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Abstract

We propose a technique to accelerate gradient-based optimization algorithms by
giving them the ability to exploit L-BFGS heuristics. Our scheme is (i) generic and
can be applied to a large class of first-order algorithms; (ii) it is compatible with
composite objectives, meaning that it may provide exactly sparse solutions when a
sparsity-inducing regularization is involved; (iii) it admits a linear convergence rate
for strongly-convex problems; (iv) it is easy to use and it does not require any line
search. Our work is inspired in part by the Catalyst meta-algorithm [15], which
accelerates gradient-based techniques in the sense of Nesterov; here, we adopt a
different strategy based on L-BFGS rules to learn and exploit the local curvature.
In most practical cases, we observe significant improvements over Catalyst for
solving large-scale high-dimensional machine learning problems.

1 Introduction
Convex composite optimization arises in many scientific fields, such as image and signal processing,
or machine learning. It consists of minimizing a real-valued function composed of two convex terms:

min
x∈Rd

{
f(x) , f0(x) + ψ(x)

}
, (1)

where f0 is smooth with Lipschitz continuous gradient, and ψ is not necessarily differentiable. To
solve (1), significant efforts have been devoted to (i) extending techniques for smooth optimization
to deal with composite terms [2, 19]; (ii) exploiting the underlying structure of the problem—
is f a finite sum of independent terms [1, 5, 6, 17, 24, 25]? is ψ separable in different blocks
of coordinate [21, 22, 26]? (iii) exploiting the local curvature of the objective to achieve faster
convergence than gradient-based approaches when the dimension d is very large [16, 20]. Yet, solving
all these problems at the same time remains challenging: this is precisely the focus of this paper.

To tackle (1), first-order methods are often used, but it is also known that Quasi-Newton approaches
are sometimes very effective in the smooth case [24]. Since the dimension d is large, limited-memory
variants such as L-BFGS are necessary to achieve high scalability [16, 20]. The theoretical guarantees
offered by L-BFGS are somewhat weak, meaning that it does not outperform first-order methods in
terms of worst-case convergence rate. Yet, it remains one of the greatest practical success of smooth
optimization, and adapting it to composite and structured problems is of utmost importance.

For instance, proximal Quasi-Newton methods have been proposed [3, 13], but they typically require
computing many times the proximal operator of ψ with respect to a non-isotropic metric, which may
be as computationally demanding as solving the original problem. More related to our work, L-BFGS
is combined with SVRG for minimizing smooth finite sums in [11]. The goal of our paper is more
general since it is not limited to SVRG, but it can be applied to a large-class of first-order techniques
for composite optimization, including for instance other incremental algorithms [5, 6, 17, 24, 25].

More precisely, our main contribution is a generic meta-algorithm which consists of applying
a modified L-BFGS scheme with inexact (but accurate enough) gradients to the Moreau-Yosida
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regularization of the objective. The resulting approach turns out to be (i) generic, as stated previously;
(ii) despite the smoothing of the objective, the sub-problems that we solve are composite ones, which
may lead to exactly sparse iterates when a sparsity-inducing regularization is involved; (iii) it admits a
worst-case linear convergence rate for strongly-convex problems, which is typically the best obtained
for L-BFGS schemes in the literature; (iv) it is easy to use and does not require any line search
algorithm, which is sometimes the computational bottleneck of classical Quasi-Newton methods.

The idea of combining second order or quasi-Newton methods with Moreau-Yosida regularization is
in fact relatively old [4, 9, 10, 18]. Our approach revisits this principle with a limited-memory variant
(to deal with large dimension d), with an alternative strategy to line search schemes (which is useful
when f is a large sum of n functions), and with a global complexity analysis that is more relevant
than focusing on convergence rates regardless of the cost per iteration.

2 The Moreau-Yosida Regularization
The Moreau-Yosida regularization of the objective is defined as

F (x) = min
z∈Rp

{
f(z) +

κ

2
‖z − x‖2

}
, (2)

where κ > 0. The image p(x) of x under the proximal mapping is defined as the solution of (2). The
Moreau-Yosida regularization admits classical properties, which we present below; see also [14].

Proposition 1 (Basic properties of the Moreau-Yosida regularization)
1. F is convex and minimizing f and F are equivalent in the sense that

min
x∈Rp

F (x) = min
x∈Rp

f(x),

and the solution set of the two above problems coincide with each other.

2. F is continuously differentiable even when f is not and

∇F (x) = κ(x− p(x)),

Moreover the gradient∇F is Lipschitz continuous with constant LF = κ.

3. When f is µ-strongly convex, F is µF -strongly convex with constant µF = µκ/(µ+ κ) .

Interestingly, these observations yield a simple strategy for minimizing any convex function f , by
simply minimizing F with an algorithm that is able to handle smooth functions. Such an approach is
appealing but it raises several difficulties: computing the gradient of F requires the exact solution p(x)
of (2), for which no closed-form is available in general and it is thus necessary to use an approximate
solution. This implies defining an inexactness criterion that is easy to check and to control the
accuracy of the gradient approximation to ensure convergence; see, e.g. [7]. Catalyst [15] falls in this
class of algorithms, applying an accelerated first-order method with inexact gradients to F .

3 The QuickeNing Algorithm and its Convergence Analysis
In this paper, we consider using L-BFGS with inexact gradients [8], which are computed with
Algorithm 1 using a given optimization methodM. We remark that the criterion h(z) − h∗ ≤ ε
is one of the weakest in the literature about inexact gradient-based approaches [7, 12, 23], and it
is probably the most useful one: the condition h(z)− h∗ ≤ ε can often be checked by computing
duality gaps in practice and gradient-based methods often admit convergence rates that allow us to
control the computational complexity for solving the sub-problems (3) up to accuracy ε.

Algorithm 1 Procedure GradientEstimate
input Current point x in Rp; accuracy ε; smoothing parameter κ > 0; optimization methodM.

1: Compute the approximate proximal mapping using an optimization methodM:

z ≈ argmin
z∈Rd

{
h(z) , f(z) +

κ

2
‖z − x‖2

}
, (3)

such that h(z)− h∗ ≤ ε where h∗ = minz∈Rd h(z); define Fa = h(z).
2: Compute the approximate gradient of F at x: g = κ(x− z).

output approximate gradient g, objective value Fa, and proximal mapping z.

2



We present our modified L-BFGS heuristic in Algorithm 2, which provides a positive definite
matrix H given two vectors s and y representing the difference of two consecutive iterates and
gradients, respectively. The matrix H is not explicitly stored, but formed by a “generating list” of at
most l pairs (si, yi)i=1...,j using the classical L-BFGS formula, see [20]. Here, the inexactness of the
gradient requires changing the L-BFGS rule in order to guarantee the positive definiteness of H . This
is typically achieved by skipping some L-BFGS updates that would make H non-positive definite [8].
Our convergence analysis suggests a skipping rule, which corresponds to basic strong-convexity
and Lipschitz gradient inequalities when using exact gradients with c1 = c2 = 1. The QuickeNing
scheme is then presented in Algorithm 3, and its main properties are discussed below.

Algorithm 2 Modified L-BFGS update with skipping criterion
input current L-BFGS matrix H formed from a generating list {(si, yi)}i=1...j and initial diagonal

matrix H0; new candidate pair (s, y); L-BFGS parameters 0 < c1, c2 ≤ 1; memory parameter l;
1: if c1µF ‖s‖2 ≤ yT s and c2

LF
‖y‖2 ≤ yT s then

2: add (s, y) to the generating list, and remove the oldest pair if the cardinal exceeds l.
3: else
4: keep the generating list unchanged.
5: end if

output new matrix H (generating list and H0).

Algorithm 3 The QuickeNing meta-algorithm
input Initial point x0 in Rp; decreasing sequence (εk)k≥0; number of iterations K; smoothing

parameter κ > 0; L-BFGS parameters 0 < c1, c2 ≤ 1; optimization methodM;
1: Initialization: (g0, F0, z0) = GradientEstimate(x0, ε0); BFGS matrix H0 = (1/κ)I .
2: for k = 0, . . . ,K − 1 do
3: Perform the Quasi-Newton step: xtest = xk −Hkgk.
4: Estimate the new gradient and the Moreau-Yosida function value

(gtest, Ftest, ztest) = GradientEstimate(xtest, εk+1).

5: if sufficient approximate decrease is obtained Ftest ≤ Fk − 1
4κ‖gk‖

2 + εk, then
6: accept the new iterate: (xk+1, gk+1, Fk+1, zk+1) = (xtest, gtest, Ftest, ztest).
7: else
8: update the current iterate with the proximal mapping: xk+1 = zk.

(gk+1, Fk+1, zk+1) = GradientEstimate(xk+1, εk+1).

9: end if
10: update Hk+1 = L-BFGS(Hk, xk+1 − xk, gk+1 − gk).
11: end for
output last proximal mapping zK (solution).

Handling composite objective functions. When sparsity of the solution is desired, the `1-norm is
typically used. In such case, one may argue that our scheme operates on the smoothed objective F ,
leading to iterates (xk)k≥0 that may have small coefficients, but not exact zeroes. Yet, our approach
also provides iterates (zk)k≥0 that are computed using the original optimization methodM that we
wish to accelerate. WhenM handles composite problems without smoothing, typically whenM is
a proximal block-coordinate, or incremental method, the iterates (zk)k≥0 may be sparse. For this
reason, our theoretical analysis studies the convergence of the sequence (f(zk))k≥0 to the solution f∗.

On the absence of line-search scheme. A key property of QuickeNing is the absence of line-
search, which is usually necessary to ensure the convergence of L-BFGS algorithms [20]. In the
context of the Moreau-Yosida regularization, any line-search would be prohibitive, since it would
require to evaluate the function F multiple times, hence solving the subproblems (3) as many times.
Here, we introduce a simple strategy that selects xk+1 = zk when the sufficient descent condition
Ftest ≤ Fk − 1

4κ‖gk‖
2 + εk is not satisfied. zk is indeed a good candidate since it corresponds to

performing one step of the inexact proximal point algorithm whose convergence properties are well
understood [12, 15]. Finally, the next proposition provides some convergence guarantees.
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Proposition 2 (Complexity Analysis of QuickeNing for µ-strongly convex f )
Assume thatM is always able to produce a sequence of iterates (wt)t≥0 for solving (3) such that

h(wt)− h∗ ≤ A(1− τM)t(h(w0)− h∗) for some constants A, τM > 0.

By choosing the sequence εk = C(1− ρ)k+1/3 with C ≥ (f(x0)− f∗) and ρ < µ/(4(µ+ κ)),

f(zk)− f∗ ≤ C(1− ρ)k+2/
(

µ
4(µ+κ) − ρ

)
,

and each sub-problem (3) is solved up to the desired accuracy in at most a constant number TM of
iterations ofM, where TM = Õ(1/τM), where Õ hides some logarithmic quantities in µ,L and κ.

The proof follows in part that of Catalyst [15], but requires significant modifications to accommodate
the L-BFGS metric. As in Catalyst, the proposition also holds for optimization methodsM that
provide a convergence rate in terms of dual certificate h(wt)− g(wt), where g(wt) is a lower bound
on h∗; this is the case for SDCA/MISO/Finito [6, 15, 25]. Like classical L-BFGS algorithms, the
theoretical complexity is a worst case and does not outperform other first-order methods. In Catalyst,
the theoretical analysis is used to set up the parameter κ; here, the analysis suffers from a mismatch
between theory and practice (as any L-BFGS method), and we recommend instead to set up κ as in
Catalyst [15], which seems to provide good results in practice (see next section).

4 Numerical Illustrations
We now present preliminary experiments to compare the performance of QuickeNing applied to
the method MISO [17], Catalyst-MISO [15], SAGA [5] (using parameter step-size 1/3L), which is
adaptive to unknown strong convexity, and the L-BFGS implementation developed by Mark Schmidt
for smooth objectives, which has been widely used in other comparisons [24]. As an illustration, we
consider two datasets, covtype and alpha, and two formulations: the logistic regression problem
with `2-regularization and the Elastic-net [27] which consists of a least-square objective with the
non-smooth regularization ψ(x) = λ‖x‖1 + γ‖x‖2. Both of them are strongly convex, with constant
lower-bounded by the `2-regularization parameter. The parameters κ, εk of QuickeNing are all set up
according to the rules presented in the previous section and we choose c1 = c2 = 0.5.

Speed comparison results in terms of gradient evaluations, which dominate the cost of all algorithms,
are presented in Figure 1. Our conclusions from this first experiment are encouraging: (i) L-BFGS was
always significant behind other approaches that exploit the finite sum structure of the objective; (ii)
QuickeNing and SAGA perform equally well on alpha, probably due to some hidden strong convexity
in the loss, which Catalyst fails to exploit; (iii) for covtype, QuickeNing was significantly faster than
other approaches, especially SAGA that seems to suffer from very ill-conditioned problems.
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Figure 1: Relative duality gap for different number of passes performed over dataset covtype and
alpha. The legend for all curves is on the top right.
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[22] P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate descent methods for
minimizing a composite function. Mathematical Programming, 144(1-2):1–38, 2014.

[23] S. Salzo and S. Villa. Inexact and accelerated proximal point algorithms. Journal of Convex Analysis,
19(4):1167–1192, 2012.

[24] M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic average gradient.
preprint arXiv:1309.2388, 2013.

[25] S. Shalev-Shwartz and T. Zhang. Proximal stochastic dual coordinate ascent. preprint arXiv:1211.2717,
2012.

[26] P. Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization. Journal
of optimization theory and applications, 109(3):475–494, 2001.

[27] H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 67(2):301–320, 2005.

5


	Introduction
	The Moreau-Yosida Regularization
	The QuickeNing Algorithm and its Convergence Analysis
	Numerical Illustrations

