Abstract

We describe ASAGA, a sparse asynchronous parallel version of the incremental gradient algorithm SAGA that enjoys fast linear convergence rates. Through a novel perspective, we revisit and clarify a subtle but important technical issue present in most recent convergence rate proofs for asynchronous parallel optimization, and propose a simplification of the recently introduced “perturbed iterate” framework that resolves it. We prove that ASAGA can obtain a theoretical linear speedup on multi-core systems even without sparsity. We present empirical results on a 40-core machine illustrating the practical speedup as well as the hardware overhead.

1 Introduction

We consider the unconstrained optimization problem of minimizing a finite sum of smooth convex functions:

\[
\min_{x \in \mathbb{R}^d} f(x), \quad f(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x),
\]

where each \(f_i \) is assumed to be convex with \(L \)-Lipschitz continuous gradient, \(f \) is \(\mu \)-strongly convex and \(n \) is large. We define a condition number for this problem as \(\kappa := L/\mu \). A flurry of randomized incremental algorithms have recently been proposed to solve (1) with a fast linear convergence rate, such as SAG [7], SDCA [16], SVRG [6] and SAGA [2]. These algorithms can be interpreted as variance reduced versions of the popular stochastic gradient descent (SGD) algorithm, and they have demonstrated both theoretical and practical improvements over SGD (for the finite sum problem (1)).

To take advantage of modern multi-core computers, these algorithms need to be adapted to the asynchronous parallel setting. Much work has been devoted recently in proposing asynchronous parallel variants of algorithms such as SGD [14], SDCA [5] and SVRG [15, 13, 17]. Among the incremental gradient algorithms with fast linear convergence rates that can optimize (1) in its general form, only SVRG has had an asynchronous parallel version proposed. We propose one for SAGA, arguably a more natural candidate as it is not epoch-based and thus has no synchronization barriers (see [8] for a full version of this paper).

Related Work. An asynchronous variant of SGD called HOGWILD was presented by Niu et al. [14]; part of their framework of analysis was re-used by most of the recent literature on asynchronous parallel optimization algorithms with convergence rates [11, 5, 1, 10, 3, 15, 17]. These papers use an unbiased gradient assumption that is not consistent with their proof technique (see Section 3.2). The “perturbed iterate” framework presented in [13] is to the best of our knowledge the only one that does not suffer from this problem. Our convergence analysis builds heavily from their approach, while simplifying it. In particular, the authors assumed that \(f \) was both strongly convex and had a bound on the gradient, two inconsistent assumptions in the unconstrained setting they analyzed. We overcome these issues through tighter analysis and we obtain linear speedups under weaker conditions. We also propose a more convenient way to label the iterates (see Section 3.2). Reddi et al. [15] presents a hybrid algorithm called HSAG that includes SAGA and SVRG as special cases. Their analysis is epoch-based though, thus does not handle a fully asynchronous version of SAGA as we do. Moreover, they do not propose an efficient sparse implementation for SAGA, in contrast with ASAGA.
We use a similar hardware model to Niu et al. \[14\], with multiple cores which read and update a shared central parameter vector in asynchronous and lock-free fashion. However we do not assume consistent vector reads: multiple cores can read and write different coordinates of the shared vector concurrently. Thus a full vector read by a core may not correspond to any consistent state in memory.

3.1 Perturbed Iterate Framework

In the sequential setting we can use a simple update rule to characterize SGD and its variants:
\[x_{t+1} = x_t - \gamma g(x_t, i_t), \]
where \(i_t \) is a random variable independent from \(x_t \) and we have \(\mathbb{E}_i g(x_t, i_t) = f'(x_t). \)

But in the parallel setting we manipulate stale, inconsistent reads of shared parameters and thus do not have such a simple relationship. This was noted by Mania et al. [13] who proposed to separate \(\tilde{x}_t \) – the actual value read by a core during execution – with \(x_t \), a “virtual iterate” that is defined by the update equation:
\[x_{t+1} := x_t - \gamma g(\tilde{x}_t, i_t). \]
We can thus interpret \(\tilde{x}_t \) as a noisy (perturbed) version of \(x_t \) due to the effect of asynchrony. In the specific case of Sparse SAGA, we get the following update:
\[x_{t+1} := x_t - \gamma g(\tilde{x}_t, \tilde{\alpha}_t^t, i_t); \quad g(\tilde{x}_t, \tilde{\alpha}_t^t, i_t) := f'_i(\tilde{x}_t) - \tilde{\alpha}_t^t + D_i (\frac{1}{n} \sum_{i=1}^{n} \tilde{\alpha}_i^t). \]

We note that all the papers mentioned in the related work section (that analyzed asynchronous parallel randomized algorithms) assumed the following unbiasedness condition (and relied heavily on it):
\[\mathbb{E}_i g(\tilde{x}_t, i_t) = f'(\tilde{x}_t). \]

Mania et al. [13] correctly pointed out that most of the literature thus made the often implicit assumption that \(i_t \) is independent of \(\tilde{x}_t \). As we explain below, this assumption is incompatible with a non-uniform asynchronous model in the analysis approach used in most of the recent literature.

For linear predictor models, the memory \(\alpha_t^0 \) can be stored as a scalar.
3.2 On the Difficulty of Labeling the Iterates

Formalizing the meaning of \(x_t \) and \(\hat{x}_t \) highlights a subtle but important difficulty arising when analyzing randomized parallel algorithms: what is the meaning of \(t \)? This is the problem of labeling the ite­rates for the analysis, and this labeling can have randomness itself that needs to be taken in consideration when interpreting an expression like \(\mathbb{E}[x_t] \). In this section, we contrast three different approaches in a unified framework. We clarify the dependency issues mentioned in Mania et al. [13] and propose a new, simpler labeling which allows for much simpler proof techniques.

The “After Write” Approach. This is the standard labeling scheme used in Niu et al. [14] and most papers in the related work section ([13] and [3] excepted). \(t \) is a (virtual) global counter recording the number of successful writes to the shared memory \(x \). (4) then means that \(\hat{x}_t \) represents the (delayed) local copy value of the core that made the \((t+1)\)th successful update; \(i_t \) is the associated factor sampled. Notice that if some values of \(i_t \) yield faster updates than others, it will influence the label assignment defining \(\hat{x}_t \). We thus see that \(\hat{x}_t \) and \(i_t \) share dependence through the \(t \) label assignment. In order to preserve the unbiasedness condition (5), we have to add the implicit assumption that the computation time for computing an update is independent of the sample \(i \) chosen. This assumption seems overly strong and is thus a fundamental flaw for analyzing the algorithms.

The “Before Read” Approach. Mania et al. [13] address this issue by proposing instead to increment the global \(t \) counter just before a new core starts to read the shared memory. \(\hat{x}_t \) represents the read that was made by this core in this computational block, and \(i_t \) is the picked sample. The update rule (4) represents a definition of the meaning of \(x_t \), which is now a “virtual iterate” (and is only ever used in the analysis) as it does not correspond to the content of the shared memory at any point.

A New Global Ordering: the “After Read” Approach. The “before read” approach gives rise to the following complication in the analysis: \(\hat{x}_t \) can depend on \(i_r \) for \(r > t \), since we have no guarantee on how long it takes a core to read. This means that we need to consider both the “future” and the “past” when analyzing \(x_t \). To crucially simplify the analysis, we propose a third labeling: \(\hat{x}_t \) represents the \((t+1)\)th fully completed read. As the “before read” labeling, this approach ensures that there is no dependency between \(i_t \) and \(x_t \) injected through the labeling. But unlike in the “before read” approach, \(t \) does represent a global ordering on the \(\hat{x}_t \) iterates – and thus we have that \(i_r \) is independent of \(\hat{x}_t \) for \(r > t \). Again using (4) as the definition of the virtual iterate \(x_t \), we then have a very simple form for the value of \(\hat{x}_t \) and \(x_t \) which we can use for the convergence analysis:

\[
x_t = x_0 - \gamma \sum_{u=0}^{t-1} g(\hat{x}_u, \hat{\alpha}^u, i_u); \quad [\hat{x}_t]_v = [x_0]_v - \gamma \sum_{u=0}^{t-1} [g(\hat{x}_u, \hat{\alpha}^u, i_u)]_v. \tag{6}
\]

3.3 Analysis setup

We describe \textit{ASAGA}, an asynchronous parallel extension of Sparse SAGA in Algorithm 1. Before stating its convergence, we highlight some properties of Algorithm 1 and make one central assumption. \textbf{First}, thanks to the “after read” global ordering, \(i_r \) is independent of \(\hat{x}_t \) \(\forall r > t \). We enforce the independence for \(r = t \) by having the core read all the shared parameters before their iterations.

\textbf{Second}, the update, \(g_t := g(\hat{x}_t, \hat{\alpha}^t, i_t) \), is an unbiased estimator of the true gradient at \(\hat{x}_t \) (i.e. (4) yields (5) in conditional expectation). This property comes from the independence of \(i_t \) with \(\hat{x}_t \).

\textbf{Third}, the shared parameter coordinate update of \([x_t]_v \) on line 11 is atomic. As our updates are additions, this means there are no overwrites, even if several cores compute for the same resources.

\textbf{Finally}, we assume that there exists a uniform bound, \(\tau \), on the maximum number of iterations that can overlap. This means that every coordinate update from iteration \(t \) is successfully written to memory before iteration \(t + \tau + 1 \) starts. \(\tau \) is usually seen as a linear proxy for the number of cores, but it actually depends on several other factors and can be much bigger in real-life experiments. Our result will give us conditions on \(\tau \) subject to which we have linear speedups.

\begin{algorithm}[h]
\caption{ASAGA}
1: Initialize shared variables \(x \) and \((\alpha_i)_{i=1}^n \)
2: \textbf{keep doing in parallel}
3: \(\bar{x} = \) inconsistent read of \(x \)
4: \(\forall j, \hat{\alpha}_j = \) inconsistent read of \(\alpha_j \)
5: Sample \(i \) uniformly at random in \(\{1, \ldots, n\} \)
6: Let \(S_i \) be \(f_i \)’s support
7: \([\hat{\alpha}_i]_{S_i} := \frac{1}{n} \sum_{k=1}^n [\hat{\alpha}_k]_{S_i} \)
8: \([\hat{\delta x}]_{S_i} := -\gamma (f'_i(\bar{x}) - \hat{\alpha}_i + D_i(\hat{\alpha})_{S_i}) \)
9: for \(v \in S_i \) do
10: \([x]_v \leftarrow [x]_v + [\delta x]_v \) // atomic
11: \([\alpha]_v \leftarrow [f'_i(\bar{x})]_v \)
12: end for
13: end parallel loop
\end{algorithm}
Explicit effect of asynchrony. By using the overlap assumption in the expression (6) for the iterates, we obtain the following explicit effect of asynchrony that is crucially used in our proof:

$$\hat{x}_t - x_t = \gamma \sum_{u=(t-r)\ddagger}^{t-1} S^t_u g(\hat{x}_u, \hat{\alpha}^u, i_u),$$

(7)

where S^t_u are $d \times d$ diagonal matrices with terms in $\{+1, 0\}$. Though every update in \hat{x}_t is already in x_t – this is the 0 case – some updates might be late – this is the +1 case. Crucially, while \hat{x}_t may be lacking some “past” updates, given our global ordering definition, it cannot contain “future” updates.

3.4 Convergence and speedup results

Definition 1 (Sparsity). Following Niu et al. [14], we introduce $\Delta := \max_{i=1, \ldots, d} |\{i : v \in S_i\}|$. Δ is the maximum number of data points with a specific feature. For succinctness, we also define $\hat{\Delta} := \delta \Delta/n$. We have $1 \leq \hat{\Delta} \leq \Delta$, and hence $1/n \leq \Delta \leq 1$.

Theorem 2 (Convergence guarantee and rate of ASAGA). Suppose $\tau < n/10$. Let

$$a^*(\tau) := \frac{1}{32 \left(1 + \tau \sqrt{\Delta} \right)} \xi(\delta, \Delta, \tau),$$

where $\xi(\delta, \Delta, \tau) := \sqrt{1 + \frac{1}{8\kappa} \min \left\{ \left(\frac{1}{\sqrt{\Delta}} \right), \tau \right\}}$ (note that $\xi(\delta, \Delta, \tau) \approx 1$ unless $\kappa < 1/\sqrt{\Delta} \approx \sqrt{n}$).

For any step size $\gamma = \frac{a^*}{L}$ with $a \leq a^*(\tau)$, the inconsistent read iterates of Algorithm 1 converge in expectation at a geometric rate of at least: $\rho(a) = \frac{1}{2} \min \left\{ \frac{1}{\Delta}, a \frac{1}{\kappa} \right\}$, i.e., $E(f(\hat{x}_t)) - f(x^\star) \leq (1 - \rho)^t C_0$, where C_0 is a constant independent of $t (\approx \frac{3}{2} C_0$ with C_0 as defined in Theorem 1).

Within constants, this result is very close to SAGA’s original convergence theorem, but with the maximum step size divided by an extra $1 + \tau \sqrt{\Delta}$ factor. Referring to Hofmann et al. [4] and our own Theorem 1, the rate factor for SAGA is $\min \{1/n, 1/\kappa\}$ up to a constant factor. Comparing this rate with Theorem 2 and inferring the conditions on the maximum step size $a^*(\tau)$, we get the following conditions on the overlap τ for ASAGA to have the same rate as SAGA (comparing upper bounds).

Corollary 3 (Speedup condition). Suppose $\tau \leq O(n)$ and $\tau \leq O(\max\{1, \frac{1}{\kappa}\})$. Then using the step size $\gamma = a^*(\tau)/L$ from (8), ASAGA converges geometrically with the rate factor $\Omega(\min\{\frac{1}{\Delta}, \frac{1}{\kappa}\})$ (similar to SAGA), and is thus linearly faster than its sequential counterpart up to a constant factor. Moreover, if $\tau \leq O(\frac{1}{\sqrt{\Delta}})$, then a universal step size of $O(\frac{1}{\sqrt{\Delta}})$ can be used for ASAGA to be adaptive to local strong convexity with a similar rate to SAGA (i.e., knowledge of κ is not required).

Interestingly, in the well-conditioned regime ($n > \kappa$), ASAGA can get the same rate as SAGA even without sparsity ($\Delta = 1$) for $\tau < O(n/\kappa)$ – in contrast to previous work where asynchronous methods required some kind of sparsity to get a theoretical linear speedup [14, 13].

4 Empirical results

We run logistic regression on RCV1 [9] and URL [12]. We compare three different algorithms: ASAGA, KROMAGNON (the asynchronous sparse SVRG method described in [13]) and HOGWILD [14]. For each method we consider its asynchronous version with both one (hence sequential) and ten processors (Figure 1, left) and we examine the speedup relative to the increase in the number of cores (right). We observe that although the asynchronous version offers a significant runtime speedup, it is not linear as predicted by our theory (and confirmed by our iterations speedup). This phenomenon can be explained by the fact that there is no such thing as shared memory. In reality, as we add more cores, we start using slower types of memory (RAM vs cache) for information passing.

2ASAGA can actually converge for any τ, but the bound on the maximum step size gets much worse.
References

