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Abstract

We consider the minimization of an objective function given access to unbiased estimates of
its gradient through stochastic gradient descent (SGD) with constant step-size. While the
detailed analysis was only performed for quadratic functions, we provide an explicit asymp-
totic expansion of the moments of the averaged SGD iterates that outlines the dependence
on initial conditions, the effect of noise and the step-size, as well as the lack of convergence
in the general (non-quadratic) case. For this analysis, we bring tools from Markov chain
theory into the analysis of stochastic gradient. We then show that Richardson-Romberg
extrapolation may be used to get closer to the global optimum and we show empirical
improvements of the new extrapolation scheme.

1 Introduction

We consider the minimization of an objective function given access to unbiased estimates of the function
gradients. This key methodological problem has raised interest in different communities: in large-scale
machine learning [4, 17, 18], optimization [10, 11], and stochastic approximation [6, 13, 16]. The most widely
used algorithms are stochastic gradient descent (SGD), a.k.a. Robbins-Monro algorithm [15], and some of its
modifications based on averaging of the iterates [13, 14, 19].

While the choice of the step-size may be done robustly in the deterministic case [see, e.g., 3], this remains a
traditional theoretical and practical issue in the stochastic case. Indeed, early work suggested to use step-size
decaying with the number % of iterations as O(1/k) [15], but it appeared to be non-robust to ill-conditioning
and slower decays such as O(1/ \/E) together with averaging lead to both good practical and theoretical
performance [1].

We consider in this paper constant step-size SGD, which is often used in practice. Although the algorithm is not
converging in general to the global optimum of the objective function, constant step-sizes come with benefits:
(a) there is single parameter value to set as opposed to the several choices of parameters to deal with decaying
step-sizes, e.g., as 1/(0k + A)°; the initial conditions are forgotten exponentially fast for well-conditioned
(e.g., strongly convex) problems [8, 9], and the performance, although not optimal, is sufficient in practice (in
a machine learning set-up, being only 0.1% away from the optimal prediction often does not matter).

The main goals of this paper are (a) to gain a complete understanding of the properties of constant-step-size
SGD in the strongly convex case, and (b) to propose provable improvements to get closer to the optimum
when precision matters or in high-dimensional settings. We consider the iterates of the SGD recursion on R?
defined starting from 6y € RY, for k > 0, and a step-size v > 0 by

9’(61)1 _ GI(CV) o 7[f’(91(3)) + 5k+1(9;(j))] ’ (D)

where f is the objective function to minimize (in machine learning the generalization performance), €1 (9,(:))
the zero-mean statistically independent noise (in machine learning, obtained from a single i.i.d. observation
of a data point). Following Bach and Moulines [2], we leverage the property that the sequence of iterates

(9;(:))1!«20 is an homogeneous Markov chain.

This interpretation allows us to capture the general behavior of the algorithm. In the strongly convex case, this
Markov chain converges exponentially fast to the unique stationary distribution 7., highlighting the facts that
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Figure 1: (Left) Convergence of iterates 9,(67) and averaged iterates é,@ to the mean 97 under the stationary
distribution ,. (Right) Richardson-Romberg extrapolation, the disks are of radius O(~?).

(a) initial conditions of the algorithms are forgotten quickly and (b) the algorithm does not converge to a point
but oscillates around the mean of 7. See an illustration in Figure 1 (left). It is known that the oscillations of
the non-averaged iterates have an average magnitude of /2 [12].

ko p(v)

— j:O QJ —

conditions on the Markov chain (0,(3) )k>0, a central limit theorem on (0,(3) )k>0 holds which implies that 9](3)
converges at rate O(1/vk) to 6., := [o, ¥ dm (V) .

Consider the average process (A\"))x> given forall k > 0 by 61" = D . Then under appropriate

The deviation between é,(cw and the global optimum 6, is thus composed of a stochastic part 97,(3) — év and a
deterministic part 6, — ..

For quadratic functions, it turns out that the deterministic part vanishes [2], that is, é.y = 0, and thus averaged
SGD with a constant step-size does converge. However, it is not true for general objective functions where
we can only show that 6, — 6, = O(vy), and this deviation is the reason why constant step-size SGD is not
convergent.

The first main contribution of the paper is to provide an explicit asymptotic expansion that highlights all
dependencies on initial conditions and noise variance, as achieved for least-squares [5], with an explicit
decomposition into “bias” and “variance” terms: the bias term characterizes how fast initial conditions are
forgotten and thus is increasing in a well-chosen norm of 6y — 6,.; while the variance term characterizes the
effect of the noise in the gradient, independently of the starting point, and increases with the covariance of the
noise.

Moreover, akin to weak error results for ergodic diffusions, we achieve a non-asymptotic weak error expansion
in the step-size between 7, and the Dirac at 6,. Namely, we prove that for all functions g : R — R,
regular enough, [, g(0)dm,(0) = g(6.) +~C + O(~?) for some C' € R? independent of ~y. Especially, for
g = Id, we get 677 = 0, + vA + O(4?). Given this expansion, we can now use a very simple trick from

numerical analysis, namely Richardson-Romberg extrapolation [20]: if we run two SGD recursions (9,9));@0

and (9,(627))@0 with the two different step-sizes  and 2+, then the averaged iterates (5,@%20 and (é,gQV)) k>0
will converge to ., and s, respectively. Since 6, = 0, + A + O(¥?) and O, = 0, + 2yA + O(~?), for

A € R4 independent of v, the combined iterate 25,(:) — 67,(62’” will converge to a point which is 6, + O(~?)
and we have thus gained one order in the convergence rate. See illustration in Figure 1 (right).

Contributions. Under simple assumptions, we prove the existence of a limit distribution 7., and convergence

in distribution of 9,(]) to 7 at linear rate (§ 2.1). This allows to analyze and describe the position of 6, with
respect to 6, (§ 2.2), and to provide an asymptotic expansion of the mean squared distance of the averaged
SGD iterate to 6., that outlines the dependence on initial conditions, the effect of noise and the step-size (§2.3).
We illustrate empirical improvements of the extrapolation scheme on artificial datasets (§2.4).

2 Main results

Assumptions. Let f : R? — R be an objective function, satisfying the following assumptions: we assume
the function f to be strongly convex with strong convexity constant y, (i.e., f — &|| - ||* is convex); and that f
is five times continuously differentiable with uniformly second to fifth bounded derivatives. Especially f is
L-smooth: V6 € R?, the largest eigenvalue of f”() is less than L.



Regarding the sequence of random functions (g4 )x>1 (in Eq. (1)), we assume that there exists a filtration
(F)k>o0 (ie., forall k € N, F, C Fj11) on some probability space (€2, F, P) such that for any k& € N, for
any 6 € R, 4,1 (0) is an Fy ;-measurable random variable and E [ 41 (6)|F%] = 0. In addition, (g4 )ken-
are independent and identically distributed (i.i.d.) random fields. Finally, €4 (6,) admits bounded moments up

to the order 4: E/4[||e4(6,)]|*] < oo

We observe a noisy gradient fk+1( ) = f’( ) + €k+1(9,(€7)) which is an unbiased estimator of f’.
We assume that for any & € N*, f; is almost surely L-co-coercive [22]: that is, for any 1,6 € RY,

L{f1(0) — fi.(m),0 —n) > || f(0) — fr(m)|>.

Example: learning from i.i.d. observations. Our main motivation comes from machine learning; namely,
we consider sets X', ), and a convex loss function £ : X x ) X ReY — R. The objective function is the
generalization error f;(0) = Ex y[((X,Y,0)]. Given n € N i.i.d. observations (zx,yx)re[1:n]> for any
k € [1;n], we define fi(-) = ¢(xk, yx, ) the loss with respect to observation k. SGD then corresponds to
following gradient of the loss on a single independent observation (z, yx)r>1 at each step. Assumption on
the noise is then satisfied with 7y, := o((x;,y;)1<;j<k). In least-squares regression, X = R%, ) = R, and
the loss function is (X, Y, 0) = ((X,6) — Y)?, and the function f; is then quadratic. In logistic regression,
U(X,Y,6) = log(1 + exp(~Y (X, 6))).

2.1. Limit distribution. A first step is to prove the existence of a unique stationary distribution 7, for the

Markov chain (9(7));€>0 and convergence to 7. A fundamental tool in Markov chain theory is the Markov
kernel [7], which is the equivalent for continuous spaces of the transition matrix in finite state spaces.

Markov kernel. We denote IR, the Markov kernel associated with the SGD iterates (9( ))k>0 For all starting

points § € R%, for k € N, 65 R¥ is the distribution of 9(7 starting at §. Moreover, for a function ¢ : R? — RY
we define REp : R? — R?, such that REp : 0 — [, o(n){de RE (dn)}.

To show that (9,&7) )k>0 admits a unique stationary distribution 7~ and describe the convergence of (Jg R,’j)k >0
to 7., we use the Wasserstein distance Ws [21].

Theorem 1. For any step size v < L™!, the Markov chain (9,(:));620, defined by the recursion (1), admits a
unique stationary distribution 7., with finite second order moment. In addition for all 0 € R% k€ N:

W@ RS ) < (1= 21 =L))o= 0] am (9).

To prove the existence of the limit, one shows that for any 6 € R?, (59R§)k20 is a Cauchy sequence in a
particular Polish space. The existence of this limit allows to analyze the behavior of the chain under the
limit distribution and the position of the limit point. Moreover, the speed of convergence allows so show
the existence of solutions to the Poisson equation, that characterize the speed of convergence of the bias and
variance term.

2.2. Behavior under the limit distribution, expansion of 57 around 0., as v — 0. When f is a quadratic
function, @W = #,. Indeed, since 7r7 is invariant for (9,(3))@0, if 9(()”) is distributed according to 7,
then so is 9 . Thus as 9(7) = 9 —~f ( ) + 751(9(7)) taking expectations on both sides leads to
fRd d7rq, 19) = 0. Fora quadratlc functlon the gradient is linear: [, f'(9)dm, (9) = f'(0,) = 0, thus

0, = 9 This highlights the crucial fact that for a quadratic function, the mean under the limit distribution is
the optimal point, which explains why averaged least-mean squares algorithm does not saturate with constant
step size [2]. If f is not quadratic but regular enough, we have the following first order development:

Theorem 2. For~y — 0, we have 0., = 0, +yA + O(¥?) .

Combining Theorems 1 and 2, we get that for v small enough and all k£ > 1, E(é,@ —0,) = W +vA +

O(7?) + O(e~k#7). This expansion in the step size v shows that a Richardson-Romberg extrapolation can

be used to have better estimates of 6. Consider the average iterates (5& ))k >0 and (9( ))k>0 associated with

SGD with step size 2y and y respectively. Then

2A(907 rY) — A(GOa 27)
k

E(2 9(7) 9]37) 0,) = + O(’y2) + O(e—k/L’Y) ,



and therefore this very simple trick improves the convergence by a factor of . In practice, while the un-
averaged gradient iterate 0,(:) saturates rapidly, 5,(]) may already perform well enough to avoid saturation on
o gl(fv)

real data-sets [2], and Richardson-Romberg extrapolated iterate 29,27) rarely reaches saturation.

2.3. Expansion for a given v > 0 when k tends to +-0o. We also show that the convergence of @,(j) to 0.,

when k — oo, and the decay of E[||§,gw — 0.,]|%] to 0 can be described very precisely. The expected squared
distance decomposes as a sum of a bias term, that scales as k2 and depends on the starting point 6, plus a
variance term, that scales as k~! and only depends on the asymptotic distribution 7., plus linearly decaying
residual terms. The asymptotic bias and variance can be easily expressed as moments of solutions to several
Poisson equations.

Poisson equation. For any (locally-) Lipschitz function ¢ : RY — RY, there exists a function Py R? — RY
that satisfies 7, () = 0, and (I — R, )1, = . We call it Poisson solution associated with . Let ), x} and

x2 be the Poisson solutions associated respectively to 6 — 6 — 0., 6 — [|¢+(0) |* and 6 > |(¥y — ©)(8) 112

Theorem 3 (Convergence of the Markov chain). Lety € (0,1/(2L)). For any starting point 6, € R?, with
pi=(1—yp)t/2

+0(p") .

- Egur, [104(0)1 = (95 — )OI L I 001 + x4 00) ~360)

() _ g
E HO’C — b k =
When fx is a quadratic function, it is possible, for any v > 0, to compute v, and X#,z explicitly; we exactly
recover the result of Défossez and Bach [5].

2.4. Experiments. For the sake of illustration, we perform experi-
ments on simulated data, for logistic regression, with n = 107 obser-
vations, for d = 10 (Fig. 2). We consider SGD with constant step-sizes
1/R?,1/2R? (and 1/4R?) with (plain lines) or without (dashed lines)
averaging, with R? the smoothness constant. Without averaging , the
chain saturates with an error proportional to v . We consider Richard-
son Romberg iterates (red), which saturate at a much lower level, and
performs much better than decaying step sizes (as 1/y/n) on the first
iterations, as it forgets the initial conditions faster. We also propose an
estimator that uses 3 different step sizes to perform a higher order inter-

polation. More precisely, we compute 63 := %5,27) - 2@,&27) + %5,&4”.

With such an estimator, the first 2 terms in the expansion vanish, scaling
as ~y and 2.

—1/R?
—1/2R?
—1/4R?
51 —1/2R%*/n
—Richardson
-6 Richardson 3~y

logyo [f(0) — £(6.)]

0 2 4 6

logyo(n)
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