“Active-set complexity” of proximal gradient:
How long does it take to find the sparsity pattern?
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Abstract

Proximal gradient methods have been found to be highly effective for solving minimization
problems with non-negative constraints or L1-regularization. Under suitable nondegeneracy
conditions, it is known that these algorithms identify the optimal sparsity pattern for these
types of problems in a finite number of iterations. However, it is not known how many
iterations this may take. We introduce the notion of the “active-set complexity”, which in
these cases is the number of iterations before an algorithm is guaranteed to have identified
the final sparsity pattern. We further give a bound on the active-set complexity of proximal
gradient methods in the common case of minimizing the sum of a strongly-convex smooth
function and a separable convex non-smooth function.

1 Motivation

We consider the problem
L 1
minimize  f(z) + g(2), (D
where f is u-strongly convex and the gradient V f is L-Lipschitz continuous. We assume that g is a separable
function,

g(@) = gi(z:),
=1

and each g; only needs to be convex and lower semi-continuous (it may be non-smooth or infinite at some x;).
In machine learning, a common choice of f is the squared error f(x) = %”AQ? — b||? (or an L2-regularized
variant to guarantee strong-convexity). A common choice of the g; is a scaled absolute value function
gi(x;) = A|z;|, which yields a sparsity-encouraging L1-regularization term. The g; can also enforce bound
constraints, such as the x; must be non-negative, by defining g;(z;) to be an indicator function that is zero if

the constraints are satisfied and oo otherwise.

One of most widely-used methods for minimizing functions of this form is the proximal gradient (PG) method,
which uses an iteration update given by

1

2F = prox (;vk - LVf(xk)> )
where the proximal operator is defined as

ox,., () = argmin |y — | + 7 g(y)

rox. (x) = argmin —|ly — x - .
prox., gy oIy 79

When the proximal gradient method is applied with non-negative constraints or L1-regularization, an interesting
property of the method is that the iterations 2* will match the sparsity pattern of the solution z* for all
sufficiently large %k (under a mild technical condition). Thus, after a finite number of iterations the algorithm
“identifies” the final set of non-zero variables. This is useful if we are only using the algorithm to find the

sparsity pattern, since it means we do not need to run the algorithm to convergence. It is also useful in
designing faster algorithms: after we have identified the set of non-zero variables we could switch to a more
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sophisticated solver like Newton’s method applied to the non-zero variables. In any case, we should expect the
algorithm to converge faster after identifying the final sparsity pattern, since it will effectively be optimizing
over a lower-dimensional subspace.

These ideas date back at least 40 years to the work of Bertsekas [1976] who showed that the projected gradient
method identifies the sparsity pattern in a finite number of iterations when using non-negative constraints (and
suggests we could then switch to a superlinearly convergent unconstrained optimizer). Subsequent works have
shown that this idea is true in much more general settings including cases where g is non-separable, where
f may not be convex, and even where the constraints may not be convex [Burke and Moré, 1988, Wright,
1993, Hare and Lewis, 2004, Hare, 2011]. The active-set identification property has also been shown for other
algorithms like certain coordinate descent and stochastic gradient methods [Mifflin and Sagastizdbal, 2002,
Wright, 2012, Lee and Wright, 2012].

Although these prior works show that the active-set identification must happen after some finite number of
iterations, they only show that this happens asymptotically. In this work, we introduce the notion of the
“active-set complexity” of an algorithm, which we define as the number of iterations required before an
algorithm is guaranteed to have reached the active-set. We further give bounds, under the assumptions above
and the standard nondegeneracy condition, on the active-set complexity of the proximal gradient method.

2 Notation and Assumptions

We assume that f is u-strongly convex so that for some p > 0, we have
7
F) = f(@) + (Vf(@),y —2) + Sy —=[?, forallz,y € R",
Further, we assume that its gradient V f is L-Lipschitz continuous, meaning that

IVf(y) = V(@) <Llly—=|, forallz,yeR". 2)
By our separability assumption on g, the subdifferential of g is simply the concatenation of the sub-differentials
of each g;. Further, the subdifferential of each individual g; at any x; € IR is defined by
0gi(z;) ={veR:gi(y) > gi(x;) +v- (y — x;), forall y € dom g;},

which implies that the subdifferential of each g; is just an interval on the real line. In particular, the interior of
the subdifferential of each g; at x; can be written as an open interval,

intagi(xi) = (l“uz), 3)

where [; € R U {—o0} and u; € IR U {oo} (the co values occur if x; is at its lower or upper bound,
respectively).

As in existing literature on active-set identification [Hare and Lewis, 2004], we require the nondegeneracy
condition that —V f(z*) must be in the “relative interior” of the subdifferential of g at the solution z*. For
simplicity, we present the nondegeneracy condition for the special case of (1).

Definition 1. A solution x* of the problem (1) is nondegenerate if and only if

=V.if(z*) =V,g(z¥)  if0g:(x}) is a singleton (g; is smooth at x)
—V.if(z*) € int0g;(x}) if Ogi(x}) is not a singleton (g; is non-smooth at x}).

In the case of non-negative constraints, this requires that V; f (x*) > 0 for all variables ¢ that are zero at the
solution (z} = 0). For L1-regularization, this requires that |V, f(z*)| < A for all variables i that are zero at
the solution, which is again a strict complementarity condition [De Santis et al., 2016].

Definition 2. The active-set Z for a separable g is defined as
Z = {i: 0g;(x}) is not a singleton}.

By the above definition and recalling the interior of the subdifferential of g; as defined in (3), the set Z
includes indices 7 where x; is equal to the lower bound on z;, is equal to the upper bound on z;, or occurs
at a non-smooth value of g;. Formally, the active-set identification property for this problem is that for all
sufficiently large k we have that z¥ = x} forall i € Z.

"Note that |V f(z*)| < A for all i with 2} = 0 follows from the optimality conditions, so this assumption simply
rules out the case where |V, f(z])| = A.



3 Finite-Time Active-Set Identification

In this section we show that the PG method identifies the active-set of (1) in a finite number of iterations.
Although this result follows from the more general results in the literature, by focusing on (1) we give a
substantially simpler proof that will allow us to bound the active-set iteration complexity of the method.

Before proceeding to our main contributions, we note that our assumptions imply that the iterates converge to
the (unique) solution z* with a linear rate [Schmidt et al., 2011],

k
L . 1 "
ot~ < (1= 1) I =l @

where & is the condition number of f. An important quantity in our analysis is the minimum distance to the
nearest boundary of the subdifferential (3) among indices ¢ € Z. This quantity is given by

6= min {min{—V; f(2") — lj,u; + Vi f(2")}}. 5)

Our argument essentially states that ||z — x*|| is eventually always less then §/2L, and at this point the
algorithm always sets z¥ to 2} for all i € Z.

Lemma 1. Suppose we apply the proximal gradient method with a step-size of 1/ L to problem (1), under the
assumptions discussed in the introduction. If the solution x* is nondegenerate then there exists a k such that
forall k > k we have z¥ = x foralli € Z.

Proof. By the definition of the proximal gradient step and the separability of g, for all ¢ we have

1 1 !
k+1 : S kE_ ~ . k .
z; " € argmin { 5 ‘y <xl Lvlf(x )> + Lgl(y)} .

Y

This problem is strongly-convex, and its unique solution satisfies
1
0€y—af +Vif (") + 7 00i(y),

or equivalently that

L(z} —y) — Vif(2") € 0gi(y). (6)
By the bound on the proximal gradient iterates (4), there exists a minimum finite iterate k such that
|zF — 2*|| < 8/2L. Since |z¥ — 7| < ||#* — 2*|), this implies that for all k¥ > k we have

—6/2L < x¥ — ¥ < /2L, foralli. (7)

Further, the Lipschitz continuity of V f in (2) implies that we also have
Vif (") = Vif ()] < [Vf (") = V@)

< Lfja* — ¥
<4/2,
which implies that
—3/2 = Vif(z*) < =V,if(a") < §/2 — Vif(z*). (8)

To complete the proof it is sufficient to show that for any k > k and i € Z that y = x} satisfies (6). Since
the solution to (6) is unique, this will imply the desired result. We first show that the left-side is less than the
upper limit u; of the interval dg;(x}),

Lz} —a7) = Vif(a*) <6/2 =V, f(a¥) (right-side of (7))
<6—=V,f(z") (right-side of (8))
< (u; + Vif(z*)) = Vif(z") (definition of 6, (5))
S Uj .

We can use the left-sides of (7) and (8) and an analogous sequence of inequalities to show that
L(zf — 2¥) — V,f(2¥) > I;, implying that x} solves (6). O

7



4 Active-set complexity

The property shown in the previous section could also be shown using the more sophisticated tools used in
related works [Burke and Moré, 1988, Hare and Lewis, 2004]. However, an appealing aspect of the simple
argument above is that it is clear how to bound the active-set complexity of the method. In particular, the proof
shows that the active-set identification occurs whenever the inequality ||z — z*|| < §/2L is satisfied. By
using that (1 — x)¥ < exp(—xk), the linear convergence rate (4) implies the following result.

Corollary 1. The active-set will be identified after at most k log(2L||z° — x*||/0) iterations.

Considering our introductory statements, we have two special cases. First,

if g; are non-negative constraints, then § = mig Vif(z"). )
1€
Second,
if g is the L1-regularization function, then 6 = A — max (Vi f(x")]. (10)
1€

In the first case we identify the non-zero variables after x log(2L||z° — z*||/ min;c z V; f(z*)) iterations.
If this minimum is zero then we may approach the active-set through the interior of the constraint and
the active-set may never be identified (this is the purpose of the nondegeneracy condition). Similarly, for
L1-regularization this result also gives an upper bound on how long it takes to identify the sparsity pattern.

It is interesting to note that this bound only depends logarithmically on §, and that if d is quite large then we
can expect to identify the active-set very quickly. We note that the argument can also be modified to use other
step-sizes, provided that we can write the algorithm in terms of a step-size that is guaranteed to be bounded
from below. The argument can also be modified to analyze coordinate descent methods, provided that we can
guarantee that all coordinates ¢ € Z that are not already active are eventually selected by the method for some
k> k.
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