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Abstract

SVRG++ is a recent randomized optimization algorithm designed to solve non-
strongly convex smooth composite optimization problems in the large data regime.
In this paper we combine SVRG++ with non-uniform sampling of the data points
(already present in the original SVRG algorithm), leading to an algorithm with the
best sample complexity to date and state-of-the art empirical performance. While
the combination and the analysis of the algorithm is admittedly straightforward,
our experimental results show significant improvement over the original SVRG++
method with the new method outperforming all competitors on datasets where the
smoothness of the components varies. This demonstrates that, despite its simplicity
and limited novelty, this extension is important in practice.

1 Introduction

Minimizing the composite convex objective function
1 n
F(z) = E;fi($)+‘1’($)7 (1)

over z € R%, where f; : R* — R,1 < i < n, are smooth, convex functions and ¥ : R? — R
is a convex, but not necessarily smooth function (sometimes called the proximal function), has
received significant attention recently. The popularity of this problem is due to the fact that empirical
risk minimization (ERM), a widely used method in machine learning, often leads to this kind of
optimization problems. For example, in several supervised machine learning tasks we are given n
training samples (w;, y;), 1 < ¢ < n, where w; € R? is a feature vector and y; € R is the label, and
the goal is to estimate the label given a feature vector. ERM selects a predictor that minimizes the
estimation error (plus possibly some penalty term) over the training sample in a class of prediction
functions parametrized by - € R%. Widely used special cases include

e Ridge regression: fi(z) = 2 ((w;, z) — y;)? + ||z|* and ¥(z) = 0,

e Lasso: fi(z) = 1 ((w;, ) — y;)? and ¥ (z) = o|z|)1,

e Elastic net: fi(z) = 1((w;, z) — y;)* + Z||z||*> and ¥ (z) = o'||z||1,

e [;-penalized logistic regression: f;(z) = log(1 + exp(—y; (w;, z))) and ¥(x) = o||x|1,
to mention a few[[]

Let 2™ denote the minimum of F’ over ]Rd Since exact minimization of F' is usually not possible, the
goal of an optimization algorithms is to find an e-optimal solution . satisfying F'(z.) — F(z*) < €.

"Here and throughout the paper, || - || denotes the Euclidean norm.
>Throughout we assume that the minimum exists.
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The standard approach for minimizing F' by gradient methods would involve computing all the
component gradients V f; for all 4 in every iteration of such an algorithm, whose O(n) computational
complexity becomes prohibitive if n is large, which is the case in many machine learning problems.

To overcome this issue, several stochastic gradient methods have been developed that utilize the
special form of F' in order to reduce the computational complexity of a single iteration to O(1)
(Zhang, [2004; |Shalev-Shwartz and Zhang| 2012} 2013} |[Schmidt et al., [2013} |Defazio et al., [2014;
X1ao and Zhang| 2014} |Allen-Zhu and Yuan, 2016). In essence, in every iteration of a gradient descent
method, these algorithms select an index ¢ uniformly at random and then estimate the gradient of
fl@)=1 Z?Zl fj(z) using V f;(z) only (i.e., not computing V f;(z) for j # 7). In the simplest
stochastic gradient descent (SGD) case, this translates to using the estimate £ = V f;(x). While
state-of-the-art methods like SAGA (Defazio et al.,2014), SVRG (Xiao and Zhang}, |2014) or SVRG++
(Allen-Zhu and Yuan, 2016) use more refined techniques to estimate V f (), another line of work,
mostly for the related coordinate descent methods, showed that non-uniform sampling combined
with importance weighted estimates also reduces the variance (see, e.g., Nesterov, 2012; |Afkanpour|
et al.| 2012). This idea of importance sampling was applied by Zhao and Zhang|(2014) for SGD to
find an e-optimal solution to minimizing F', and|Xiao and Zhang (2014) also used it in the original
version of SVRG. On the other hand, non-uniform sampling was not applied in SVRG++, which
is currently the best algorithm for non-strongly convex objective functions, and dealing with the
importance-sampling idea is often left out from new algorithms to simplify notation and concentrate
on more novel parts of the methods (see, e.g.,|Allen-Zhu and Yuan, [2016j Allen-Zhul 2016).

In this paper we argue that this is not the right approach, as non-uniform sampling can significantly
improve the performance of the algorithms in practice. In particular, we combine SVRG++ with
importance sampling, and show that, despite of its simplicity, this minor change can dramatically
improve the algorithm’s performance. Specifically, the new algorithm outperforms other state-
of-the-art methods in the literature for smooth, non-strongly convex objectives (including, e.g., all
aforementioned examples with L1 -penalty), if the smoothness of the individual f;s varies significantly.

2 SVRG++ with non-uniform sampling (SVRG++NUS)

In the rest of the paper we assume that for each 1 < 7 < n, f; is convex and L;-smooth for some
L; > 0, thatis, |V fi(z) — V£i(y)|| < Li||z — y|| for all x,y € R%. We define L = max; L; and
L=1y" L,

The main idea underlying first order optimization methods to minimize F' of the form (I)) is to
repeatedly perform the optimization step

. 1
T¢p1 = argmin {Hy —ze|® + (& y) + ‘I’(y)} )
yERd 2n

where 7) is a step size parameter and E[¢;|F;—1] = V f(x;) with F;_; denoting the o-field generated

by all randomness before the beginning of iteration ¢. The addition of SVRG is that the full gradient
of f is computed from time to time, and &, is defined as

& = Vii(xy) = V(@) + V@), )

where 1 is selected uniformly at random and , is the last point where the full gradient was computed.
This variance reduction idea implies that as long as the full gradient is sampled in every m step (m
being some parameter) E[(¢ — V f(x))?|F;—1] — 0. SVRG++ changes the resulting algorithm by
increasing m exponentially over time. In this work we propose to choose ¢ in (2)) non-uniformly,
according to some distribution p. The resulting method, which we call SVRG++NUS (SVRG++ with
Non-Uniform Sampling), is given in Algorithm I]

It is easy to check that the stochastic gradient estimate &; is unbiased, that is, E[¢]|F;_,] = V(] )EI

Similarly to SVRG (Xiao and Zhang| [2014)), we chose the distribution p according to the smoothness

parameters, that is, p; = ﬁ

Combining the convergence analysis of SVRG (Xiao and Zhang, [2014) and SVRG++ (Allen-Zhu and
Yuan, [2016), it is straightforward to show the following convergence guarantee about SVRG++NUS:

3 F:_ 1 denotes the o-field capturing all randomness before the #th iteration of epoch s.



Algorithm 1 SVRG++ with non-uniform sampling (SVRG++NUS) (x®, mo, S, n)

1: £0<—x¢,x})<—x¢
2: fors«1,...,5do

3 i e VIETY

4: ms < 2°mg

5: fort < 0,...,ms; —1do

6: Pick i € {1,...,n} with distribution p

7: &« (Vfi(z}) = V(@) /(npi) + fis—1

8wy = argmingea { &y — w52 + (€,9) + 90)
9: end for

10 5 % S @

11: x‘S'H —ad

12: end for

13: return 7°

Dataset ‘ n d Tridge Tlasso & log
adult 32561 123  1.0094 1.0094
ijennl 49990 22 2.6151 2.6152
skin nonskin | 245057 3 3.1924 3.1924
w8a 49749 300 9.7852 9.7852

Table 1: Dimensions and 7 values of the datasets.

Theorem 1. Assume f; is convex and L;-smooth with L; > 0 for all 1 < i < n. Then, if Algorithm|]]
is run with step size is n = 1/(7L), it holds that
@) = F@*) | Lla® =P
2S QSTTLO ’

E[F (&%) — F(z*)] = O (

and the algorithm requires O(Sn + 25mg) component gradient evaluations.

Following |Allen-Zhu and Yuan| (2016)) to set the parameters of the algorithm, if the initial point
z? satisfies [[z? — 2*[? < © and F(2?) — F(z*) < A for some known ©,A € R, set-
ting S = logy(A/e) and myg = LO/A guarantees that an e-optimal solution is achieved by

A Ley) _ 1 L : : fe
0] (n log = + T) =0 (n log = + ;) component gradient evaluations. This {mproves upon
the SVRG++ bound of |Allen-Zhu and Yuan|(2016), which depends on L instead of L.

3 Experiments

In this section we compare the new method, SVRG++NUS, with SVRG++ (Allen-Zhu and Yuan,
2016)), the original SVRG method with non-uniform sampling (Xiao and Zhang| 2014)) and also with
SAGA (Defazio et al., 2014)E] We consider three objectives: ridge regression, lasso, and L -penalized
logistic regression, described in Section with regularization parameter o = 104 in all cases. We
have run the experiments on four different datasets from|Chang and Lin|(2011). The advantage of
non-uniform sampling is expected to appear when the ratio 7 = L/ L, measuring the variability of
the individual smoothness parameters, is larger; similarly to|Zhao and Zhang (2014), the datasets
were chosen to cover different values of 7. Properties of the datasets are summarized in Table[T]

All algorithms started at the origin, and were used with their theoretically optimal step size and
parameters suggested by their original authorsE] The smoothness parameters L; were obtained by
bounding the largest eigenvalues of the Hessian of f;.

“Experimental results of |Allen-Zhu and Yuan|(2016) suggest that these algorithms usually outperform SDCA
(Shalev-Shwartz and Zhang}, |2012), which therefore is not included in our experiments.

>The value of 1 was selected as 1/(7L),1/(7L),1/(5L),1/(3L) for SVRG++NUS, SVRG++, SVRG-NUS,
and SAGA, respectively. The epoch size for SVRG is m = 2n, and mo = n/4 for SVRG++ and SVRG++NUS.
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Figure 1: Performance of stochastic gradient methods on the datasets: adult (top row), ijcnn1(second
row), skin_nonskin (third row), w8a (bottom row); with different objective functions: ridge regression
(left column), lasso (middle column), logistic regression (right column). The legend for all plots is
given in the top left plot.

The results of the experiments are shown in [Figure 1] One can observe that for all datasets with a
noticeable variability in the smoothness, SVRG++NUS is always among the best algorithms, and
hence it should be the preferred choice for optimization for larger values of 7.

4 Conclusions

In this paper we presented a variant of SVRG++ (Allen-Zhu and Yuan| 2016) using non-uniform sam-
pling. While the analysis of the algorithm is a straightforward combination of the original SVRG++
and SVRG proofs, the experimental results demonstrate that introducing non-uniform sampling yields
a remarkable performance improvement for datasets with varying individual smoothness. This shows
that, despite its theoretical simplicity, such non-uniform sampling could have significant effects in
practice and should be considered in similar ’stochastic gradient’-type algorithms.




References

Tong Zhang. Solving large scale linear prediction problems using stochastic gradient descent
algorithms. In Proceedings of the Twenty-first International Conference on Machine Learning,
ICML "04, pages 116—. 2004.

S. Shalev-Shwartz and T. Zhang. Stochastic Dual Coordinate Ascent Methods for Regularized Loss
Minimization. ArXiv e-prints, 2012.

Shai Shalev-Shwartz and Tong Zhang. Accelerated Proximal Stochastic Dual Coordinate Ascent for
Regularized Loss Minimization. ArXiv e-prints, 2013.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing Finite Sums with the Stochastic
Average Gradient. ArXiv e-prints, 2013.

Aaron Defazio, Francis R. Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives. CoRR, abs/1407.0202, 2014.

Lin Xiao and Tong Zhang. A Proximal Stochastic Gradient Method with Progressive Variance
Reduction. ArXiv e-prints, March 2014.

Zeyuan Allen-Zhu and Yang Yuan. Improved svrg for non-strongly-convex or sum-of-non-convex
objectives. volume abs/1506.01972. 2016.

Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22(2):341-362, 2012.

Arash Afkanpour, Andras Gyorgy, Csaba Szepesvari, and Michael H. Bowling. A randomized
strategy for learning to combine many features. CoRR, abs/1205.0288, 2012.

Peilin Zhao and Tong Zhang. Stochastic Optimization with Importance Sampling. ArXiv e-prints,
2014.

Z. Allen-Zhu. Katyusha: The First Direct Acceleration of Stochastic Gradient Methods. ArXiv
e-prints, 2016.

Chih-Chung Chang and Chih-Jen Lin. Libsvm : A library for support vector machines. Software avail-
able athttp://www.csie.ntu.edu.tw/ cjlin/1libsvm (2016/06), 2011. ACM Transactions
on Intelligent Systems and Technology, 2:27:1-27:27.


http://www.csie.ntu.edu.tw/~cjlin/libsvm

	Introduction
	SVRG++ with non-uniform sampling (SVRG++NUS)
	Experiments
	Conclusions

