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Abstract

We provide a unified modeling framework of sparse and low-rank decomposition
to investigate the fundamental limits of communication, computation, and storage
in mobile big data systems. The resulting sparse and low-rank optimization prob-
lems are highly intractable non-convex optimization problems and conventional
convex relaxation approaches are inapplicable, for which we propose a smoothed
Riemannian optimization approach. We propose novel regularized formulations
that allow to exploit the Riemannian geometry of fixed-rank matrices and induce
sparsity in matrices. Empirical results show the speedup, scalability, and superior
performance against state-of-art algorithms across different problem instances.

1 Introduction

This paper considers the following sparse and low-rank decomposition optimization problem for
mobile big data systems:

P : minimize
X∈RK×K

L(X) + λR(X) subject to rank(X) = r, (1)

where L : RK×K → R is a smooth convex loss function, R : RK×K → R is a nonsmooth
function, possibly nonconvex, and λ ≥ 0 is the regularization parameter. The function R serves
the purpose of inducing sparsity patterns in the solution of Problem P . The fixed-rank constrained
smooth optimization problem P commonly arises in machine learning, signal and data processing,
and information theory. A non-exhaustive list of applications includes matrix completion [1], graph
clustering [2], ranking [3], topological interference management [4], and index coding problems [5].

We motivate the sparse and low-rank formulation (1) in the context of investigating the fundamental
limits of communication, computation, and storage in mobile big data systems. By pushing the com-
putation and storage resource to the edge of networks, mobile big data system provides a disruptive
technology to enable massive information communication, computation and storage via network
densification [6, 7], mobile edge caching [8], and distributed computing [9]. Although sparse and
low-rank decomposition has recently been intensively investigated for data and information process-
ing, unique challenges arise in mobile big data systems in terms of numerical algorithms design and
theoretical analysis, for which we provide the following three specific problems of interest.

Topological interference alignment. The topological interference alignment problem in the
densely deployed partially connected K-user interference network is [4]

P1 : minimize
X∈RK×K

rank(X)

subject to Xii = 1, ∀i = 1, . . . ,K, (2)
Xij = 0, ∀i ̸= j, (i, j) ∈ V, (3)
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where V is the index set of connected transceiver pairs such that the channel coefficient from trans-
mitter j to receiver i with (i, j) ∈ V is non-zero and zero otherwise. The interference alignment
conditions (2) and (3) preserve the desired signal and cancel the interference, respectively. It should
be noted that the sparsity in matrix X comes from the condition (3). The intuitive observation in
the modeling formulation P1 is that the achievable symmetric degrees-of-freedom (DoF) equals the
inverse of the rank of matrix X [4]. The well-known nuclear norm relaxation approach [1] fails for
P1 as it always returns the identity matrix as the optimal solution [4]. The details of the modeling
framework P1 are in [4]. The framework provides a principled way to design communication-
efficient schemes for mobile edge caching networks [8] and distributed computing systems [10, 11].

Network topology control. Given the DoF allocations, i.e., a fixed-rank matrix X , the network
topology control problem in the partially connected K-user interference network is [5]

P2 : minimize
X∈RK×K

∥X∥0

subject to Xii = 1,∀i = 1, . . . ,K,

rank(X) = r,

where ∥X∥0 is the count of non-zero entries in X . It should be noted that ∥X∥0 = K2 − |V|
represents the number of non-connected interference links. We, thus, aim at finding the network
topologies with the maximum number of allowed connected interference links, while satisfying the
DoF requirements (the rank constraint). However, due to the challenges of the ℓ0 objective function
and non-convex fixed-rank constraint, solving Problem P2 turns out to be highly intractable. The
widely used mixed ℓ1-norm and nuclear norm convex penalty relaxation approach is inapplicable, as
this approach always yields the identity matrix as the solution [5]. The details on the formulation are
in [5]. This model also provides a novel way to minimize the storage overhead in caching networks
[12, 8] and minimize the computation load in distributed computing systems [10, 11].

User admission control. The user admission control problem in the partially connected K-user
interference network is [13]

P3 : maximize
X∈RK×K

∥diag(X)∥0

subject to Xij = 0, ∀i ̸= j, (i, j) ∈ V, (4)
rank(X) = r, (5)

where diag(·) extracts the diagonal entries of a matrix. Here, ∥diag(X)∥0 equals the number of
admitted users. Problem P3 aims at finding the maximal number of admitted users while satisfying
the interference alignment condition (4) and DoF requirements (5). Due to the ℓ0-norm maximization
objective and non-convex fixed-rank constraint, Problem P3 reveals unique challenges. A simple
ℓ1-norm relaxation approach yields the objective in Problem P3 unbounded and non-convex. The
details on the formulation P3 are in [13]. This model also provides a new perspective to maximize
the user capacity in caching networks [12, 8] and distributed computing systems [9, 10, 11].

Overall, Problems P1, P2 and P3 exploit rank and sparsity constraints to characterize the con-
ditions on the design parameters r, V , and K for achieving the feasibility of topological interfer-
ence alignment. Based on the relationships among the topological interference alignment [6], index
coding [14], caching network [12] and distributed computing systems [10], we provide a unified
approach to deal with such structured sparse and low-rank decomposition problems for mobile big
data systems design to efficiently use the communication, computation and storage resources.

2 Smooth optimization approach

We propose to solve P1, P2, and P3 in two steps. In the first step, we find a good sparsity pattern
by considering a smoothed regularized version of the problems as a smooth fixed-rank optimization
problem. This is handled by using a smooth approximation Rϵ of R, where ϵ is the smoothing
parameter. In the second step, we refine the estimate obtained in the first step. The second step is
equivalent to a certain fixed-rank matrix completion problem. Both the steps involve fixed-rank op-
timization of form Problem P for which we exploit the Riemannian structure of fixed-rank matrices
[15, 16, 17]. Specifically, we use the Riemannian trust-region algorithm that is well implemented
in the Matlab toolbox Manopt [18]. The Riemannian trust-region algorithm is globally convergent,
i.e., it converges to a critical point starting from any random initialization [15, Chapter 7].
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Figure 1: The Riemannian optimization machinery on a quotient manifold. The dashed lines rep-
resent abstract objects and the solid lines are their matrix representations. The points x = (U ,V )
and y = (UM−1,V MT ) in the total (computational) space M belong to the same equivalence
class and they represent a single point [x] = [(U ,V )] := {(UM−1,V MT ) : M ∈ GL(r)} in the
quotient space M/ ∼. An algorithm is implemented in M := RK×r×RK×r, but conceptually, the
search is on the quotient manifold M/GL(r). The search is only along the horizontal space Hx (a
subspace of TxM) that is a mathematical representation of T[x](M/ ∼). Given a search direction
ξx along Hx, the retraction mapping Rx maps it onto an element in M [15].

2.1 Proposed approach

To address the computational challenges in Problems P1, P2, and P3, we propose the following
regularized formulations that are cast as P . Below we show the corresponding objective functions.

• For Problem P1, we have L(X) =
∑

i(Xii−1)2+
∑

(i,j)∈V X2
ij and λ = 0. This is solved

by the Riemannian pursuit algorithm via alternatively performing fixed-rank optimization
and rank updating [4].

• For Problem P2, we have L(X) =
∑

i(Xii − 1)2, Rϵ(X) = ∥X∥1,ϵ, and λ ≥ 0. Here,
∥X∥1,ϵ =

∑
ij(X

2
i + ϵ2)1/2 with ϵ ≥ 0 as a smoothing parameter [5]. Once the sparsity

pattern is obtained, a subsequent matrix completion step refines the estimate.
• Problem P3, we have L(X) =

∑
(i,j)∈V X2

ij , Rϵ(X) = ρ∥diag(X)∥22 − ∥diag(X)∥1,ϵ
(which is non-convex), λ ≥ 0, and ρ ≥ 0. Here, ρ is a weighting parameter and the
regularized term ρ∥diag(X)∥22 provides a novel way to bound the overall objective function
[13], which allows to apply efficient manifold optimization algorithms. The dual way for
bounding the non-convex objective is to add one additional constraint, e.g., the ℓ1-norm
constraint serves the purpose of bounding the non-convex objective in the high-dimensional
regression problem [19]. Similar to the earlier case, once the sparsity pattern is obtained,
we refine the estimate with a matrix completion step.

2.2 A matrix manifold optimization framework for P

One popular approach to solve the smoothed version of Problem P is based on the following pa-
rameterization:

minimize
U∈RK×r,V ∈RK×r

f(UV T ) := L(UV T ) + λRϵ(UV T ), (6)

where the rank-r matrix X is represented as UV T with U ∈ RK×r and V ∈ RK×r. It should be
noted that Rϵ is the smooth version of R, which is discussed in Section 2.1 for different problems.
With r ≪ K, such a parameterization significantly reduces the number of optimization variables,
thereby yielding low computational and memory costs. Although f(UV T ) in (6) becomes a non-
convex function w.r.t. both U and V , there are exists recent non-convex algorithms operating on
the U and V factors. For example, the Bi-Factored Gradient Descent (BFGD) algorithm in [20]
can be adopted if f is smooth, while the alternating minimization (AltMin) algorithm [21] can be
applied when f is convex in U and V individually. In this paper, we adopt a geometric approach
that exploits non-uniqueness of the factorization X = UV T and allows joint update of U and V .

It should be noted that X remains unchanged under the transformation of the factors (U ,V ) 7→
(UM−1,V MT ) for all non-singular matrices M ∈ GL(r), which is the set of r × r non-singular
matrices. As a result, the critical points of an objective function parameterized with U and V
are not isolated on RK×r × RK×r. This issue is effectively resolved by considering the set of
equivalence classes [(U ,V )] := {(UM−1,V MT ) : M ∈ GL(r)} as the search space instead
of RK×r × RK×r. In this search space, the critical points are isolated. Mathematically, our search
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(a) Network control (lower is better).
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(b) Computation time.
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(c) User control (higher is better).
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(d) Computation time.

Figure 2: Performance of the proposed algorithms on P2 and P3.

space, i.e., the rank constraint rank(X), is the quotient space M/ ∼, where M := RK×r ×RK×r

and ∼ is the equivalence relationship. The dimension of M/ ∼ is nr +mr − r2.

The set of fixed-rank matrices has the structure of a Riemannian manifold [16, 17] that allows to pro-
pose a second order trust-region optimization algorithm in a systematic way. Particularly, we need
the notion of “linearization” of the search space (tangent space), “search” direction computed from
a local second order model (Riemannian gradient and Hessian), and a way “move” on a manifold
(retraction). These notions are well defined on a Riemannian manifold. Figure 1 shows a schematic
viewpoint of optimization. An additional requirement is the notion of an inner product well suited
for regularized least-squares such as the ones in Section 2.1 [16]. Once the ingredients are in place,
the toolbox Manopt allows a ready implementation of Riemannian trust-region algorithm for P .

3 Experimental results

In this section, we compare our proposed smoothed Riemannian optimization (SManopt) algorithm
with BFGD [20] and AltMin [21] on the regularized formulations (Section 2.1) of P2 and P3. All
simulations are performed in Matlab on a 2.4 GHz octa-core Intel Xeon E5-2630 v3 machine (2
processors) with 64 GB RAM. The algorithms and problem instances are initialized randomly. The
sets of V are generated uniformly at random. Each algorithm is stopped if the change in the objective
value after every five iterations is less than δc. Numerical comparisons show that proposed SManopt
outperforms state-of-art algorithms both in quality of solutions and numerical tractability.

Network topology control problem P2. We set ϵ to a high value of 0.01 and δc = 10−4. A good
choice of λ is 0.01, which is obtained by cross validation. The maximum number of iterations of
SManopt, AltMin, and BFGD are set to 500, 500, and 105, respectively. Figure 2 (a) demonstrates
the sparsity and low-rankness tradeoff in X ∈ RK×K with K = 16, followed by the time results
illustrated in Figure 2 (b) with the fixed-rank r = 10. Each point in the simulations is averaged over
200 randomly generated initial points for each algorithm.

User admission control problem P3. We set ρ = 0.5, λ = 0.02, ϵ = 0.001, and δc = 10−11

because of the extremely low convergence rate of BFGD in this scenario. Figure 2 (c) demonstrates
the average number of admitted users with different rank allocations of matrix X with K = 8,
followed by the time results shown in Figure 2 (d) with the fixed rank r = 8. Each point in the
simulations is averaged over 100 randomly generated network topology realizations V . It should be
noted that we only compare with BFGD. As the objective function in P is non-convex for Problem
P3, AltMin is not directly applicable to this problem.

4 Conclusions and future work

In this paper, we have presented a unified sparse and low-rank decomposition approach for prob-
lems arising in mobile big data systems, for which the conventional convex relaxation approaches
(e.g., ℓ1-norm and nuclear-norm relaxations) fail. We propose a regularization approach to deal with
challenging constraints that boils down to a smooth fixed-rank optimization problem. This allows
to exploit the Riemannian structure of fixed-rank matrices. Specifically, we exploit the Riemannian
trust-region algorithm. Numerical comparisons demonstrate the significant performance improve-
ment of the proposed algorithm. As a future research direction, we intend to establish optimality of
the proposed algorithm for the problems on the lines of [22].
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