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Abstract

In this paper, we propose novel gossip algorithms for the low-rank decentralized ma-
trix completion problem. The proposed approach is on the Riemannian Grassmann
manifold that allows local matrix completion by different agents while achieving
asymptotic consensus on the global low-rank factors. The resulting approach is
scalable and parallelizable. Our numerical experiments show the good performance
of the proposed algorithms on various benchmarks, e.g., the Netflix dataset.

1 Introduction

The problem of low-rank matrix completion amounts to completing a matrix from a small number
of entries by assuming a low-rank model for the matrix. The problem has many applications in
control systems and system identification [1], collaborative filtering [2], and information theory [3],
to name a just few. Consequently, it has been a topic of great interest and there exist many large-scale
implementations for both batch [4, 5, 6, 7, 8, 9, 10] and online scenarios that focus on parallel and
stochastic implementations [11, 12, 13, 14].

In this paper, we are interested in a decentralized setting, where we divide the matrix completion
problem into smaller subproblems that are solved by many agents locally while simultaneously
enabling them to arrive at a consensus that solves the full problem. In order to minimize the
communication overhead between the agents, we constrain each agent to communicate with only
one other agent as in the gossip framework [15]. One motivation is that this addresses privacy
concerns of sharing sensitive data [16]. Another motivation is that the gossip framework is robust
to scenarios where certain agents may be inactive at certain time slots, e.g., consider each agent
to be a computing machine. We propose a preconditioned variant that is particularly well suited
for ill-conditioned instances. Additionally, we also propose a parallel variant that allows to exploit
parallel computational architectures. All the variants come with asymptotic convergence guarantees.
To the best of our knowledge, this is the first work that exploits the gossip architecture for solving the
decentralized matrix completion problem. Numerical comparisons show that the proposed algorithm
show good performance on various benchmarks including on the Netflix dataset. The Matlab codes
of the proposed algorithms are available at https://bamdevmishra.com/codes/gossipmc/.

2 Decentralized matrix completion problem formulation

The matrix completion problem is formulated as

min
X∈Rm×n

1

2
‖PΩ(X)− PΩ(X?)‖2F subject to rank(X) = r, (1)

where X? ∈ Rm×n is a matrix whose entries are known for indices if they belong to the subset
(i, j) ∈ Ω and Ω is a subset of the complete set of indices {(i, j) : i ∈ {1, ...,m} and j ∈ {1, ..., n}}.
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The operator PΩ(Xij) = Xij if (i, j) ∈ Ω and PΩ(Xij) = 0 otherwise is called the orthogonal
sampling operator and is a mathematically convenient way to represent the set of known entries. The
rank constraint parameter r is usually set to a low value, i.e.,� (m,n) to seek low-rank completion.

A way to handle the rank constraint in (1) is by a fixed-rank matrix parameterization. In particular, we
use X = UWT , where U ∈ St(r,m) and W ∈ Rn×r, where St(r,m) is the set of m× r matrices
with orthonormal columns. Additionally, fixing U, minW∈Rn×r ‖PΩ(UWT )− PΩ(X?)‖2F can be
solved in closed form. Equivalently, (1) reads

min
U∈St(r,m)

1

2
‖PΩ(UWU

T )− PΩ(X?)‖2F (2)

where WU is the solution to the inner optimization problem minW∈Rn×r ‖PΩ(UWT )−PΩ(X?)‖2F .

We distribute the task of solving the problem (2) amongN agents, which perform certain computations
independently. To this end, we partition the incomplete matrix X? = [X?

1,X
?
2, . . . ,X

?
N ] along the

columns such that the size of X?
i is m× ni with

∑
ni = n for i = {1, 2, . . . , N}. Each agent i has

knowledge of the incomplete matrix X?
i and its local set of indices Ωi of known entries. We also

partition the weight matrix W as WT = [WT
1 ,W

T
2 , . . . ,W

T
N ] such that the matrix Wi has size

ni × r. A straightforward reformulation of (2) is

min
U∈St(r,m)

1

2

∑
i

‖PΩi(UWT
iU)− PΩi(X

?
i )‖2F︸ ︷︷ ︸

problem handled by agent i

, (3)

where WiU is the least-squares solution to minWi∈Rni×r ‖PΩi(UWT
i )− PΩi(X

?
i )‖2F , which can

be computed by agent i independently of other agents.

Although the computational workload gets distributed in (3), all agents still require the knowledge
of the common U (to compute the matrices WiU). To circumvent this issue, each agent i stores
a local copy Ui, which it then updates based on information from its neighbors. For minimizing
the communication overhead between agents, we additionally put the constraint that at any time
slot only two agents communicate, i.e, each agent has exactly only one neighbor. To this end, the
agents are numbered according to their proximity, e.g., for i 6 N − 1, agents i and i + 1 are
neighbors. Equivalently, agents 1 and 2 are neighbors and can communicate. Similarly, agents 2 and
3 communicate, and so on. This communication between the agents allows to reach a consensus on
Ui. Specifically, it suffices that the column spaces of all Ui converge. (The precise motivation and
formulation are in Section 3.) Our proposed decentralized matrix completion problem formulation is

min
U1,...,UN∈St(r,m)

∑
i

fi :=
1

2
‖PΩi(UiW

T
iUi

)− PΩi(X
?
i )‖2F︸ ︷︷ ︸

completion task handled by agent i

+
ρ

2
(d2

1(U1,U2) + d2
2(U2,U3) + . . .+ d2

N−1(UN−1,UN ))︸ ︷︷ ︸
consensus

,
(4)

where di is a certain distance measure between Ui and Ui+1 for i 6 N − 1 and ρ > 0 is a parameter
that trades off matrix completion with consensus. It should be noted that the consensus term has
N − 1 particular pairwise distances. The particular structure in the consensus term helps in achieving
consensus in a straightforward manner [17, Section 4.4]. For a large ρ, the consensus term in (4)
dominates, minimizing which allows the agents to arrive at consensus. For ρ = 0, the optimization
problem (4) solves N independent completion problems and there is no consensus. For a sufficiently
large ρ, the problem (4) achieves the goal of approximate matrix completion along with consensus.

3 The Riemannian gossip algorithm

It should be noted that the optimization problem (2) only depends on the column space of U rather
than U itself [9, 11]. Subsequently, the optimization problem (2), and similarly (3), is conceptually on
the Grassmann manifold Gr(r,m), which is the set of r-dimensional subspaces in Rm [19]. However,
numerical algorithms, by necessity, are implemented with matrices U on St(r,m). It should be
stated that the Grassmann manifold is a Riemannian manifold and optimization on the Grassmann
manifold is a well studied topic in literature [19]. Notions such as the Riemannian gradient (first
order derivative of a cost function), geodesic (shortest curve), and logarithm mapping (“difference”
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Table 1: Proposed online gossip algorithm for (4)

1. At each time slot t, pick an agent i 6 N−1 randomly with uniform probability. Compute the Riemannian gradients
gradxi

fi, gradxi+1
fi+1, gradxi

di, and gradxi+1
di as

gradxi
fi = Gradxi

fi −UT
i (UT

i Gradxi
fi),Gradxi

fi = (PΩi
(UiW

T
iUi

)− PΩi
(X?

i ))WiUi
,

gradxi
di = −Logxi

(xi+1), and gradxi+1
di = −Logxi+1

(xi),

where xi = Ui, xi+1 = Ui+1, and Logxi
(xi+1) is the logarithm mapping, which is well defined on Gr(r,m). It

should be noted that the Riemannian gradient of the Riemannian distance is the negative logarithm mapping [18].
2. Given a stepsize γt, update Ui and Ui+1 as

(Ui)+ = Expxi
(−γt(αigradxi

fi + ρgradxi
di))

(Ui+1)+ = Expxi+1
(−γt(αi+1gradxi+1

fi+1 + ρgradxi+1
di)),

where xi = Ui and xi+1 = Ui+1. αi = 1 if i = {1, N}, else αi = 0.5, which balances the terms. Expxi
(ξxi

) is
the exponential mapping, which is well defined on Gr(r,m).

between elements) have closed-form expressions [19]. The distance measure di in (4) is chosen as
the Riemannian distance between the column spaces of Ui and Ui+1. It is easy to see that the critical
points of the consensus term in (4), by construction, achieve consensus [17].

We exploit the stochastic gradient descent (SGD) setting framework proposed in [17] for (4). We
make the following assumptions.

A1 Agents i and i+ 1 are neighbors for all i 6 N − 1.

A2 At each time slot, say t, we pick an agent i 6 N − 1 randomly with uniform probability.
From assumption A1, this means that we also pick agent i + 1 (the neighbor of agent i).
Subsequently, agents i and i + 1 update Ui and Ui+1, respectively, by taking a gradient
descent step with stepsize γt on Gr(r,m). That is, our sample cost is fi + fi+1 + ρd2

i . The
stepsize sequence satisfies the standard conditions, i.e.,

∑
γ2
t <∞ and

∑
γt = +∞.

Although the particular structure of the consensus term in (4) assumes agents topology, there is still
flexibility in terms of sampling for SGD. A1 here specifically helps define a “sample”. Finally, the
proposed algorithm is presented in Table 1. Overall, the computational cost of each agent update is
O(|Ωi|r2 + nir

2 +mr). The Grassmann manifold related ingredients cost O(mr2 + r3).

Convergence analysis. Asymptotic convergence analysis of the algorithm in Table 1 follows directly
from the analysis in [17, Theorem 1]. The key idea is that for a compact Riemannian Grassmann
manifold all continuous functions of the parameter are bounded. Subsequently, under a decreasing
stepsize condition and noisy gradient estimates (an unbiased estimator of the batch gradient), the
algorithm in Table 1 converges to a critical point of (4) almost surely.

Preconditioned variant. Given the Riemannian gradient ξxi
= gradxi

fi + ρgradxi
di computed

by agent i at xi = Ui, we propose the preconditioner ξxi
7→ ξxi

( WT
iUi

WiUi︸ ︷︷ ︸
from completion

+ ρI︸︷︷︸
from consensus

)−1,

where I is the r× r identity matrix. Other than the scaling of the Riemannian gradient, the rest of the
formulas in Table 1 remain the same for the preconditioned variant. Applying the preconditioner costs
O(nir

2 + r3). The term WT
iUi

WiUi is computationally cheap to compute and it captures a block
diagonal approximation of the Hessian of the simplified (but related) cost function ‖UiW

T
iUi
−X?

i ‖2F .
The works [6, 7, 9] use the term WT

iUi
WiUi as an effective preconditioner. The term ρI is motivated

from an approximation of the second order derivative of the consensus term in (4).

Parallel variant. Parallelization of the algorithm in Table 1 follows from a particular sampling of
agents. We explain the idea for N = 5. Updates of the agents are divided into two rounds. In round
1, we pick agents 1 and 3, i.e., all the odd numbered agents. It should be noted the formulation (4),
by construction, allows to update the agent pairs (1, 2) and (3, 4) in parallel. Similarly, in round 2,
we pick agents 2 and 4, i.e., all the even numbered agents and update the agent pairs (2, 3) and (4, 5)
in parallel. The key idea is that sampling is on the rounds and not on the agents. For example, we
pick a round with uniform probability.
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(b) Online versus parallel.
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(c) Preconditioning.
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Figure 1: Performance of proposed algorithms in different scenarios.

4 Numerical comparisons

The proposed algorithm in Table 1 (Online Gossip) and its variants are compared on different problem
instances. The implementations are based on the Manopt toolbox [20]. We also show comparisons
with RTRMC-1 [9] (batch gradient descent) and D-LMaFit [16] (decentralized). N = 6 for our
proposed algorithms. Online algorithms are run for a maximum of 1000 iterations. The parallel
variant is run for 400 iterations. The stepsize sequence is defined as γt = γ0/t, where t is the time
slot and γ0 is set using cross validation. D-LMaFit and RTRMC-1 are run for 400 iterations. For
simplicity, all figures only show the plots for only few agents. All simulations are performed in
Matlab. For each synthetic example, an m × n random matrix of rank r is generated as in [4]. A
fraction of the entries, based on sampling ratio OS := |Ω|/(mr + nr − r2), are randomly removed
with uniform probability to construct the training set Ω and data X?. Gaussian noise with mean zero
and standard deviation 10−6 is added to the data. The matrices X?

i are created by dividing X? along
columns equally among the agents. The training and test sets are also partitioned similarly.

Effect of ρ: we consider a problem instance of size 10 000×100 000 of rank 5 and OS 6. Two
scenarios with ρ = 103 and ρ = 1010 are considered. Figure 1(a) shows the performance of Online
Gossip. Not surprisingly, for ρ = 1010, we only see consensus (the distance between agents 1
and 2 tends to zero). For ρ = 103, we see both completion and consensus, which validates the
theory. Online versus parallel: we consider the previous example with ρ = 103. Figure 1(b) shows
that both online and parallel variants perform similarly. Ill-conditioned instances: we consider
a problem instance of size 5 000×50 000 of rank 5 and impose an exponential decay of singular
values with condition number 500 and OS 6. Figure 1(c) shows the performance of Online Gossip
and its preconditioned variant for ρ = 103. Overall, the preconditioned variant shows a superior
performance in Figure 1(c). Comparisons with D-LMaFit: we consider a problem instance of size
500×12 000, rank 5, and OS 6. D-LMaFit is run with the default parameters. For Online Gossip,
we set ρ = 103. As shown in Figure 1(d), Online Gossip quickly outperforms D-LMaFit. Overall,
Online Gossip takes fewer number of updates to reach a high accuracy. Netflix dataset: the dataset
(obtained from the code of [13]) consists of 100 480 507 ratings by 480 189 users for 17 770 movies.
We perform 10 random 80/20 train/test partitions. The train ratings are centered around 0. We split
both the train and test data among the agents along the number of users. We run Online Gossip with
ρ = 107 (set with cross validation) and for 400(N − 1) iterations and N = {2, 5, 10, 15, 20} agents.
We show the results for rank 10 [9]. Additionally, we add a regularization term ‖X−PΩ(X)‖2F with
regularization parameter set to 0.01. Table 2 shows the root mean square error (RMSE) obtained on
the entire test set averaged over 10 runs. For comparison, we show the test RMSE obtained by the
batch algorithm RTRMC-1. Figure 1(e) shows the consensus of agents for the case N = 10.

Table 2: Performance of Online Gossip on the Netflix dataset at rank 10

N = 2 N = 5 N = 10 N = 15 N = 20 RTRMC-1 (batch method)
Test RMSE 0.877 0.885 0.891 0.894 0.900 0.873

5 Conclusion

We have proposed a Riemannian gossip approach to the decentralized matrix completion problem.
Specifically, the completion task is distributed among a number of agents, which are then required
to achieve consensus. This is modeled as minimizing a weighted sum of completion and consensus
terms on the Grassmann manifold. We propose a novel stochastic gradient descent algorithm, and its
preconditioned and parallel variants, for the problem with simple updates. Numerical experiments
show the competitive performance of the proposed algorithms on different benchmarks.
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