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Abstract

We extend the Frank-Wolfe (FW) optimization algorithm to solve constrained
smooth convex-concave saddle point (SP) problems. Remarkably, the method only
requires access to linear minimization oracles. Leveraging recent advances in FW
optimization, we provide the first proof of convergence of a FW-type saddle point
solver over polytopes, thereby partially answering a 30 year-old conjecture. We
verify our convergence rates empirically and observe convergence under more
general conditions with a heuristic step-size, paving the way for future work.

1 Introduction

The Frank-Wolfe (FW) optimization algorithm [7], also known as the conditional gradient method [5],
is a first-order method for smooth constrained optimization over a compact set. It has recently enjoyed
a surge in popularity thanks to its ability to cheaply exploit the structured constraint sets appearing
in machine learning applications [12, 15]. A known forte of FW is that it only requires access to a
linear minimization oracle (LMO) over the constraint set, i.e., the ability to minimize linear functions
over the set, in contrast to projected gradient methods which require the minimization of quadratic
functions or other nonlinear functions. In this paper, we extend the applicability of the FW algorithm
to solve the following convex-concave saddle point (SP) problems:

min max £(z, y), with only access to LMO(r) € argmin (s,r), (1)
zeEX yey SEXXY
where L is a smooth (with L-Lipschitz continuous gradient) convex-concave function, that is, L(-,y)
is convex for all y € Y and L(=x, -) is concave for all x € X. We also assume that X x ) is a
convex compact set such that its LMO is cheap to compute. A saddle point solution to (1) is a pair
(z*,y*) € X x Y [10, VIL4] such that:

L(z*,y) < L(x",y") < L(z,y*) Ve X, Vye. )

Examples of saddle point problems. Taskar et al. [21] cast the maximum-margin estimation of
structured output models as a bilinear saddle point problem £(z,y) = x ' My, where X is the
regularized set of parameters and ) is an encoding of the set of possible structured outputs. They
considered settings where projection on X and ) were efficient but one can imagine many situations
where only LMO’s are efficient. For example, we could use a structured sparsity inducing norm [18]
for the parameter x, such as the overlapping group lasso for which the projection is expensive [2],
while ) could be a combinatorial object such as a the ground state of a planar Ising model (without
external field) which admits an efficient oracle [3] but has potentially intractable projection. Similarly,
two-player games [22] can often be solved as bilinear minimax problems. In situations such as the
Matching Duel [1], the strategy space is intractably large and defined by an exponential number of
linear constraints. Fortunately, some linear minimization oracles such as the blossom algorithm [6]
can efficiently optimize over matching polytopes despite an exponential number of linear constraints.

Related work. The standard approaches to solve smooth constrained SP problems are projection-
type methods (surveyed in Xiu and Zhang [23]), with in particular variations of Korpelevich’s
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extragradient method [14], such as [19] which was used to solve the structured prediction problem [21]
mentioned above. There is surprisingly little work on FW-type methods for saddle point problems,
although they were briefly considered for the more general variational inequality problem (VIP):

find z* € Z st (r(z%),z—2z") >0 forallz € Z, (3)

where 7 is a Lipschitz mapping from RP? to itself and Z C R?. By using Z = X x Y and r(z) =
(VoL(z),—VyL(2z)), (3) reduces to the equivalent optimality conditions for the SP problem (1).
Hammond [9] showed that a FW algorithm with a step size of O(1/t) converges for the VIP (3) when
the set Z is strongly convex, while FW with a generalized line-search on a saddle point problem is
sometimes non-convergent when Z is a polytope (see also [20, § 3.1.1]). She conjectured though that
using a step size of O(1/t) was also convergent when Z is a polytope — a problem left open up to
this point. More recently, Juditsky and Nemirovski [13] (see also Cox et al. [4]) proposed a method
to transform a VIP on Z where one has only access to a LMO, to a “dual” VIP on which they can use
a projection-type method. Lan [16] proposes to solve the SP problem (1) by running FW on X" on
the smoothed version of the problem maxycy L£(x,y), thus requiring a projection oracle on Y. In
contrast, in this paper we study simple approaches that do not require any transformations of (1) nor
any projection oracle on X" or ).

Contributions. In § 2, we extend several variants of the FW algorithm to solve the saddle point
problem (1) that we think could be of interest to the machine learning community. In § 3, we state
our convergence results for these methods over polytope domains giving a partial answer to the
conjecture from Hammond [9]. We finally present illustrative experiments for our theory noticing
that the convergence theory is still incomplete for these methods.

2 Saddle point Frank-Wolfe Algorithm 1 Saddle point FW algorithm

. 0) = (£(0) 4O
The algorithms. This paper will explore two ; g: tz —0. (wT d;)y Jexxy
SP extensions of the classical Frank-Wolfe algo- Vo L(x®,y®)
—Vyﬁ(sc(t), (®)
(

rithm which are summarized in Algorithm 1 and 3 Compute r") := ( y
t)>

Algorithm 2. In the following the point com-

. t ~
puted by these algorithms after ¢ steps will be 4~ Compute s e ilégXH::?} (z,7
noted () = ("), y®)). We first obtain the
’ . . 5: C t = () _ g(t) (1)
saddle point FW (SP-FW) algorithm by simul- . Lomplie g,t 1 <ZV 5 i Z
taneously doing a FW update on both convex 6: ety = Himl( ’ fgt) or 'yt_ 2+t ,
functions £(-,y®) and —L(x®,-) withaprop- 7  Update 200 = (1= 9)z() 4 7s®
8: end for

erly chosen step size. Hence the point z(*) has
a sparse representation as a convex combination
of the points previously given by the oracle. This set of points is called active set. If we assume that
X and Y are the convex hulls of two finite sets of points .4 and B, we can also extend the away-step
Frank-Wolfe (AFW) algorithm [15] to saddle point problems. As for AFW, this new algorithm
is able to remove mass from “bad" atoms in the active set to avoid the zig-zagging problem that
slows down standard FW [15]. Because of the special product structure of the domain, we consider
more away directions than proposed in [15] for AFW. Namely, for every corner v = (v, vy)
and v' = (v, v;) already picked, z — v, (y — v,) is a feasible direction in X' (). Thus every
combination (x — v,y — v, ) is a feasible direction even if this particular pair of corners have never
been picked together. We thus maintain the iterates on X and ) as independent convex combination
of their respective active sets of corners (Line 13 of Algorithm 2), i.e., () = ZvT esth O, Uz (and

similarly for y®)).

The proposed algorithms preserve several nice properties of previous FW methods (in addition to only
requiring LMO’s): simplicity of implementation, affine invariance [12], gap certificates computed for
free, sparse representation of the iterates and the possibility to have adaptive step sizes using the gap.

The suboptimality error and the gap. We define the following suboptimality error h; for our
saddle point problem:
W .= argmin £(z, y*)
he = L(x®, 50 — £@®, y®),  where per 4)
' ( ) ( ) 7" .= argmax L(z") | y).
yey



Algorithm 2 Saddle point away-step Frank-Wolfe algorithm: SP-AFW (z(?) | A x B, ¢)

1: Let 20 = (29, 4(©)) € A x B, SO = {x(®} and 8150) = {y©}
2: fort=0...7T do

3: Lets(® .= LMO4x5 (r(t)) and dg\,)v = s — z(®) (r®) as defined in L3 in Algorithm 1)
4. Letv® € argmax (r®), v)and dg) =2zt — ) (the away direction)
’UESg(ct) ><S£,t)

50 ifgfV = <—7'(t), dg\,)v> < ¢ then return z(®) (FW gap is small enough, so return)
6: if<—r(t)7d(Ftv)v> > <—r<t>,d§§)> then

7: d® .= dgv)v, and Ymax =1 (choose the FW direction)
8: else N o

. d®) .— d(t) d i wit vy ; _

9: i=d,’, and Ymax = min ¢ 7= o Te o (a drop step is when v+ = Ymax)
10:  endif - v
11:  Letgf™ = <—T(t), dgv)v + dS\t)> and y; = min {’ymax, %gfpw} (v™™ and C set as in Thm. 1)
12:  Update 2t = 2(1) 4 ~, d®) (and accordingly for the weights o**1), see [15])

13:  Update SI'TY = {v, € Ast. a&fjl) > 0} and Sétﬂ) ={v, € B s.t. ag,tfl) >0}
14: end for

By convex-concavity, h; can be upper-bounded by the following FW linearization gap [11, 12, 17, 24]:

FW . (t) _ (1) 4(®) ) _ g _ (1) (1)
9 —mg§<m 82, Vo L(x' )y )>+g}g>§<y 8y, —VyL(z,y )>- ©))

::gim) ::gﬁy)

This gap is easy to compute and gives a stopping criterion since gf » > hy.

3 SP-FW for strongly convex functions

In this section, we will assume that £ is uniformly (., 1y )-strongly convex-concave, which means
that the following function is convex-concave:

(@,y) = L(z,y) — 5 ll* + 5 ly]*. (6)

Convergence result. We now provide a theorem that establishes convergence in two situations: (I)
when the SP belongs to the interior of X' x ); (P) when the set is a polytope, i.e. when there exist two
finite sets such that X = conv(A) and Y = conv(B)). Our convergence result holds when (roughly)
the strong convex-concavity of L is big enough in comparison to the largest Lipschitz constants
Lxy, Ly x respectively of V,L(x,-) and V. L(-, y) multiplied by geometric “condition numbers”
of each set. The condition number of X (and similarly for )) is defined as the ratio of its diameter
Dy :=Sup, 4 || — || over the following appropriate notions of “width”:

border distance: dy := miélx |lz* — s for (I), pyramidal width: § 4 := PWidth(.A) for (P).
Sz €
The pyramidal width is formally defined in Eq. 9 of Lacoste-Julien and Jaggi [15]. We present below

a non-affine invariant version of our theorem (for simplicity), a fully affine invariant version is given
in the longer version [8].

Theorem 1. Let L be a convex-concave function and X X Y a convex and compact set. Assume that
the gradient of L is L-Lipschitz continuous, that L is (px, iy )-strongly convex-concave, and that we
are in one of the two following situations:

The saddle point belongs to the interior of X x Y. In this case, set g; = g " (as in L5
Sy of Alg. 2), 6, := \/min(u;\gé%(, pyd3) and a := 1. “Algorithm” then refers to SP-FW.

The sets X and Y are polytopes. In this case, set gz = gi*" (as in L11 of Alg. 2),

8, := /min(px 6%, pyd3) and a := 5. “Algorithm” then refers to SP-AFW.

In both cases, if v .= a — 5—‘/5 max {Dxi\/ﬁ—yxy» &)\/%} is positive, then the errors hy (4) of the
iterates of the algorithm with step size v; = min{ymax, Tel g¢ } decrease geometrically as

hy =0 ((1 - p)@) and moreover, the gaps: m<i£195 =0 ((1 - ,0)@) ,
s<t

(P)



where p = V;—C" C = MX and k(t) is the number of non-drop step after t steps (see L9
in Alg. 2). In case (I) we have k(t) = t and in case (P) we have k(t) > t/3. For both algorithms,

if 6, > 2max {%, %} we also obtain a sublinear rate with the universal choice

: 2
Ve = min{Ymax, 57707 ) . . 1
() mlnhsgmlngEW:O -]. 7
s<t s<t t
Clearly, the sublinear rate seems less interesting than the linear one but has the added convenience
that the step size can be set without knowledge of various constants that characterize £. Moreover, it
provides a partial answer to the conjecture from Hammond [9].
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Figure 1: The best gap observed min,<¢ gEW is plotted as a function of ¢ on a semilog scale.

Toy experiments. First, we test the empirical convergence of our algorithms on a simple saddle
point problem over the unit cube in dimension d (whose pyramidal width has the explicit value 1/+/d

by Lemma 4 from Lacoste-Julien and Jaggi [15]). Thus X = ) := [0, 1]? and the linear minimization
oracle is simply LMO(-)=—0.5 - (sign(-) — 1). We consider the following objective function:

M * * * lj/ *
Sl =2l + (@ —2") My - y") - Slly —y’lI3 (8)

for which we can control the location of the saddle point (x*,y*) € X x ). We generate a matrix
M randomly as M ~ U([—0.1,0.1]*%) and keep it fixed for all experiments. For the interior point
setup (1), we set (z*, y*) ~ U([0.25,0.75]2), while we set £* and y* to some fixed random vertex
of the unit cube for the setup (P). With all these parameters fixed, the constant v is a function of p
only. We thus vary the strong convexity parameter p to test various v/’s.

We verify the linear convergence expected for the SP-FW algorithm for case (I) in Figure 1a, and for
the SP-AFW algorithm for case (P) in Figure 1b. As the adaptive step size (and rate) depends linearly
on v, the linear rate becomes quite slow for small v. In this regime (in red), the step size 2/(2 + k(t))
(in orange) can actually perform better, despite its theoretical sublinear rate.

Finally, figure 1c shows that we can observe a linear convergence of SP-AFW even if v is negative
by using a different step size. In this case, we use the heuristic adaptive step size v; := g;/C where
C :=LD? + LD%, + LxyLyx (D?Y/MX + D%;/[Ly). Here C takes into account the coupling
between the concave and the convex variable and is motivated from a different proof of convergence
that we were not able to complete. The empirical linear convergence in this case is not yet supported
by a complete analysis, highlighting the need for more sophisticated arguments.

Conclusion. We proposed FW-style algorithms for saddle-point optimization with the same attrac-
tive properties as FW, in particular only requiring access to a LMO. We gave the first convergence
result for a FW-style algorithm towards a saddle point over polytopes by building on the recent devel-
opments on the linear convergence analysis of AFW. However, our experiments let us believe that
the condition v > 0 is not required for the convergence of FW-style algorithms. We thus conjecture
that a refined analysis could yield a linear rate for the general uniformly strongly convex-concave
functions in both cases (I) and (P), paving the way for further theoretical work.
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