈ Rm. Denote the condition number of A0 with κ ≥ 1, and the column incoherence of
A with µ. There exist constants C1, C2 > 0, wheneverm ≥ C1

(
θ − θ2

)−2
min

{
µ−2, κ4k3

}
k6 poly log k,

then with high probability, any local optima q̄ in the sublevel set ψ (q) ≤ −C2

(
µκ2

)2/3 satisfies
|〈q̄,PS [ai]〉| ≥ 1− C−12 κ−2 for some integer i.

Corollary 2.2 Suppose observation y ∈ Rm is the circulant convolution of a0 ∈ Sk−1 and
x0 ∼i.i.d. BG (θ) ∈ Rm, with θ ≤ c1µ

−2/3κ−4/3k−1
(
1 + µ2k

)−2 and signal length m ≥
C
(
θ − θ2

)−2
min

{
µ−2, κ4k3

}
k6 poly log k, then with high probability, Algorithm 1 recovers ā such that

‖ā± PS [ιksτ [ã0]]‖2 ≤ c2 for some shift τ . Here, c1 and c2 are small positive constants.

2Although the ‖·‖44 does not lead to strictly "sparse" signal, but serves as a reasonable replacement as well
as introduces easier theoretical analysis.

3For a generic unit a0, simulation suggests that κ ∼ log2 k, and µ ∼
√

log k/k.
4We call any ηi with magnitude smaller than 2µ ‖ζ‖33 / ‖ζ‖

4
4 to be trivial, and others to be nontrivial.

5Both the formulation and the result in this paper share some similarity with [GM17]. Globalizing the
result remains an open challenge for both problems. In the tensor decomposition problem, the optimization
landscape is highly symmetric as any local solution is equally good, while in blind deconvolution problem, the
landscape changes dramatically with respect to the ground truth a0.
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Algorithm 1 Short and Sparse Blind Deconvolution
Input: Observations y ∈ Rm and kernel size k.
Output: Recovered Kernel ā.
1: Generate random index i ∈ [1,m] and set qinit = PS

[(
Y Y T

)−1/2
yi

]
.

2: Solve ϕ (q) with a descent method that escapes strict saddle points and set the local optimum
q̄ = arg minq∈Sk−1 ψ (q)

3: Set ā = PS

[(
Y Y T

)1/2
q̄
]
.

This result shows that the property every local solution is close to some shift truncation of the ground
truth holds for relative dense x0. It provides theoretical corroboration for the two stage algorithm
proposed in [ZLK+17].

3 Experiment
Phase Transition for Algorithm 1 We present the performance of Algorithm 1 under varying
settings. We define the recover error as err = 1−maxi |〈ā,PS [ι∗ksi[ã0]]〉|, and calculate the average
error from 50 independent experiments. The left figure plots the average error when we fix the
kernel size k = 50 and change the dimension m and the sparsity θ of x0.6 The right figure plots
the average error when we change the dimensions k,m of both convolution signals, and set sparsity
θ = k−2/3.
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Figure 1: Phase Transition
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