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Abstract

We study the problem of minimizing the sum of a smooth strongly convex function
and a non-smooth convex function. We consider solving this problem using
the proximal gradient (PG) method, which at each iteration uses the proximal
operator with respect to the non-smooth convex function at the intermediate iterate
obtained using the gradient with respect to the smooth strongly convex function.
We introduce a simple novel analysis and show that the PG algorithm attains a
globally linear convergence rate provided that the step size is sufficiently small.
Consequently, we obtain iteration complexity results for the PG method. We also
extend our analysis to study an inexact proximal method, called the proximal
incremental aggregated gradient method, and show that this method is globally
convergent with a linear rate.

1 Introduction

We focus on composite optimization problems, where the objective function is given by the sum of a
loss function f and a possibly non-differentiable regularization function r:
min F(z) £ f(z) +r(z). (1)
rcR”
We assume the loss function f : R" — (—o00, 00) is convex and continuously differentiable while
the regularization function r : R™ — (—o0, 00] is proper, closed, and convex but not necessarily
differentiable. This formulation arises in many problems in constrained optimization, distributed
optimization, machine learning, and signal processing. Examples include distributed optimization
problems that arise in wireless sensor network as well as smart grid applications [8} [13], constrained
and regularized least squares problems that arise in various machine learning [4}, 16} [15] and signal
processing [2, 3] applications .

The proximal gradient (PG) method is a popular method for solving the problem (1)) [14}[17]. It uses
the proximal operator with respect to the regularization function r at the intermediate iterate obtained
using the gradient with respect to f, consisting of the iterations

Tpy1 = prox] (zx —nV f(zy)), k>0, ()

where 7 is a constant step size and the proximal mapping is defined as follows

1
prox(y) = argmin { 5 12 — " + 17 (o)} ®
xeR™

The convergence properties of the PG method is well studied in the literature under various conditions

on the functions f and 7, see e.g. [7,[10} 11} 23] where existing work on the proximal point algorithm
such as [1} [18} [16] have been a building block for understanding the PG method. A particular
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case of importance is when f is strongly convex and V f is Lipschitz continuous, which would for
instance arise in regression problems. The classical analysis in the literature uses distance to the
optimal solution (which is unique by strong convexity and will be denoted by x*) as a Lyapunov
function and shows that the distance of the iterates (generated by the PG method) to the optimal
solution decreases with an exponential rate [20]. However, this result does not directly translate
into a linear convergence result in the suboptimality of the objective values F'(zy) — F(z*) as the
objective values F'(x) may not vary smoothly with respect to the iterates z; due to the potentially
non-differentiable regularization function r. Two recent papers [[11] and [7] address this issue of
deriving iteration complexity results for the suboptimality in objective values. In particular, in [L1],
the global linear convergence of the PG method is presented under the Polyak-Lojasiewicz (PL)
condition, a weaker condition than the strong convexity of f. Similar to [[11]], in [7], it is shown
that the iteration complexity of the PG method grows linearly with the condition number of the
problem. The main idea is to show that under a quadratic growth condition (which is satisfied when
f is strongly convex), the error bound condition holds, i.e., a multiple of the step length at each
iteration bounds the distance to the solution set[l]

Contributions. In this paper, we present a novel iteration complexity result for the PG algorithm
in terms of suboptimality in function values using a simple and insightful analysis. Building on the
properties of the proximal mapping and strong convexity, we first show that the error bound condition
holds (Lemma@. In this sense, our approach is different from the one in [11]], while our results are
asymptotically the same. Compared to [7], we make stronger assumptions (the strong convexity of
f implies their quadratic growth condition), however in return we get better constants in the error
bound condition (see Lemma[2.T]vs. [7, Cor 3.6]). Using this improved error bound, Lipschitzness
of the gradients and a descent lemma, we show global linear convergence of the PG method and
present the corresponding iteration complexity result (Theorem (2.2)) and Corollary 2.3] respectively).
Our simple analysis extends and allows us to study inexact proximal methods. We illustrate this
by presenting a new iteration complexity result for the proximal incremental aggregated gradient
algorithm, which is an inexact deterministic proximal gradient method that is typically much faster
than the plroximal gradient for problems when the loss function f has an additive structure of the form

f(z) = £ 57 fi(x) and m is large, a problem of particular interest in large-scale data processing

and distributed optimization [4}, 16l [15].

2 Convergence Analysis

We first start with some preliminaries on the PG algorithm. Defining ¢(z) £ 1 ||z — y| |2 + nr(x)
and letting O¢(x) denote the set of subgradients of the function ¢ at z, it follows from the optimality
conditions of the problem in (3) that 0 € ¢ (xy41). This yields z41— (2x—1V f(z))+nhgs1 = 0,

for some hy11 € Or(xg+1). Hence, we can compactly represent our update rule as
Tpy1 = T + ndy, “)

where d, = —V f(x) — hi1 is the direction of the update at time k. Throughout this paper, we
make the following assumptions on the objective function, which appears frequently for analyzing
proximal methods in the literature [} 6} 9, [19]].

(A.1) fis u-strongly convex and V f is globally Lipschitz with constant L on R,
(A.2) ris proper, closed, convex and subdifferentiable everywhere in its effective domain.

A consequence of these assumptions is that the solution to (1)) is unique, which we denote by z*. The
condition number of the problem is defined as the ratio

Q2L/u. o)

In the rest of the section, we show that the PG algorithm attains a global linear convergence rate with
a constant step size provided that the step size is sufficiently small. Using this result, we obtain an
iteration complexity result for the PG algorithm which depends linearly on the condition number
Q. First, we introduce the following lemma, which can be interpreted as follows. For the special
case r(z) = 0 for all z € R", i.e., when the PG algorithm reduces to the classical gradient descent
algorithm, an identical result to this lemma simply follows from the strong convexity of the function

ISee [12] for a rigourous definition of this condition.



f since ||z, — z*|| < % |V f(zr) — Vf(z*)| and V f(z*) = 0 due to the optimality condition of
the problem. The following lemma indicates that even though we do not have such control over the
subgradients of the regularization function (as the regularization function is neither strongly convex
nor smooth), the properties of the proximal step yields a similar relation for the direction of update at
the expense of constant 2/ (instead of 1/ compared to the r(x) = 0 case).

Lemma 2.1 Under Assumptions (A.1)-(A.2), the distance of the iterates (generated by the PG
algorithm) from the optimal solution is upper bounded as

. 2
|k — 2| < = [[dal]
I

for any iteration k > 0 and step size 0 <n < 1.

Proof: The non-expansiveness property of the proximal map implies

[Iprox () — prox(y)||* < {prox () — prox!(y), x — 1),

for any x,y € R™. Putting x = x, — nV f(xx) and y = z* — nV f(z*) in the above inequality, we
obtain

e +nd = 2*|1* < (an + ndi — 2*, 2k =V f(2i) = 2" + 0V f ("))
= (@ +ndy — 2%, xp +ndy — %) + (2k +ndy — 2%, —nde + 9V f(27) =0V f (1)),
which implies
0 < {zk +ndy — 27, —di + Vf(2") = V().
This inequality can be rewritten as follows
(= 2", Vf(a) = Vf(2") < (@ =@, —dp) = |ldill* +n(dy, Vf(@*) = V()
< (wk — 2%, —dp) +1(di, Vf(2") = Vf(zk))
< del| ([lzr = =[] + 0 [V f(2") = Vf(zi)]])
< ldkll ([lzr = 2| + 0L |Jex — 2*[])
< 2||dg[] [ — =], (6)
where the second inequality follows since — ||dj||*> < 0, the third inequality follows by the Cauchy-
Schwarz inequality, the fourth inequality follows from the L-smoothness of f, and the last inequality
follows since n < % Since pu-strong convexity of f implies
pllas = a*|[* < (o — 2®, V(ax) = V(). ™
then combining (6)-(7) and simplifying one of the distance terms, we obtain the desired inequality. [J

Building on this lemma, in the following theorem, we show that the PG algorithm attains a global
linear convergence rate for sufficiently small step sizes. A consequence of this theorem, Corollary
[2.3]shows that the iteration complexity of the PG algorithm grows linearly with the condition number
@ of the problem.

Theorem 2.2 Under Assumptions (A.1)-(A.2), the PG algorithm with step size 0 < n < % is linearly
convergent satisfying

—k
Flay) — F@) < (1+05)  (Flao) - F(a), ®)
forany k > 1.
Proof: The difference in the function values of two consecutive iterations can be upper bounded as
L
Fzin) = Flan) <n(VF(ae),di) +0°5 ldll* + r(wxs1) = r(n), 9
using the L-smoothness of f. We then observe that

0V f(ar), di) + r(zrer) — r(ze) = = l|dil|* = nlhagr, di) + r(zeer) — r(ze) < —n ||dk(||1207)



where the equality follows by the definition dy, = —V f(xx) — hg+1 and the inequality follows by
the convexity of . Using (I0) in (9), we obtain

L 1
Fwyi1) = F(ay) < —nlldg|? 0’5 ldxl* < —3 il
since ) < % Using Lemmain the above inequality, we get
Fleie) = Fex) < =0 lldull o — 2] < —nk (di,a” = a), an

where the last inequality follows by the Cauchy-Schwarz inequality. This inner product can be
rewritten as

—(dg, " — x) = (Vf(2p) + hiey1, 2" — xp)

=(Vf(xr), 2" —xx) + (hpy1, 2" — Tpp1) + 0{hpyr, di)- (12)
Since f and r are convex, the right-hand side of (I2) can be upper bounded by
—(di,z* —z) < (@) = fzr) + (@) = r(@Trg1) + 0, di)- (13)

We then consider the inner product term 7{h1, dj) in the above inequality and rewrite it as

(g1, di) = = [di|* = n(V (@), di) = =n ||del[* + (V f (z1), 2 — Th11)-
Using the L-smoothness of f, we can upper bound the RHS of the above inequality as

Mlirdi) < flaw) = F(nsn) = 3 1l (14)

since n < % Using in (13), we obtain
—(di, 2" —mp) < f(27) = f(Thgr) +7(07) = r(Tog) — g ldl|* < F(@*) = F(zg11), (15)
since — 4 ||dx]]* < 0. Using in and after simple algebra, we get the inequality in (§). [

Corollary 2.3 Under Assumptions (A.1)-(A.2), the PG algorithm with step size ) = % is guaranteed

to return an e-optimal solution after at most 5@ log (M) iterations.

3 Applications to Proximal Incremental Aggregated Gradient Method

The technique we present in Section [2]is applicable to analyze other algorithms that include a proximal
step or an inexact proximal step. To illustrate this point further, we will next introduce the proximal
incremental aggregated gradient method which is equivalent to an inexact PG method and derive
novel iteration complexity results for its convergence.

When the loss function f has an additive form, i.e., f(z) = = > fi(z), and each f; is L;-smooth
such that f is L-smooth with L = % Y%, L. In such large-scale optimization problems (with large
m), computing the full gradient V f () at each iteration and therefore the PG method becomes costly
[3]]. Instead, a prevalent approach is to calculate a gradient with respect to a single loss function f; at
each iteration and use the outdated gradients for the remaining loss functions. In particular, at each
iteration k, we form an aggregated gradient g, = = " | V fi(z,, ), where V f;(z, , ) represents
the gradient of the ¢-th component function sampled at time 7; . In this setup, the time delays in
gradient computations are bounded, i.e., there exists an integer K > O such that k — K < 7; 5, < k for
all ¢ € {1,...,m}. Then, at each iteration k, the proximal incremental aggregated gradient algorithm
takes a step along the approximate gradient descent direction —gy, and apply the proximal mapping to
this intermediate iterate, i.e., it takes the combined step x;1+1 = prox}(zj — ngy ). For this algorithm,
using a similar methodology to Section[2] we obtain the following iteration complexity guarantee.
The proof details can be found in [21] and [22].

Theorem 3.1 The proximal incremental aggregated gradient algorithm with step size n =

1
% [(1 + @) R 1] is guaranteed to return an e-optimal solution after at most 49Q(K +

1)log (M) iterations.



References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(91

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

H. Attouch and J. Bolte. On the convergence of the proximal algorithm for nonsmooth functions involving
analytic features. Mathematical Programming, 116(1):5-16, 2009.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM Journal on Imaging Sciences, 2(1):183-202, 2009.

A. Beck and M. Teboulle. Gradient-based algorithms with applications to signal recovery problems. In
D. Palomar and Y. Eldar, editors, Convex Optimization in Signal Processing and Communications, pages
42-88, 2010.

D. P. Bertsekas. Incremental gradient, subgradient, and proximal methods for convex optimization: a
survey. Optimization for Machine Learning, 2010:1-38, 2011.

D. P. Bertsekas. Incremental aggregated proximal and augmented lagrangian algorithms. arXiv preprint
arXiv:1509.09257, 2015.

A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient method with support for
non-strongly convex composite objectives. In Advances in Neural Information Processing Systems 27,
pages 1646-1654, 2014.

D. Drusvyatskiy and A. S. Lewis. Error bounds, quadratic growth, and linear convergence of proximal
methods. CoRR, abs/1602.06661, 2016.

F. Guo, C. Wen, J. Mao, and Y. D. Song. Distributed economic dispatch for smart grids with random wind
power. IEEE Transactions on Smart Grid, 7(3):1572-1583, May 2016.

M. Gurbuzbalaban, A. Ozdaglar, and P. Parrilo. On the convergence rate of incremental aggregated gradient
algorithms. arXiv preprint arXiv:1506.02081, 2015.

M. Kadkhodaie, M. Sanjabi, and Z.-Q. Luo. On the linear convergence of the approximate proximal
splitting method for non-smooth convex optimization. CoRR, abs/1404.5350, 2014.

H. Karimi, J. Nutini, and M. Schmidt. Linear convergence of proximal-gradient methods under the
Polyak-Lojasiewicz condition. CoRR, abs/1608.04636, 2016.

Z.-Q. Luo and P. Tseng. Error bounds and convergence analysis of feasible descent methods: a general
approach. Annals of Operations Research, 46(1):157-178, 1993.

A. Nedic, D. P. Bertsekas, and V. S. Borkar. Distributed asynchronous incremental subgradient methods.
Studies in Computational Mathematics, 8:381-407, 2001.

Y. Nesterov. Introductory lectures on convex optimization: a basic course. Applied Optimization. Springer,
Boston, 2004.

F. Niu, B. Recht, C. Re, and S. Wright. Hogwild: A lock-free approach to parallelizing stochastic gradient
descent. In Advances in Neural Information Processing Systems 24, pages 693-701, 2011.

N. Parikh and S. Boyd. Proximal algorithms. In Foundations and Trends in Optimization, volume 1, pages
123-231, 2013.

B. T. Polyak. Introduction to optimization. Translations series in mathematics and engineering. Optimiza-
tion Software, Publications Division, New York, 1987.

R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM Journal on Control and
Optimization, 14(5):877-898, 1976.

N. L. Roux, M. Schmidt, and F. R. Bach. A stochastic gradient method with an exponential convergence
rate for finite training sets. In Advances in Neural Information Processing Systems 25, pages 2663-2671,
2012.

M. Schmidt, N. Le Roux, and F. Bach. Convergence rates of inexact proximal-gradient methods for convex
optimization. CoRR, abs/1109.2415, 2011.

N. D. Vanli, M. Gurbuzbalaban, and A. Ozdaglar. Global convergence rate of proximal incremental
aggregated gradient methods. CoRR, abs/1608.01713, 2016.

N. D. Vanli, M. Gurbuzbalaban, and A. Ozdaglar. A stronger convergence result on the proximal incremental
aggregated gradient method. CoRR, abs/1611.08022, 2016.

H. Zhang. The restricted strong convexity revisited: Analysis of equivalence to error bound and quadratic
growth. CoRR, abs/1511.01635, 2015.



	Introduction
	Convergence Analysis
	Applications to Proximal Incremental Aggregated Gradient Method

