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Abstract

Stochastic optimization algorithms with variance reduction have proven successful
for minimizing large finite sums of functions. However, in the context of empirical
risk minimization, it is often helpful to augment the training set by considering
random perturbations of input examples. In this case, the objective is no longer
a finite sum, and the main candidate for optimization is the stochastic gradient
descent method (SGD). In this paper, we introduce a variance reduction approach
for this setting when the objective is strongly convex. After an initial linearly
convergent phase, the algorithm achieves a O(1/t) convergence rate in expectation
like SGD, but with a constant factor that is typically much smaller, depending on
the variance of gradient estimates due to perturbations on a single example.

1 Introduction

Many supervised machine learning problems can be cast into the problem of minimizing an expected
loss over a data distribution D with respect to a vector x of model parameters: Eζ∼D[f(x, ζ)]. When
an infinite amount of data is available, stochastic optimization methods such as the stochastic gradient
descent (SGD) or stochastic mirror descent algorithms are typically used [3]. However, in the case of
finite datasets, incremental methods based on variance reduction techniques (e.g., [5, 8, 9, 13, 15])
have proven to be very successful at solving the finite sum problem

min
x

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
.

A classical setting is fi(x) = `(yi, x
>ξi) + µ/2‖x‖2, where (ξi, yi) is an example-label pair, ` is a

convex loss function, and µ is a regularization parameter. However, in many situations, augmenting
the finite training set with well-chosen random perturbations of each example can lead to a smaller test
error in theory [19] and in practice [16]. Examples of such procedures include random transformations
of images in classification problems (e.g., [16]), and Dropout [17]. The objective describing these
scenarios, which we consider in this paper, is the following:

min
x

{
f(x) :=

1

n

n∑
i=1

fi(x) =
1

n

n∑
i=1

Eρ∼Γ[f̃i(x, ρ)]

}
, (1)

where ρ parametrizes the random perturbation. Because each function fi is an expectation, computing
the exact gradient is intractable in general, and standard variance reduction methods cannot be used.
A straightforward way to optimize this objective is to use SGD by choosing an index it randomly
in {1, . . . , n} at iteration t and sampling a perturbation ρt ∼ Γ. Note that this approach ignores the
finite sum structure in the objective and thus leads to gradient estimates with high variance. The goal
of this paper is to introduce an algorithm, stochastic MISO, which can exploit the problem structure
using variance reduction, while guaranteeing convergence behavior similar to that of stochastic
approximation, with a smaller variance only due to the random perturbations on a single example.
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Related work. The problem of minimizing (1) is not well studied in the optimization and machine
learning literature. Most related to our work, recent methods that use clustering information to
improve the convergence of variance reduction techniques [2, 7] can be seen as tackling a special
case of the objective (1), where the expectations in fi are replaced by empirical averages over the
points in a cluster. While the approximation assumption of SAGA with neighbors [7] can be seen as
a variance condition on stochastic gradients as in our case, their algorithm is asymptotically biased
and does not converge to the optimum. On the other hand, ClusterSVRG [2] is not biased, but
requires a finite sum structure and hence does not support infinite datasets. The method proposed
in [1] also bears similarity with ours, since it uses variance reduction in a setting where gradients
are computed approximately, but the algorithm requires reducing the approximation variance by
dynamically increasing the number of MCMC samples used in order to reach the optimum, while our
algorithm overcomes this requirement by supporting decreasing step-sizes.

2 The Stochastic MISO Algorithm

In this section, we introduce the stochastic MISO approach, given in Algorithm 1, which relies on the
following assumptions:

– global strong convexity: f is µ-strongly convex;
– smoothness: f̃i(·, ρ) is L-smooth for all i and ρ (i.e., differentiable with L-Lipschitz gradients);
– small variance from perturbations at optimum: Eρ[‖∇f̃i(x∗, ρ) − ∇fi(x∗)‖2] ≤ σ2 for

all i, where x∗ is the (unique) minimizer of f .

Algorithm 1: S-MISO
Input: step-size sequence (αt)t≥1;
initialize x0 = 1

n

∑
i z

0
i for some (z0

i )i=1,...,n;
for t = 1, . . . do

Sample it randomly in {1, . . . , n}, ρt ∼ Γ, and update:

zti =

{
(1− αt)zt−1

i + αt(xt−1 − 1
µ∇f̃i(xt−1, ρt)), if i = it

zt−1
i , otherwise.

xt =
1

n

n∑
i=1

zti . (2)

end

Without the perturbations and with a constant step-size, the algorithm resembles the MISO/Finito al-
gorithms [6, 9, 10] which may be seen as primal variants of SDCA [14, 15]. Specifically, MISO/Finito
assumes that each fi is strongly convex, and builds a model of the objective using lower bounds of the
form fi(x) ≥ ci + µ

2 ‖x− zi‖
2. Note that when fi is an expectation, it is hard to obtain such bounds

since exact gradients are not available in closed form. Separately, SDCA [15] considers the Fenchel
conjugates of fi, which usually are not available in closed form either when fi is an expectation,
and in fact exploiting stochastic gradient estimates is difficult in the duality framework. In contrast,
Shalev-Shwartz [14] gives an analysis of SDCA in the primal, aka. “without duality”, for finite sums,
and our work extends this reasoning to the stochastic approximation setting.

The link between S-MISO and SGD can be seen by rewriting the update (2) as

xt = xt−1 +
αt
n

(ztit − z
t−1
it

) = xt−1 +
αt
n
vt,

where
vt := xt−1 −

1

µ
∇f̃it(xt−1, ρt)− zt−1

it
.

Note that E[vt|Ft−1] = − 1
µ∇f(xt−1), where Ft−1 contains all information up to iteration t, hence

the algorithm can be seen as an instance of the stochastic gradient method with unbiased gradients,
which was a key motivation in SVRG [8] and later in other variance reduction algorithms [5, 14].
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3 Convergence Analysis

We now study the convergence properties of the S-MISO algorithm. We start by defining the
problem-dependent quantities z∗i := x∗ − 1

µ∇fi(x
∗). We then introduce the Lyapunov function

Ct =
1

2
‖xt − x∗‖2 +

αt
n2

n∑
i=1

‖zti − z∗i ‖2, (3)

which allows us to state our main result:
Proposition 1 (Recursion on Ct). If (αt)t≥1 is a positive and non-increasing sequence of step-sizes
with α1 ≤ min( 1

2 ,
n

2(2κ−1) ), then Ct obeys the following recursion

E[Ct] ≤
(

1− αt
n

)
E[Ct−1] + 2

(αt
n

)2 σ2

µ2
. (4)

This result is obtained by bounding separately each term in (3), and finding coefficients to cancel out
other appearing quantities when relating Ct to Ct−1; this requires borrowing elements of the conver-
gence proof of SDCA without duality [14], while taking into account the stochastic perturbations.
Ultimately, the variance σ in (4) only depends on the amount of data perturbation.

Comparison with SGD. A classical analysis of SGD with step-sizes (ηt)t≥0 gives the following
recursion (see, e.g., [12]) on Bt := 1

2 E[‖xt − x∗‖2]:

Bt ≤ (1− µηt)Bt−1 +
η2
tM

2

2
= (1− µηt)Bt−1 + (µηt)

2M
2

2µ2
,

where we assume Ei,ρ[‖∇f̃i(x, ρ)‖2] ≤M2 for all x. Thus, after forgetting the initial condition B0,
S-MISO minimizes Bt ≤ Ct at a faster rate if 2σ2 ≤M2/2. In particular, if the gradient variance
across examples (bounded by M here) is much smaller than the gradient variance due to the data
perturbation only ρ ∼ Γ (bounded by σ2 at the optimum), then our algorithm will have a much faster
convergence rate. As shown in the experiments presented in the next section, M may be indeed
orders of magnitude larger than σ2 in real scenarios, leading to both theoretical and practical benefits.

We now state the main convergence result, which provides the expected rate O(1/t) on Ct based
on decreasing step-sizes, similar to [3, Theorem 4.7] for SGD. Note that convergence of objective
function values is directly related to that of the Lyapunov function Ct via smoothness:

E[f(xt)− f(x∗)] ≤ L

2
E[‖xt − x∗‖2] ≤ LE[Ct].

Theorem 1. Let the sequence of step-sizes (αt)t≥1 be defined by

αt =
βn

γ + t
for β > 1 and γ ≥ 0 s.t. α1 ≤ min

{
1

2
,

n

2(2κ− 1)

}
.

For all t ≥ 0, it holds that
E[Ct] ≤

ν

γ + t+ 1
,

where

ν := max

{
2β2σ2

µ2(β − 1)
, (γ + 1)C0

}
. (5)

Naturally, we would like ν to be small, in particular independent of the initial condition C0 and equal
to the first term in the definition (5). We would like the dependence on C0 to vanish at a faster rate
than O(1/t), as it is the case in variance reduction algorithms on finite sums. As advised in [3], we
can initially run the algorithm with a constant step-size ᾱ and exploit this linear convergence regime
until we reach the level of noise given by σ, and then start decaying the step-size.

It is easy to see that by using a constant step-size ᾱ, we can reach a suboptimality ε̄ := 2ᾱσ2

nµ2 in

O(nᾱ logC0/ε̄) iterations. If we then set β = 2 and γ large enough so that α1 = βn
γ+1 ≈ ᾱ, we will

have ν = 8σ2/µ2. Considering these two phases, the final work complexity of the algorithm is

O

(
(n+ κ) log

C0

ε̄

)
+O

(
Lσ2

µ2ε

)
.
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STL-10 crop, µ= 10−4
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STL-10 crop, µ= 10−5
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Figure 1: Comparison of S-MISO with SGD. Training loss are shown in logarithmic scale (1 unit =
factor 10). (Top) STL-10 dataset with different values of µ (the best value given by cross validation is
around 10−4); (bottom) breast cancer dataset with Dropout, for different values of δ and µ = 0.003
(selected by 5-fold cross validation with no dropout). Curves for η = 10 (not shown) are diverging.

4 Experiments

We present preliminary experiments on two significantly different scenarios: we consider an image
classification dataset with random transformations and a classification task on breast cancer data with
Dropout (the perturbation sets randomly a fraction of the data entries to zero). For both algorithms, we
use the step-size strategy mentioned in section 3 and advised by Bottou et al. [3], which we have found
to be most effective among many strategies we have tried: we initially keep the step-size constant
(controlled by a factor η ≤ 1 in Figure 1) for 2 epochs, and then start decaying as αt = C/(γ + t),
where C = 2n for S-MISO, C = 2/µ for SGD, and γ is chosen large enough to match the previous
constant step-size. Figure 1 shows the curves we obtain for a Monte-Carlo estimate of the training
objective. The plots are shown on a logarithmic scale, and the values are compared to the best value
obtained in 400 epochs. In both cases, the strong convexity constant µ is the regularization parameter.

Image classification with “data augmentation”. The success of deep neural networks is often
limited by the availability of large amounts of labeled images. When there are many unlabeled
images but few labeled ones, a common approach is to train a linear classifier on top of a deep
network learned in an unsupervised manner. We follow this approach on the STL-10 dataset [4],
which contains 5000 training images from 10 classes and 100000 unlabeled images, using a 2-layer
unsupervised convolutional kernel network [11], giving representations of dimension 102400. The
perturbation consists of randomly cropping the input images. The loss function is the squared hinge
loss used in a one-versus-all setting. The vector representations are `2-normalized such that L = 1.

Figure 1 (top) shows convergence results on one training fold (500 images), for different values of µ,
allowing us to study the behavior of the algorithms for different condition numbers. The low variance
induced by the data transformations allows S-MISO to reach suboptimality that is orders of magnitude
smaller than SGD after the same number of epochs. The best validation accuracy is obtained for
µ ≈ 10−4 (middle plot in Figure 1), giving a 0.5% accuracy improvement over the non-augmented
strategy. A more aggressive augmentation strategy with resizing gave a 2% improvement. Compared
to SGD, S-MISO reached the improved accuracy in less than half the number of epochs in both cases.
We computed empirical variances of the image representations for these two strategies, which are
closely related to the variance in gradient estimates, and observed these transformations to account
for about 10% and 30% of the total variance across multiple images, respectively.

Dropout on gene expression data. We trained a binary logistic regression model on the breast
cancer gene expression dataset of Van de Vijver et al. [18] with different dropout rates δ, i.e. where at
every iteration, each coordinate ξj of a feature vector ξ is set to zero independently with probability δ
and to ξj/(1− δ) otherwise. Figure 1 (bottom) compares S-MISO with SGD for three values of δ,
as a way to control the variance of the perturbations. We include a dropout rate of 0.01 to illustrate
the impact of δ on the algorithms, even though this value of δ is less relevant for the task. The plots
show very clearly how the variance induced by the perturbations affects the convergence of S-MISO,
giving suboptimality values that may be orders of magnitude smaller than SGD.
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