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Abstract

This paper asks: what is the maximum amount of ¢; regularization can we apply while preserving
cumulative regret in online learning? We show that scaling the ¢; penalty by v/7, rather than a
fixed ¢; or a linearly increasing ¢; penalty, provides the maximum possible ¢; regularization and
corresponding model sparsity while preserving cumulative regret bounds, and provide supporting
empirical results.

1 Introduction

In this paper, we consider the general online convex optimization problem, which naturally encompasses many
important learning tasks [13|16]. We consider a sequence of rounds, where on each round ¢ our algorithm makes a
prediction via model x; € R", nature (which may be adversarial) reveals a convex loss function f;, and then we
pay the cost f;(z;) and update our model. The primary goal here is to minimize regret, defined with respect to a

comparator model z*. The standard definition is: Regret(z*) := Zle(ft(xt) — fr(z*)).

An important secondary goal is to produce sparse models, that is, models that have few non-zero entries [3, [12].
Inducing sparsity can help match prior beliefs about model structure, is a useful a method of feature selection,
and leads to computational efficiency in massive-scale settings. Perhaps the most popular method to induce model
sparsity is to penalize the ¢; norm of the coefficients [[14]]. Instead of running our online algorithm on f;(z), we
can consider f;(x) + a||z||1, where y is the strength of the ¢; penalty associated with the ¢ training example.

In this paper, we focus on the Follow-The-Regularized-Leader (FTRL) family of algorithms. Let ¢4, := Z?: o Vi
for a sequence of variables or functions {¢; } ;>0 and recall that such algorithms select points

ZTyp1 = argmingy. - & + ro.(x). (1)
zeX

where X C R™ is a convex feasible set, g; = V f;(z;) with f; the loss function on round ¢, r; is the incremental
regularization penalty added on round ¢, and z; € R"™ are the model parameters chosen by the algorithm on
round ¢. Both Mirror Descent [2, /4] and Regularized Dual Averaging (RDA) [15]] can effectively incorporate an ¢4
penalty (or other non-smooth convex penalties), but Follow-The-Regularized-Leader (FTRL) algorithms like Dual
Averaging generally produce better sparsity vs. accuracy tradeoffs [15, [8]. Both RDA and FTRL-Proximal [8]] (a
close relative of Mirror Descent) can be expressed as the update of Eq. (1)) with suitable choices of rg.;.

While these algorithms can effectively incorporate ¢; penalties, the analysis of Xiao [15] and Duchi and Singer [2]
assumes a fixed ¢; penalty is associated with every training example, implying the cumulative strength of the ¢,
regularization increases linearly in the number of examples (that is a; = A for all ). We will show this approach
must necessarily lead to over-regularization in a truly online setting. For FTRL algorithms including RDA, it is
also fairly straightforward to analyze the case of a constant cumulative /1 penalty that stays fixed as 7" increases
(meaning o1 = A and oy = 0 for ¢ > 1). However, we will show this approach leads to under-regularization in
that even features that emit random noise eventually tend to get non-zero coefficients in the model.

The natural question is then how to set the incremental ¢; regularization parameters «; so as to both achieve low
regret but also continue to produce sparse models even as 7' grows arbitrarily. We will show that choosing the «;

so that on round ¢ the cumulative ¢, penalty is © (\/i) is essentially the optimal choice.
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Figure 1: Distribution of gradient sums for an uninformative (x = 0) and an informative (u = T¢) feature
after T rounds in the thought experiment, and the regions where different ¢; regularization schemes suppress
the corresponding coefficient. Constant cumulative ¢, regularization is in black, v/ is in dark gray, and linear
regularization (which covers both distributions, suppressing everything) is in light gray.

2 Intuitions

To build intuitions for the formal results presented later, first consider the simple case of online linear optimization
in the stochastic setting. A key observation is that FTRL and RDA algorithms have the property that the coefficient
value z; ; is a function of the sum of loss gradients experienced by that feature [8, [15]. For example, the update
rule for RDA is:

_ . 1 2 _Jo if |g1:4] < oy
Tt+1 = argmin <g1;t1‘ + §Ul:t‘|x||2 + 041;t||$||1) o { —(91:t —sgn(g1.¢)a1:¢)/o1:¢  otherwise 2

In particular, a feature with gradient sum of zero should have a zero coefficient value.

We will show that, under some very mild assumptions, with high probability the absolute gradient sum for a
completely random feature (i.e., pure noise) will be ©(+/T'), which suggests that we should discount features with

gradient sums of O(+/T)) in order to suppress noise, but should not be any more aggressive than that lest we also
suppress genuinely informative features.

A Simple Thought Experiment We begin with a simple thought experiment, illustrated in Fig. Suppose
the model only has one coefficient, (i.e., n = 1), and on each round ¢ the loss gradient g; is drawn i.i.d. from
N(u,0?). We consider two scenarios corresponding to the (single) feature being useless noise (i.e., = 0) or
informative (i.e., u = € > 0). After T rounds, the gradient sum g¢;.; is distributed as shown in Fig. [1| for the
two cases. The black, dark gray, and light gray regions depict the probability mass in which the coefficient will

be set to zero for constant, © (\/T , and O (T) cumulative ¢; regularization, respectively. Note the constant

cumulative ¢; regularization (a7 = O(1), black) is not strong enough to suppress the feature in the useless noise
case. Conversely, linear cumulative regularization (a1, = ¢T', light gray) is too strong if ¢ > €, suppressing
even the informative feature. On the other hand, cumulative square root regularization (1.7 = ¢/, dark gray)
will eventually suppress the useless noise feature if c is sufficiently large (e.g., ¢ = 60), but will not suppress the
informative one once 7 is sufficiently large (e.g., once €I" > (¢ + Ga)ﬁ ). Hence, for a wide range of leading
constants c, the situation illustrated in Fig. [T|will occur after sufficiently many rounds.

Extending the Thought Experiment We next consider what happens when there are multiple dimensions, and
the distribution on gradients is more general. We assume there is an unknown distribution G on gradient vectors
in [—1, 1]™ and the loss is simply f:(x) = g+ - « where each g, is drawn i.i.d. from G. Further suppose that there
is a fixed coordinate, say n, such that g, ,, has zero mean and positive variance o2 for all t. Note gt,n need not be
independent of g, ; for ¢ # n. Since E [g;,,] = 0 by assumption, playing x; ,, = 0 on round ¢ (i.e., before seeing
gt,») minimizes our expected loss, regardless of the values of the other coefficients.

Next, consider the gradient sum for coordinate n, that is, g;.7 . Note it is distributed as a sum of 7" independent
random variables which have zero mean and lie in [—1, 1]. The Azuma—-Hoeffding inequality then implies that for
all g > 0,

Pr[‘glzT,n‘ > ﬂ\/f < 26Xp (7ﬂ/2) .

Hence, for any constant § > 0 there is a constant ¢(d) such that using ¢; regularization c¢(5)v/T is sufficient to
suppress such spurious features (i.e., ensure z7 , = 0) with probability 1 — 4.

Finally, we cannot expect to suppress such spurious features with far less regularization. The (classical) Central
Limit Theorem indicates that as T' — oo, the distribution g1.7-/+/T will converge almost surely to N (0, o2). Hence

the standard deviation of g1.7 is ©(v/T), and therefore if we use a regularization scaling function \(t) = o(v/t)
then the probability that we play z; ,, # 0 will approach one in the limit ¢ — oo.



3 Regret Analysis for FTRL Algorithms

Our formal analysis builds on the general results for the analysis of adaptive online algorithms of McMahan [9]. We
focus on RDA and FTRL-Proximal, which can both be expressed as instantiations of the general update Eq. ().
RDA (as in Eq. ()) fits this form with 7(x) = o¢||z||3 + a||z||1, and the FTRL-Proximal algorithm with £;
regularization (with regularization parameters o; and o) uses 7¢(x) = o¢|lz — 4|3 + ay||x||1. The parameters
ot > 0 determine a learning rate for the round ¢ update of the form 7, =

o1t

Using [9], we can prove the following upper bounds on the regret of these algorithms.

Theorem 1. Suppose ||z||2 < Rg forall x € X and ||g¢||2 < G2 for all g;. Then, the FTRL-Proximal algorithm
with {1 regularization has

Regret(z*) < 2V2RyGoVT + ayyz* 1. 3)
when we use learning rates 1y, = f% (equivalently, when we set o, such that i = gl\% ). Under the same

conditions, RDA with learning rates n; = % = achieves

Ro
0t V2Ga2VEFL
Regret(z*) < V2R.GoVT + aqllz”||1-

Proof. The inclusion of the /; penalties in the regularizers r¢.; does not change their strong convexity with respect
to the {5-norm. These results are then a straightforward consequence of McMahan [9][Thms. 1 and 2]. ]

Suppose for all ¢, gt2 < G% for a constant Go > 0, and we choose the «; so that aq.; = /T. Then, the bound of
Eq. (@) becomes 2v/2RyGo/T + /T||z*||1. Since ||*||; as a constant, adding ¢; regularization at this rate only
costs us constant factors in the regret bound. On the other hand, if ay.7 is Q(T%J”“”) for k > 0, then of course we
no longer have an O(+/T) regret bound. This is not simply a consequence of this particular regret analysis, as the
following lower bound shows. (The proof of this appears in the full length version of this paper, but is omitted here
for space reasons.)

Theorem 2. Consider any algorithm that against a series of convex functions f; achieves a regret bound that

is O(VT) for any comparator =* with ||z*|| < 1 for any problem where the f; satisfy ||V f;(z;)||l2 < 1. Then,
for any k € (0, %] there exists a loss sequence {fi},~, such that when we run the algorithm on loss functions

he(z) = fi(x) + ollz|h, if arr = Q(T=V%) for all T, then regret against fy, . . ., fr must be Q(Tz 1),

These results demonstrate that choosing a1, = (’)(\/f) is the maximal amount of regularization that can be added
in the online setting without incurring asymptotically worse regret guarantees. However, we can do better with a
data-dependent argument, as we show in the next section.

3.1 Per-coordinate learning rates and regularization

In the worst case we have ||¢;||2 = G for all ¢, and the above bounds are essentially tight. However, in sparse set-
tings, the above bound can be quite loose. Tighter data-dependent bounds could be obtained using per-coordinate
learning rates in style of AdaGrad [3,[10].

The same arguments that justify using a per-coordinate learning rate also suggest using per-coordinate ¢; regular-
ization: we need to distinguish common but uninformative features from rare but highly informative ones. The
problem with a global penalty a4 ||«||1 is that it is likely that the absolute gradient sum |g; . ;| will be larger for an
uninformative feature that has, say, g; ; uniformly at random from {—1, 1} on every round than for an informative
feature that only rarely occurs with non-zero value. We would like to allow the latter a non-zero coefficient in our
model, while still suppressing the former.

To address this, we can scale the ¢ penalty on a per-coordinate basis: instead of a penalty «y.¢||z|/1, we use a
penalty

\I/(x) = Z 041:t,z‘\$i\~
i=1
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Figure 2: Results for the large pCTR private data set experiments.
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Letting ¢;; = Zi:l ]I(gtjl- # 0), we choosg 0.5 & /Crq, that is, the penalty for coordinate 4 spales not with
the global count ¢, but with the number of times we have seen a non-zero gradient for that coordinate (e.g., the
number of times the feature has occurred). Following a simple extension of the analysis from Theorem ] suppose
|g1,:] < G for all ¢ and ¢. Then, we have

Regret(z*) < Z (2\/§R2\/@G§0 + \/EWH) . “)
i=1

and so we now balance the cost of the regularization and the intrinsic regret of the problem on a per-coordinate
basis (both scale as ,/c7 ;). We show in the experiments section that this approach is highly effective.

4 Experimental Results

We ran two sets of experiments on large-scale sparse data, one public and one private. The publicly available
malicious URL dataset [[7] contains about 2.4 x 10° examples with 3.2 x 106 features. The private data set is a
proprietary data set around ad click through prediction (pCTR) with more than a hundred billion examples and
billions of features, a natural setting for sparse learning [11]].

We ran our algorithms in an online fashion using progressive validation [1] to assess predictive performance and
prediction variance. We assess model accuracy using the AUC loss metric, 1 — AUC, where AUC is the familiar
Area Under the ROC Curve metric showing the probability that a randomly drawn positive example is scored more
highly by our model than a randomly drawn negative example. We also report prediction variance as a way to assess
the suppression of uninformative “noise” coefficients; all things being equal from an accuracy perspective, lower
variance predictions are preferable as this reduces the risk of outlier predictions due to noise. In all experiments,
the baseline for comparison is the same model definition with zero ¢; regularization applied.

The pCTR results shown in Figure [2] show a classic regularization curve, with ¢;regularization improving model
quality in the mid ranges. As the theorems in this paper suggest, we see that the 0.5 power improves AucLoss and
reduces prediction variance. The 1.0 power further reduces variance but harms AuclLoss. The public URL results
in Figure 3 agree. In the regime of model sizes from about 3e4 to 3eb using a power p = 0.5 leads to optimal
results in terms of accuracy with a model size that is an order-of-magnitude smaller than the best models achieved
with p = 0, and also significantly smaller than the best models achieved with p = 1. These models also exhibit a
significant decrease prediction variance compared to p = 0, even when we control for model size.
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Figure 3: Experiments on the URL dataset, varying both ¢; regularization strength and the learning rate.
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