ASAGA: Asynchronous Parallel SAGA

Rémi Leblond Fabian Pedregosa Simon Lacoste-Julien
INRIA - Sierra team INRIA - Sierra team Department of CS & OR (DIRO)
Ecole normale supérieure, Paris ENS, Paris Université de Montréal, Montréal
Abstract

We describe ASAGA, a sparse asynchronous parallel version of the incremental
gradient algorithm SAGA that enjoys fast linear convergence rates. Through a novel
perspective, we revisit and clarify a subtle but important technical issue present in
most recent convergence rate proofs for asynchronous parallel optimization, and
propose a simplification of the recently introduced “perturbed iterate” framework
that resolves it. We prove that ASAGA can obtain a theoretical linear speedup on
multi-core systems even without sparsity. We present empirical results on a 40-core
machine illustrating the practical speedup as well as the hardware overhead.

1 Introduction

We consider the unconstrained optimization problem of minimizing a finite sum of smooth convex
functions:

min f(2), (@)= 53 file), (1)

z€eR4

where each f; is assumed to be convex with L-Lipschitz continuous gradient, f is p-strongly convex
and n is large. We define a condition number for this problem as x := L/u. A flurry of randomized
incremental algorithms have recently been proposed to solve (1) with a fast linear convergence rate,
such as SAG [7], SDCA [16], SVRG [6] and SAGA [2]. These algorithms can be interpreted as
variance reduced versions of the popular stochastic gradient descent (SGD) algorithm, and they have
demonstrated both theoretical and practical improvements over SGD (for the finite sum problem (1)).

To take advantage of modern multi-core computers, these algorithms need to be adapted to the
asynchronous parallel setting. Much work has been devoted recently in proposing asynchronous
parallel variants of algorithms such as SGD [14], SDCA [5] and SVRG [15, 13, 17]. Among the
incremental gradient algorithms with fast linear convergence rates that can optimize (1) in its general
form, only SVRG has had an asynchronous parallel version proposed. We propose one for SAGA,
arguably a more natural candidate as it is not epoch-based and thus has no synchronization barriers
(see [8] for a full version of this paper).

Related Work. An asynchronous variant of SGD called HOGWILD was presented by Niu et al. [14];
part of their framework of analysis was re-used by most of the recent literature on asynchronous
parallel optimization algorithms with convergence rates [11, 5, 1, 10, 3, 15, 17]. These papers use an
unbiased gradient assumption that is not consistent with their proof technique (see Section 3.2). The
“perturbed iterate” framework presented in [13] is to the best of our knowledge the only one that does
not suffer from this problem. Our convergence analysis builds heavily from their approach, while
simplifying it. In particular, the authors assumed that f was both strongly convex and had a bound on
the gradient, two inconsistent assumptions in the unconstrained setting they analyzed. We overcome
these issues through tighter analysis and we obtain linear speedups under weaker conditions. We
also propose a more convenient way to label the iterates (see Section 3.2). Reddi et al. [15] presents
a hybrid algorithm called HSAG that includes SAGA and SVRG as special cases. Their analysis is
epoch-based though, thus does not handle a fully asynchronous version of SAGA as we do. Moreover,
they do not propose an efficient sparse implementation for SAGA, in contrast with ASAGA.

29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Notation. We denote by E a full expectation with respect to all the randomness, and by E the
conditional expectation of a random ¢ (the index of the factor f; chosen in SGD and other algorithms),
conditioned on all the past, where “past” will be clear from the context.

2 Sparse SAGA

Original SAGA Algorithm. We borrow our notation from Hofmann et al. [4]. The standard SAGA
algorithm [2] maintains two moving quantities to optimize (1): the current iterate x and a table
(memory) of historical gradients (a;)_;.! At every iteration, the SAGA algorithm samples uniformly

at random an index ¢ € {1,...,n}, and then executes the following update on z and «:
vt =2 —y(fil@) —aita); of = fi(2), @
where 7 is the step size and @ := 1/n Y ., o; can be updated efficiently in an online fashion.

Crucially, Eq; = @ and thus the update direction is unbiased (Ex™ = 2 — v f/(x)). Furthermore, it
can be proven (see [2]) that under a reasonable condition on 7, the update has vanishing variance,
which enables the algorithm to converge linearly with a constant step size.

Sparse SAGA Algorithm. In its current form, every SAGA update is dense — even if the individual
gradients are sparse — due to the historical gradient (&) term. Unfortunately, the usual tricks to resolve
this issue are not portable to the parallel setting. Thus, we introduce Sparse SAGA, a novel variant
which explicitly takes sparsity into account and is easily parallelizable. As in the Sparse SVRG
algorithm proposed in [13], we obtain Sparse SAGA by a simple modification of the parameter update
rule in (2) where & is replaced by a sparse version equivalent in expectation:

T =z —y(fl(z) — a; + D;a), 3)
where D; is a diagonal matrix that makes a weighted projection on the support of f;. More precisely,
let S; be the support of the gradient function f/ (i.e., the set of coordinates where f/ can be nonzero).
Let D be a d x d diagonal reweighting matrix, with coefficients 1/p, on the diagonal, where p, is the
probability that dimension v belongs to .S; when 7 is sampled uniformly at random in {1, ...,n}. We
then define D; := Pg, D, where Pg, is the projection onto S;. The normalization from D ensures
that ED;&@ = &, and thus that the update is still unbiased despite the projection.

Convergence Result. We model our convergence result after Hofmann et al. [4, Corollary 3], which
provides the simplest form (note that the rate for Sparse SAGA is the same as SAGA).

Theorem 1. Let v = ;7 for any a < 1. Then Sparse SAGA converges geometrically in expectation

with a rate factor of at least p(a) = % min {%, a% }, i.e., for xy obtained after t updates, we have
Ef(x) — f(z*) < (1= p)' Co, where Co := |lzo — 2*||* + 57z E[of — fi(z")]|*

3 Asynchronous Parallel Sparse SAGA

We use a similar hardware model to Niu et al. [14], with multiple cores which read and update a
shared central parameter vector in asynchronous and lock-free fashion. However we do not assume
consistent vector reads: multiple cores can read and write different coordinates of the shared vector
concurrently. Thus a full vector read by a core may not correspond to any consistent state in memory.

3.1 Perturbed Iterate Framework

In the sequential setting we can use a simple update rule to characterize SGD and its variants: x;11 =
2y — yg(xy, it), where i, is a random variable independent from z; and we have Eg(xz, ;) = f(x¢).
But in the parallel setting we manipulate stale, inconsistent reads of shared parameters and thus do
not have such a simple relationship. This was noted by Mania et al. [13] who proposed to separate
— the actual value read by a core during execution — with x4, a “virtual iterate” that is defined by the
update equation: 441 := ¢ — vg(Z4, ;). We can thus interpret &, as a noisy (perturbed) version of
x; due to the effect of asynchrony. In the specific case of Sparse SAGA, we get the following update:

Ti41 = Tt — ’Yg(j?ta dt,it); g(in&t;it) = 7{,, (ft) - &L + Dvif, (1/" 211:1 5‘5) . 4)
We note that all the papers mentioned in the related work section (that analyzed asynchronous parallel
randomized algorithms) assumed the following unbiasedness condition (and relied heavily on it):
[unbiasedness condition] E[g(Z¢,4¢)|2¢] = f/(%4). 5)
Mania et al. [13] correctly pointed out that most of the literature thus made the often implicit
assumption that ¢, is independent of &;. As we explain below, this assumption is incompatible with a
non-uniform asynchronous model in the analysis approach used in most of the recent literature.
'For linear predictor models, the memory o can be stored as a scalar.

3.2 On the Difficulty of Labeling the Iterates

Formalizing the meaning of x; and ; highlights a subtle but important difficulty arising when
analyzing randomized parallel algorithms: what is the meaning of ¢? This is the problem of labeling
the iterates for the analysis, and this labeling can have randomness itself that needs to be taken in
consideration when interpreting an expression like E[x]. In this section, we contrast three different
approaches in a unified framework. We clarify the dependency issues mentioned in Mania et al. [13]
and propose a new, simpler labeling which allows for much simpler proof techniques.

The “After Write” Approach. This is the standard labeling scheme used in Niu et al. [14] and
most papers in the related work section ([13] and [3] excepted). ¢ is a (virtual) global counter
recording the number of successful writes to the shared memory x. (4) then means that z; represents
the (delayed) local copy value of the core that made the (¢t + 1) successful update; i; is the
associated factor sampled. Notice that if some values of ¢; yield faster updates than others, it will
influence the label assignment defining ;. We thus see that z; and i; share dependence through the ¢
label assignment. In order to preserve the unbiasedness condition (5), we have to add the implicit
assumption that the computation time for computing an update is independent of the sample ¢ chosen.
This assumption seems overly strong and is thus a fundamental flaw for analyzing the algorithms.

The “Before Read” Approach. Mania et al. [13] address this issue by proposing instead to incre-
ment the global ¢ counter just before a new core starts to read the shared memory. Z; represents the
read that was made by this core in this computational block, and ¢; is the picked sample. The update
rule (4) represents a definition of the meaning of x;, which is now a “virtual iterate” (and is only ever
used in the analysis) as it does not correspond to the content of the shared memory at any point.

A New Global Ordering: the “After Read” Approach. The “before read” approach gives rise
to the following complication in the analysis: Z; can depend on %, for » > ¢, since we have no
guarantee on how long it takes a core to read. This means that we need to consider both the “future”
and the “past” when analyzing x;. To crucially simplify the analysis, we propose a third labeling: &
represents the (¢ + 1)* fully completed read. As the “before read” labeling, this approach ensures
that there is no dependency between ¢; and x; injected through the labeling. But unlike in the “before
read” approach, t does represent a global ordering on the Z; iterates — and thus we have that i,. is
independent of Z; for r > ¢. Again using (4) as the definition of the virtual iterate z;, we then have a
very simple form for the value of Z; and z; which we can use for the convergence analysis:

t—1 t—1
Iy = Xo 7729(50717&“7111‘)7 [ft}v = [IO]’U -7 Z [g(iu,o?“,zu)}v (6)
u=0 u=0

u s.t. coordinate v was written
for u before t

3.3 Analysis setup

We describe ASAGA, an asynchronous parallel extension of Sparse SAGA, in Algorithm 1. Before
stating its convergence, we highlight some properties of Algorithm 1 and make one central assumption.
First, thanks to the “after read” global ordering, ¢, is independent of &; Vr > t. We enforce the
independence for » = ¢ by having the core read all the shared parameters before their iterations.

Second, the update, g; := g(&y, &, i), is an un-
biased estimator of the true gradient at ; (i.e. (4)
yields (5) in conditional expectation). This prop- 1: Initialize shared variables « and («;)},
erty comes from the independence of i; with #;. 2: keep doing in parallel

Third, the shared parameter coordinate update of 3: £ = inconsistent read of =

[x], on line 11 is atomic. As our updates are ad- Vj, &; = inconsistent read of o

ditions, this means there are no overwrites, even Sample uniformly at random in {1, ..., n}
if several cores compete for the same resources. Let S; be f;’s support

Finally, we assume that there exists a uniform [@]s, == 1Yn Y p_qlaxls;

bound, 7, on the maximum number of iterations [0z]s, == —v(f!(z) — &; + D;lals,)
that can overlap. This means that every coordi- 9:

nate update from iteration ¢ is successfully written 10: for v in S; do

to memory before iteration ¢ + 7 + 1 starts. 7is 11: []y + [2]o + [02]0 // atomic
usually seen as a linear proxy for the number of 12: [i]w < [f1(@)]w

cores, but it actually depends on several other 13:

factors and can be much bigger in real-life exper- 14: end for

iments. Our result will give us conditions on 7 15: end parallel loop

subject to which we have linear speedups.

Algorithm 1 ASAGA

A

RCV1-full dataset 100, URL dataset 25 RCV1-full dataset 25 URL dataset

£ 10°

3

-E 10 107 20 20

I =

9107 102 [S1s 15

c] -]

£ N 1 %

B0 5y 102} e 510 10

o R o T A S o o B o Ra S oY L | om 'y ® 0 g g

2104l ANe 10* =N g ® —

(9] m 5 5] +

2 A Am ™ 3 /E &

©10% s 100 150 7001 2 10 $ 10 15 20 25 $ 10 15 20 25
Time (in seconds) Time (in hours) Number of cores Number of cores

A-A SAGA ©-@ SGD (1 core) O-O SVRG
A A AsyncSAGA (10 cores) @@ Hogwild (10 cores) OO Kromagnon (10 cores)

- Ideal A-A ASAGA [O-0O Kromagnon ©-©® Hogwild!

Figure 1: Convergence and speedup for asynchronous stochastic gradient descent methods.

Explicit effect of asynchrony. By using the overlap assumption in the expression (6) for the
iterates, we obtain the following explicit effect of asynchrony that is crucially used in our proof:

t—1
i‘t — Ty =7 Z S;g(‘i‘u7du77/u)a (7)

u=(t—7)+
where S are d x d diagonal matrices with terms in {+1,0}. Though every update in &, is already in
x; — this is the 0 case — some updates might be late — this is the +1 case. Crucially, while Z; may be
lacking some “past" updates, given our global ordering definition, it cannot contain “future" updates.

3.4 Convergence and speedup results

Definition 1 (Sparsity). Following Niu et al. [14], we introduce A, := max,—1_4|{(i : v € S;}|.
A, is the maximum number of data points with a specific feature. For succinctness, we also define
A:=A,/n. Wehavel <A, <n, and hence 1/n < A < 1.

Theorem 2 (Convergence guarantee and rate of ASAGA). Suppose T < n/10.> Let

®)

“(7) = 1 where £(k, A, T) := \/1 + 8% min{%,r}
32 (1 + T\/E) E(r, A, T)

(note that &(k, A, 7) =~ 1 unless k < 1/va (< +/n)).

For any step size v = ¢ with a < a*(7), the inconsistent read iterates of Algorithm I converge
in expectation at a geometric rate of at least: p(a) = tmin{L all ie, Ef(&,)— f(z*) <
(1 — p)t Co, where Cy is a constant independent of t (~ %C’o with Cy as defined in Theorem 1).

Within constants, this result is very close to SAGA’s original convergence theorem, but with the
maximum step size divided by an extra 1 4+ 7v/A factor. Referring to Hofmann et al. [4] and our own
Theorem 1, the rate factor for SAGA is min{1/n, 1/} up to a constant factor. Comparing this rate
with Theorem 2 and inferring the conditions on the maximum step size a*(7), we get the following
conditions on the overlap 7 for ASAGA to have the same rate as SAGA (comparing upper bounds).
Corollary 3 (Speedup condition). Suppose T < O(n) and 7 < O(max{l, :}). Then using the
step size ¥ = a"(D)/L from (8), ASAGA converges geometrically with the rate factor Q(min{, 1 })
(similar to SAGA), and is thus linearly faster than its sequential counterpart up to a constant factor.
Moreover, if T < O(ﬁ), then a universal step size of © (1) can be used for ASAGA to be adaptive
to local strong convexity with a similar rate to SAGA (i.e., knowledge of k is not required).
Interestingly, in the well-conditioned regime (n > x), ASAGA can get the same rate as SAGA even
without sparsity (A = 1) for 7 < O(n/k) — in contrast to previous work where asynchronous
methods required some kind of sparsity to get a theoretical linear speedup [14, 13].

4 Empirical results

We run logistic regression on RCV1 [9] and URL [12]. We compare three different algorithms:
ASAGA, KROMAGNON (the asynchronous sparse SVRG method described in [13]) and HOG-
WILD [14]. For each method we consider its asynchronous version with both one (hence sequential)
and ten processors (Figure 1, left) and we examine the speedup relative to the increase in the number
of cores (right). We observe that although the asynchronous version offers a significant runtime
speedup, it is not linear as predicted by our theory (and confirmed by our iterations speedup). This
phenomenon can be explained by the fact that there is no such thing as shared memory. In reality, as
we add more cores, we start using slower types of memory (RAM vs cache) for information passing.

2ASAGA can actually converge for any 7, but the bound on the maximum step size gets much worse.

References

[1] C. De Sa, C. Zhang, K. Olukotun, and C. Ré. Taming the wild: a unified analysis of Hogwild!-
style algorithms. In NIPS, 2015.

[2] A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient method with
support for non-strongly convex composite objectives. In NIPS, 2014.

[3] J. C. Duchi, S. Chaturapruek, and C. Ré. Asynchronous stochastic convex optimization. In
NIPS, 2015.

[4] T. Hofmann, A. Lucchi, S. Lacoste-Julien, and B. McWilliams. Variance reduced stochastic
gradient descent with neighbors. In NIPS, 2015.

[5] C.-1. Hsieh, H.-F. Yu, and I. Dhillon. PASSCoDe: Parallel ASynchronous Stochastic dual
Co-ordinate Descent. In ICML, 2015.

[6] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In NIPS, 2013.

[7] N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential
convergence rate for finite training sets. In NIPS, 2012.

[8] R. Leblond, F. Pedregosa, and S. Lacoste-Julien. Asaga: Asynchronous parallel Saga.
arXiv:1606.04809, 2016.

[9] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1: A new benchmark collection for text
categorization research. JMLR, 5:361-397, 2004.

[10] X.Lian, Y. Huang, Y. Li, and J. Liu. Asynchronous parallel stochastic gradient for nonconvex
optimization. In NIPS, 2015.

[11] J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar. An asynchronous parallel stochastic
coordinate descent algorithm. JMLR, 16:285-322, 2015.

[12] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Identifying suspicious URLs: an application
of large-scale online learning. In /CML, 2009.

[13] H. Mania, X. Pan, D. Papailiopoulos, B. Recht, K. Ramchandran, and M. 1. Jordan. Perturbed
iterate analysis for asynchronous stochastic optimization. arXiv:1507.06970, 2015.

[14] F. Niu, B. Recht, C. Re, and S. Wright. Hogwild: a lock-free approach to parallelizing stochastic
gradient descent. In NIPS, 2011.

[15] S.J. Reddi, A. Hefny, S. Sra, B. Péczos, and A. Smola. On variance reduction in stochastic
gradient descent and its asynchronous variants. In NIPS, 2015.

[16] S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized
loss. JMLR, 14:567-599, 2013.

[17] S.-Y. Zhao and W.-J. Li. Fast asynchronous parallel stochastic gradient descent. In AAAI 2016.

	Introduction
	Sparse Saga
	Asynchronous Parallel Sparse Saga
	Perturbed Iterate Framework
	On the Difficulty of Labeling the Iterates
	Analysis setup
	Convergence and speedup results

	Empirical results

