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Abstract

We consider the optimization of a quadratic objective function whose gradients
are only accessible through a stochastic oracle. We present the first algorithm that
achieves jointly the optimal prediction error rates for least-squares regression, both
in terms of forgetting of initial conditions and in terms of dependence on the noise
and dimension of the problem, and prove dimensionless and tighter rates for a
regularized version of this algorithm.

1 Introduction
Many supervised machine learning problems are naturally cast as the minimization of a smooth
function defined on a Euclidean space. This includes least-squares regression, logistic regression (see,
e.g., Hastie et al., 2009) or generalized linear models (McCullagh and Nelder, 1989). While small
problems with few or low-dimensional input features may be solved precisely by many potential
optimization algorithms (e.g., Newton method), large-scale problems with many high-dimensional
features are typically solved with simple gradient-based iterative techniques whose per-iteration cost
is small.

In this paper, we consider a quadratic objective function f whose gradients are only accessible
through a stochastic oracle that returns the gradient at any given point plus a zero-mean finite variance
random error. In this stochastic approximation framework (Robbins and Monro, 1951), it is known
that two quantities dictate the behavior of various algorithms, namely the covariance matrix V of the
noise in the gradients, and the deviation θ0 − θ∗ between the initial point of the algorithm θ0 and any
of the global minimizer θ∗ of f . This leads to a “bias/variance” decomposition (Bach and Moulines,
2013; Hsu et al., 2014) of the performance of most algorithms as the sum of two terms: (a) the bias
term characterizes how fast initial conditions are forgotten and thus is increasing in a well-chosen
norm of θ0 − θ∗; while (b) the variance term characterizes the effect of the noise in the gradients,
independently of the starting point, and with a term that is increasing in the covariance of the noise.

For quadratic functions with (a) a noise covariance matrix V which is proportional (with constant σ2)
to the Hessian of f (a situation which corresponds to least-squares regression) and (b) an initial point
characterized by the norm ‖θ0 − θ∗‖2, the optimal bias and variance terms are known separately. On
the one hand, the optimal bias term after n iterations is proportional to L‖θ0−θ∗‖2

n2 , where L is the
largest eigenvalue of the Hessian of f . This rate is achieved by accelerated gradient descent (Nesterov,
1983, 2004), and is known to be optimal if the number of iterations n is less than the dimension
d of the underlying predictors, but the algorithm is not robust to random or deterministic noise
in the gradients (d’Aspremont, 2008; Schmidt et al., 2011; Devolder et al., 2014). On the other
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hand, the optimal variance term is proportional to σ2d
n (Tsybakov, 2003); it is known to be achieved

by averaged gradient descent (Bach and Moulines, 2013), for which the bias term only achieves
L‖θ0−θ∗‖2

n instead of L‖θ0−θ∗‖
2

n2 .

Our first contribution in this paper is to analyze in Section 3 averaged accelerated gradient descent,
showing that it attains optimal rates for both the variance and the bias terms. It shows that averaging
is beneficial for accelerated techniques and provides a provable robustness to noise.

While optimal when measuring performance in terms of the dimension d and the initial distance to
optimum ‖θ0 − θ∗‖2, these rates are not adapted in many situations where either d is larger than the
number of iterations n (i.e., the number of observations for regular stochastic gradient descent) or
L‖θ0 − θ∗‖2 is much larger than n2. Our second contribution is to provide in Section 4 an analysis
of a new algorithm (based on some additional regularization) that can adapt our bounds to finer
assumptions on θ0 − θ∗ and the Hessian of the problem, leading in particular to dimension-free
quantities that can thus be extended to the Hilbert space setting (in particular for non-parametric
estimation).

2 Least-Squares Regression
Statistical Assumptions. We consider the following general setting: H is a d-dimensional Eu-
clidean space with d ≥ 1, the observations (xn, yn) ∈ H×R, n ≥ 1, are independent and identically
distributed (i.i.d.), and such that E‖xn‖2 and Ey2n are finite. We consider the least-squares regression
problem which is the minimization of the quadratic function f(θ) = 1

2E(〈xn, θ〉 − yn)2.

Covariance matrix: We denote by Σ = E(xn ⊗ xn) ∈ Rd×d the population covariance matrix,
which is the Hessian of f at all points. Without loss of generality, we can assume Σ invertible. This
implies that all eigenvalues of Σ are strictly positive (but they may be arbitrarily small). We assume
there exists R > 0 such that E‖xn‖2xn ⊗ xn 4 R2Σ where A 4 B means that B − A is positive
semi-definite. This assumption is satisfied, for example, for least-square regression with almost surely
bounded data.

Eigenvalue decay: Most convergence bounds depend on the dimension d of H. However it is possible
to derive dimension-free and often tighter convergence rates by considering bounds depending on
the value tr Σb for b ∈ [0, 1]. Given b, if we consider the eigenvalues of Σ ordered in decreasing
order, which we denote by si, then tr Σb =

∑
i s
b
i , and the eigenvalues decay For b going to 0 then

tr Σb tends to d and we are back in the classical low-dimensional case. When b = 1, we simply get
tr Σ = E‖xn‖2, which will correspond to the weakest assumption in our context.

Optimal predictor: The regression function f(θ) = 1
2E(〈xn, θ〉 − yn)2 always admits a global

minimum θ∗ = Σ−1E(ynxn). When initializing algorithms at θ0 = 0 or regularizing by the squared
norm, rates of convergence generally depend on ‖θ∗‖, a quantity which could be arbitrarily large.
However there exists a systematic upper-bound ‖Σ 1

2 θ∗‖ ≤ 2
√
Ey2n. This leads naturally to the

consideration of convergence bounds depending on ‖Σr/2θ∗‖ for r ≤ 1.

Noise: We denote by εn = yn − 〈θ∗, xn〉 the residual for which we have E[εnxn] = 0. Although
we do not have E[εn|xn] = 0 in general unless the model is well-specified, we assume the noise to
be a structured process such that there exists σ > 0 with E[ε2nxn ⊗ xn] 4 σ2Σ. This assumption is
satisfied for example for data almost surely bounded or when the model is well-specified.

Averaged Gradient Methods and Acceleration. We focus in this paper on stochastic gradient
methods with acceleration for a quadratic function regularized by λ

2 ‖θ − θ0‖
2. The regularization

will be useful when deriving tighter convergence rates in Section 4, and it has the additional benefit
of making the problem λ-strongly-convex.

Accelerated stochastic gradient descent is defined by an iterative system with two parameters (θn, νn)
starting from θ0 = ν0 ∈ H, and satisfying for n ≥ 1,

θn = νn−1 − γf ′n(νn−1)− γλ(νn−1 − θ0)

νn = θn + δ
(
θn − θn−1

)
, (1)

with γ, δ ∈ R2 and f ′n(θn−1) an unbiased estimate on the gradient f(θ).

The momentum coefficient δ ∈ R is chosen to accelerate the convergence rate (Nesterov, 1983;
Beck and Teboulle, 2009) and has its roots in the heavy-ball algorithm from Polyak (1964). We
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especially concentrate here, following Polyak and Juditsky (1992), on the average of the sequence
θ̄n = 1

n+1

∑n
i=0 θn,

Stochastic Oracles on the Gradient. Let (Fn)n≥0 be the increasing family of σ-fields that are
generated by all variables (xi, yi) for i ≤ n. The oracle we consider is the sum of the true gradient
f ′(θ) and an independent zero-mean noise that does not depend on θ1. Consequently it is of the
form f ′n(θ) = f ′(θ) − ξn where the noise process ξn is Fn-measurable with E[ξn|Fn−1] = 0 and
E[‖ξn‖2] is finite. Furthermore we also assume that there exists τ ∈ R such that E[ξn ⊗ ξn] 4 τ2Σ,
that is, the noise has a particular structure adapted to least-squares regression.

3 Accelerated Stochastic Averaged Gradient Descent
We study the convergence of averaged accelerated stochastic gradient descent defined by Eq. (1) for
λ = 0 and δ = 1. It can be rewritten for the quadratic function f as a second-order iterative system
with constant coefficients: θn =

[
I − γΣ

]
(2θn−1 − θn−2) + γynxn.

Theorem 1 For any constant step-size γ, such that γΣ 4 I ,

Ef(θ̄n)− f(θ∗) ≤ 36
‖θ0 − θ∗‖2

γ(n+ 1)2
+ 8

τ2d

n+ 1
. (2)

We can make the following observations:

• The first bound 1
γn2 ‖θ0 − θ∗‖2 in Eq. (2) corresponds to the usual accelerated rate. It has

been shown by Nesterov (2004) to be the optimal rate of convergence for optimizing a
quadratic function with a first-order method that can access only to sequences of gradients
when n ≤ d. We recover by averaging an algorithm dedicated to strongly-convex function
the traditional convergence rate for non-strongly convex functions.

• The second bound in Eq. (2) matches the optimal statistical performance τ2d
n over all

estimators in H (Tsybakov, 2008) even without computational limits, in the sense that
no estimator that uses the same information can improve upon this rate. Accordingly
this algorithm achieves joint bias/variance optimality (when measured in terms of τ2 and
‖θ0 − θ∗‖2).

• We have the same rate of convergence for the bias when compared to the regular Nesterov
acceleration without averaging studied by Flammarion and Bach (2015), which corresponds
to choosing δn = 1 − 2/n for all n. However if the problem is µ-strongly convex, this
latter was shown to also converge at the linear rate O

(
(1− γµ)n

)
and thus is adaptive to

hidden strong-convexity (since the algorithm does not need to know µ to run), thus ends up
converging faster than the rate 1/n2. This is confirmed in our experiments in Section 5.

• Overall, the bias term is improved whereas the variance term is not degraded and acceleration
is thus robust to noise in the gradients. Thereby, while second-order iterative methods for
optimizing quadratic functions in the singular case, such as conjugate gradient (Polyak,
1987, Section 6.1) are notoriously highly sensitive to noise, we are able to propose a version
which is robust to stochastic noise.

4 Tighter Convergence Rates
We have seen in Corollary 1 above that the averaged accelerated gradient algorithm matches the lower
bounds τ2d/n and L

n2 ‖θ0 − θ∗‖2 for the prediction error. However the algorithm performs better in
almost all cases except the worst-case scenarios corresponding to the lower bounds. For example the
algorithm may still predict well when the dimension d is much bigger than n. Similarly the norm of
the optimal predictor ‖θ∗‖2 may be huge and the prediction still good, as gradient algorithms happen
to be adaptive to the difficulty of the problem: indeed, if the problem is simpler, the convergence rate
of the gradient algorithm will be improved. In this section, we provide such a theoretical guarantee.

We study the convergence of averaged accelerated stochastic gradient descent defined by Eq. (1) for
λ = (γ(n+ 1)2)−1 and δ ∈

[
1− 2

n+2 , 1
]
. We have the following theorem:

1this is different from the oracle usually considered in stochastic approximation (see Bach and Moulines
(2013); Dieuleveut and Bach (2015)).
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Theorem 2 For any constant step-size γ, such that γ(Σ + λI) 4 I ,

Ef(θ̄n)− f(θ∗) ≤ min
r∈[0,1], b∈[0,1]

[
74
‖Σr/2(θ0 − θ∗)‖2

γ1−r(n+ 1)2(1−r)
+ 8

τ2γb tr(Σb)

(n+ 1)1−2b

]
.

We can make the following observations:

• The algorithm is independent of r and b, thus all the bounds for different values of (r, b)
are valid. This is a strong property of the algorithm, which is indeed adaptative to the
regularity and the effective dimension of the problem (once γ is chosen). In situations in
which either d is larger than n or L‖θ0− θ∗‖2 is larger than n2, the algorithm can still enjoy
good convergence properties, by adapting to the best values of b and r.

• For b = 0 we recover the variance term of Corollary 1, but for b > 0 and fast decays of
eigenvalues of Σ, the bound may be much smaller; note that we lose in the dependency in n,
but typically, for large d, this can be advantageous.

• With r, b well chosen, we recover the optimal rate for non-parametric regression (Caponnetto
and De Vito, 2007).

5 Experiments
We illustrate now our theoretical results on synthetic examples. For d = 25 we consider normally
distributed inputs xn with random covariance matrix Σ which has eigenvalues 1/i3, for i = 1, . . . , d,
and random optimum θ∗ and starting point θ0 such that ‖θ0 − θ∗‖ = 1. The outputs yn are generated
from a linear function with homoscedastic noise with unit signal to noise-ratio (σ2 = 1), we take
R2 = tr Σ the average radius of the data and a step-size γ = 1/R2 and λ = 0. The additive noise
oracle is used. We show results averaged over 10 replications.

We compare the performance of averaged SGD (AvSGD), usual Nesterov acceleration for convex
functions (AccSGD) and our novel averaged accelerated SGD (AvAccSGD)2, on two different
problems: one deterministic (‖θ0− θ∗‖ = 1, σ2 = 0) which will illustrate how the bias term behaves,
and one purely stochastic (‖θ0 − θ∗‖ = 0, σ2 = 1) which will illustrate how the variance term
behaves. For the bias (left plot of Figure 1), AvSGD converges at speed O(1/n), while AvAccSGD
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Figure 1: Synthetic problem (d = 25) and γ = 1/R2. Left: Bias. Right: Variance.

and AccSGD converge both at speed O(1/n2). However, as mentioned in the observations following
Theorem 1, AccSGD takes advantage of the hidden strong convexity of the quadratic function and
starts converging linearly at the end. For the variance (right plot of Figure 1), AccSGD is not
converging to the opltimum and keeps oscillating whereas AvSGD and AvAccSGD both converge to
the optimum at a speed O(1/n). However AvSGD remains slightly faster in the beginning.

Note that for small n, or when the bias L‖θ0 − θ∗‖2/n2 is much bigger than the variance σ2d/n, the
bias may have a stronger effect, although asymptotically, the variance always dominates. It is thus
essential to have an algorithm which is optimal in both regimes; this is achieved by AvAccSGD.

2which is not the averaging of AccSGD because the momentum term is proportional to 1− 3/n for AccSGD
instead of being equal to 1 for AvAccSGD.
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