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Abstract

In machine learning, it is often advantageous to return multiple solutions to an
optimization problem, rather than the single optimal solution. We consider the
M-best LP problem, where the goal is to find the M vertices of a polytope that
minimize a linear cost function. We present an algorithm that can find the M -best
when M is constant. We complement this by a hardness of approximation result.

Furthermore, we study the problem of recovering the highest vertex with integral
coordinates. This question arises naturally for MAP inference in graphical models.
We show that for any polytope contained inside the unit hypercube, it is possible
to find the highest integral vertex if it lies within the top poly(n) vertices of the
LP. This allows us to avoid polynomially many fractional vertices and still recover
the optimal vertex with {0, 1} coordinates. Our work resolves an open problem by
Dimakis, Gohari, and Wainwright.

1 Introduction

Consider a linear program (LP) {min ¢’z : 2 € P} over a polytope P: the optimal solution of this

LP is at the vertex! of P with the highest dot product with the vector —c. One can consider the whole
list of the vertices of the polytope P, sorted by dot product with —c¢, and think that the LP solver
is producing the top element in this list. In this paper we ask the question: is it possible to produce
other vertices from this list, i.e. the second best, or the top M -best.

Finding the M -best solutions to general optimization problems has uses in several machine learning
applications. Producing multiple high-value outputs can be naturally combined with post-processing
algorithms that select the most desired solution using additional side-information. There is a signif-
icant volume of work in the general area, see [15] for structured prediction, [13, 3, 12] for MAP
solutions in graphical models, [21] for sentence parsing in natural language processing, and [20] for
pose estimation in computer vision. See also [9] for a survey on M -best problems.

Despite the significant volume of prior work, we are aware only of [7, 13, 1] that specifically consider
linear programs.

Our results: We informally summarize our results. We assume that the polytope P is given as an
H-description i.e., an intersection of polynomially many closed halfspaces (linear inequalities).

Upper Bounds: Generalizing work due to Dimakis, Gohari, and Wainwright [7], we introduce an
algorithm called generalized facet guessing for finding the M -best vertices of an arbitrary bounded
LP. Our algorithm runs in polynomial time for any M = O(1). This result is also implicit in the
work of [1], where it is stated in the language of forbidden vertices and extension complexity.

"We ignore the cases when a whole facet is optimal, for the first discussion.
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We build on these ideas and then consider the problem of finding the highest integral vertex if it lies
within the top poly(n) vertices of a linear program. This has applications within coding theory and
graphical models, where an integer program for MAP is relaxed to a linear program and unwanted
fractional vertices may be introduced?. We solve this problem for general polytopes contained within
the unit hypercube in a way that allows us to avoid polynomially many fractional vertices and still
recover the optimal vertex with {0, 1} coordinates. We then extend this to find the top M fractional
vertices, under the assumption that they all lie within the top poly(n) vertices.

The only previous work for this problem we know of is due to Dimakis et al. [7] who showed that
for the special-case inference problem of LDPC decoding, it is possible to find this highest integral
coordinate vertex if it lies within M = poly(n) top list, with high probability. This required several
assumptions about the structure of the graphical model and only applied to linear binary codes.

There has been substantial prior work on improving inference building on these LP relaxations,
especially for LDPC codes in the information theory community. This work ranges from very fast
solvers that exploit the special structure of the polytope [4], connections to unequal error protection
[8], and graphical model covers [17]. LP decoding currently provides the best known finite-length
error-correction bounds for LDPC codes both for random [6, 2], and adversarial bit-flipping errors
[10].

The work most closely related to this paper involves eliminating fractional vertices (so-called pseu-
docodewords in coding theory) by changing the polytope or the objective function [24, 5, 18]. To the
best of our knowledge, no prior method was known to succeed when polynomially many fractional
vertices have higher likelihood over the best integral one. Our results imply that a specific version
of branch and bound can always achieve that.

Hardness Results: We show that it is NP-hard to produce a list of the M-best vertices if M =
O(n®) for any fixed € > 0. This strengthens the previously known hardness result [1] which was
M = O(n). We extend these results to approximating the M -best vertices.

2 Definitions and Setup

A linear program is an optimization problem with a linear cost function constrained by an intersec-
tion of half spaces, which are constraints of the form Az < b. If the constraint set is bounded, then
the constraint set is a polytope P. The vertices of the polytope are the minimal set of points V' (P)
such that the convex hull conv(V(P)) = P. As is well known, the optimal solution to a bounded
linear program always occurs at a vertex, and we can alway find an optimal vertex in polynomial
time. Thus we define the M -best LP problem as the following:

Definition. Given a linear program {minc’z : & € P} over a polytope P and a positive integer

M, the min-M-best LP problem is to optimize

M
min g chk.
{v1,..,uMm }CEV(P) P

The max-M -best LP problem is defined by changing the minimization with maximization.

For unbounded linear programs, it is NP-hard to find even the single best vertex [14], and so through-
out we assume all linear programs are bounded. For many problems of interest, we can add con-
straints to make the problem bounded without changing the solution to the M -best problem.

3 M-BestLP

In [1], it was show that the M-best LP problem was NP-hard to solve even if M is O(n). By a
padding argument, we see that the problem remains NP-hard even if M = O(n®) for any fixed
e > 0. We extend this to hardness of approximation by establishing the following hardness of
approximation results.

2This relaxed polytope is called the Fundamental polytope or Relaxed polytope for the special case of LDPC
codes or the Local polytope in general, see e.g. [11, 22]



Theorem 1. The min- and max-M-best LP problems are hard to approximate in the following
senses:

e It is NP-hard to approximate the total cost in the min-M-best LP problem of a bounded
linear program within a factor O(2™ "), even if M is restricted to be O(n°) for any fixed c¢
and e > 0.

e [t is NP-hard to approximate the max-M-best LP problem by a factor better than O(”ﬁs)
for any fixed € > 0.

We now present a generalization of the facet guessing algorithm (Algorithm 1). The facet guessing
algorithm [7] succeeds because the second best vertex is the optimal vertex on some facet of the
polytope. Thus by solving an LP for every facet of the polytope, we guarantee that the second best
solution is the optimal solution to one of the LPs. Outputting the top two vertices found will be the
2-best vertices of the LP. By a similar argument, if we enumerate lower dimensional faces of the
polytope (which can be done by changing inequality constraints to equality constraints), we can find
the M -best vertices by solving O(m* ~1) linear programs, where m is the number of constraints of
the linear program. A similar idea was used implicitly in [1].

Algorithm 1 Generalized Facet Guessing

Input: an LP {min ¢’z : Az < b} with A € R"*™; a positive integer M
forall I C {1,2,...,m} of size M — 1:

vy «—minclx: Az < b, Arx = b;
return the M best unique values from the v;’s

The hardness results do not prohibit finding the M best vertices for M = O(logn), so it still may
be possible that we can find a super-constant number of vertices in polynomial time.

The advantage of Algorithm 1 over the extension complexity result of [1] is that it outputs many
candidate suggestions for optimal vertices, suggesting a natural heuristic for finding more than a
constant number of solutions. We may not have to enumerate all O(m? ~1) faces in order to return
the M -best vertices found.

In [1], they show that if the polytope has all vertices contained in {0, 1}", we can find the M best
for M = poly(n) by constructing a series of polytopes with polynomial extension complexity that
have the currently found solutions removed.

An alternative algorithm is the following: (1) we can find the second best vertex using the facet
guessing algorithm and (2) we can separate the vertices into two sets such that one contains the
optimal solution and the other contains the second best solution. The separation is by creating two
new polytopes, one with x; = 0 and one with z; = 1, where ¢ is chosen to separate the optimal
and second best solution. This allows us to construct an arbitrary M best solver for any M by using
techniques in [13].

However, these approaches will fail if there are fractional vertices amongst the top integral vertices,
which is often the case in the LP relaxation of MAP in graphical models. In the following section,
we discuss how to skip over these vertices.

4 Finding the )/ -best integral vertices

Another application of the M-best LP problem is to search for a vertex with a certain property. For
example, the MAP problem in graphical models is often solved by an LP relaxation that is tightened
until an integral vertex is found. It is a major open problem to understand why this approach is
successful in practice compared to the theoretical worst case [19]. Success conditions do exist for
certain special cases; see [16, 22, 23] for an incomplete list.

Assuming that the optimal integral vertex is among the poly(n)-best vertices and the polytope is
contained in the unit cube, then we can find it in polynomial time with the following coordinate
branching algorithm, which utilizes the classic branching technique often used when solving ILPs.



Algorithm 2 Coordinate Branching Algorithm

Input: an LP {min ¢’z : Az < b,0 < 2 < 1}; a positive integer M
represent branch as (v, Iy, I1), meaning v is optimal for the LP with z7, = 0 and z, = 1.
v < optimal vertex to original LP
B« {(v1,0,0)}
while we have not found optimal integer vertex:
(v, Iy, I1) < branch corresponding to the best vertex in B
if v is integral:
return v
else:
find a fractional coordinate v;
replace (v, Iy, I1) in B with (vo, Io U {i}, I1) and (vy, I, Iy U {i})

This generalizes the result in [7], which was able to solve the same problem in the specific case of
LDPC decoding.

The algorithm starts out with with the optimal solution, then branches on a fractional coordinate. It
then finds the maximum solution over all the current branches and again branches on a fractional
coordinate, repeating this process until the optimal integral solution is found. It can also be seen as
a facet guessing algorithm, as it guesses facets based on the coordinates of the current fractional
solution.

Its success follows from the following invariants: (1) a vertex is never in more than one branch, (2)
every integral vertex is in exactly one branch, (3) no new vertices are ever introduced, and (4) after
every iteration we eliminate at least one fractional vertex with a lower cost than the optimal integral
vertex. Thus we have the following theorem.

Theorem 2. Given a bounded linear program of the form {minc’x : Ax < b,0 < z < 1}, if
the optimal integral vertex is among the M -best vertices, then the Coordinate Branching Algorithm
(Algorithm 2) will terminate with the optimal integral vertex in time O(MTy,p), where Ty p is the
time to optimize a linear program.

Further, by combining the Coordinate Branching Algorithm with the algorithm we describe for
{0, 1}-polytopes in the previous section, we can find the M-best integral solutions under the as-
sumption that all M are contained amongst the poly(n)-best vertices. This leads to the following
corollary.

Corollary 3. Given a bounded linear program of the form {min ¢’z : Az < b,0 < 2 < 1}, if the
M optimal integral vertices is among the poly(n)-best vertices, then we can find these M integral
vertices in polynomial time.
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